1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
//
// Copyright 2025 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: axis_load_split
//
// Description:
//
// Takes an AXI4-Stream interface and distributes the input packets evenly
// among the output ports. The packets will be distributed sequentially, with
// the first packet going to output port 0, the second to port 1, and so on,
// in a circular manner. The data output can be optionally resized to a new
// data width.
//
// The purpose of this module is to take a high-throughput input that needs
// to be processed and farm it out to multiple instances of a processing
// module, sending one packet to each instance.
//
// Parameters:
//
// IN_DATA_W : Width of TDATA in bits for the input port.
// IN_FIFO_SIZE : Log base-2 of the input FIFO size, in units of
// IN_DATA_W-sized words. Set to -1 to remove, 1 to add a
// register that cuts timing paths, or whichever size you
// desire.
// OUT_DATA_W : Width of TDATA in bits for the output port.
// OUT_FIFO_SIZE : Log base-2 of the output FIFO size used for each output,
// in units of OUT_DATA_W-sized words. Typically, this would
// be large enough to buffer one entire packet. Set to -1 to
// remove.
// OUT_NUM_PORTS : The number of output streams across which to distribute
// the packets.
// USER_W : Width of TUSER in bits for both input and output ports.
//
`default_nettype none
module axis_load_split #(
int IN_DATA_W = 64,
int IN_FIFO_SIZE = 1,
int OUT_DATA_W = 32,
int OUT_FIFO_SIZE = 10,
int OUT_NUM_PORTS = 2,
int USER_W = 1
) (
input wire clk,
input wire rst,
// Single input stream
input wire [IN_DATA_W-1:0] i_tdata,
input wire [ USER_W-1:0] i_tuser,
input wire i_tlast,
input wire i_tvalid,
output logic i_tready,
// Output streams
output logic [OUT_DATA_W-1:0] o_tdata [OUT_NUM_PORTS],
output wire [ USER_W-1:0] o_tuser [OUT_NUM_PORTS],
output logic o_tlast [OUT_NUM_PORTS],
output logic o_tvalid [OUT_NUM_PORTS],
input wire o_tready [OUT_NUM_PORTS]
);
// Elaboration-time assertions
if (OUT_DATA_W > IN_DATA_W) begin : check_size
$error("OUT_DATA_W must not exceed IN_DATA_W");
end
if (IN_DATA_W % OUT_DATA_W != 0) begin : check_multiple
$error("IN_DATA_W must be a multiple of OUT_DATA_W");
end
//---------------------------------------------------------------------------
// Input FIFO
//---------------------------------------------------------------------------
logic [IN_DATA_W-1:0] in_fifo_tdata;
logic [ USER_W-1:0] in_fifo_tuser;
logic in_fifo_tlast;
logic in_fifo_tvalid;
logic in_fifo_tready;
axi_fifo #(
.WIDTH(1 + USER_W + IN_DATA_W),
.SIZE (IN_FIFO_SIZE )
) axi_fifo_in (
.clk (clk ),
.reset (rst ),
.clear (1'b0 ),
.i_tdata ({i_tlast, i_tuser, i_tdata} ),
.i_tvalid(i_tvalid ),
.i_tready(i_tready ),
.o_tdata ({in_fifo_tlast, in_fifo_tuser, in_fifo_tdata}),
.o_tvalid(in_fifo_tvalid ),
.o_tready(in_fifo_tready ),
.space ( ),
.occupied( )
);
//---------------------------------------------------------------------------
// Splitter Logic
//---------------------------------------------------------------------------
logic [IN_DATA_W-1:0] split_tdata [OUT_NUM_PORTS];
logic [ USER_W-1:0] split_tuser [OUT_NUM_PORTS];
logic split_tlast [OUT_NUM_PORTS];
logic split_tvalid [OUT_NUM_PORTS];
logic split_tready [OUT_NUM_PORTS];
// Currently selected port
logic [$clog2(OUT_NUM_PORTS)-1:0] st_port;
// Splitter state machine. Tracks and advances the currently selected port.
always_ff @(posedge clk) begin
if (rst) begin
st_port <= '0;
end else begin
if (in_fifo_tvalid && in_fifo_tready && in_fifo_tlast) begin
if (st_port == OUT_NUM_PORTS-1) begin
st_port <= '0;
end else begin
st_port <= st_port + 1;
end
end
end
end
// Distribute the input to each output. Only the currently selected output
// port will receive the data.
assign in_fifo_tready = split_tready[st_port];
for (genvar idx = 0; idx < OUT_NUM_PORTS; idx++) begin : gen_splitter
assign split_tdata [idx] = in_fifo_tdata;
assign split_tuser [idx] = in_fifo_tuser;
assign split_tlast [idx] = in_fifo_tlast;
assign split_tvalid[idx] = in_fifo_tvalid && (st_port == idx);
end
//---------------------------------------------------------------------------
// Output FIFOs
//---------------------------------------------------------------------------
logic [IN_DATA_W-1:0] out_fifo_tdata [OUT_NUM_PORTS];
logic [ USER_W-1:0] out_fifo_tuser [OUT_NUM_PORTS];
logic out_fifo_tlast [OUT_NUM_PORTS];
logic out_fifo_tvalid [OUT_NUM_PORTS];
logic out_fifo_tready [OUT_NUM_PORTS];
for (genvar idx = 0; idx < OUT_NUM_PORTS; idx++) begin : gen_axi_fifos
axi_fifo #(
.WIDTH(1 + USER_W + IN_DATA_W ),
.SIZE (OUT_FIFO_SIZE - $clog2(IN_DATA_W/OUT_DATA_W))
) axi_fifo_out (
.clk (clk ),
.reset (rst ),
.clear (1'b0 ),
.i_tdata ({split_tlast[idx], split_tuser[idx], split_tdata[idx]} ),
.i_tvalid(split_tvalid[idx] ),
.i_tready(split_tready[idx] ),
.o_tdata ({out_fifo_tlast[idx], out_fifo_tuser[idx], out_fifo_tdata[idx]}),
.o_tvalid(out_fifo_tvalid[idx] ),
.o_tready(out_fifo_tready[idx] ),
.space ( ),
.occupied( )
);
end
//-------------------------------------------------------------------------
// Resize
//-------------------------------------------------------------------------
if (IN_DATA_W == OUT_DATA_W) begin : gen_no_resize
assign o_tdata = out_fifo_tdata;
assign o_tuser = out_fifo_tuser;
assign o_tlast = out_fifo_tlast;
assign o_tvalid = out_fifo_tvalid;
assign out_fifo_tready = o_tready;
end else begin : gen_resize
for (genvar idx = 0; idx < OUT_NUM_PORTS; idx++) begin : gen_axis_width_conv
localparam IN_WORDS = IN_DATA_W/OUT_DATA_W;
localparam COUNT_W = $clog2(IN_WORDS);
//-----------------------------------------
// Data Width Conversion
//-----------------------------------------
axis_width_conv #(
.WORD_W (OUT_DATA_W),
.IN_WORDS (IN_WORDS ),
.OUT_WORDS(1 ),
.SYNC_CLKS(1 ),
.PIPELINE ("INOUT" )
) axis_width_conv_i (
.s_axis_aclk (clk ),
.s_axis_rst (rst ),
.s_axis_tdata (out_fifo_tdata[idx] ),
.s_axis_tkeep ('1 ),
.s_axis_tlast (out_fifo_tlast[idx] ),
.s_axis_tvalid(out_fifo_tvalid[idx]),
.s_axis_tready(out_fifo_tready[idx]),
.m_axis_aclk (clk ),
.m_axis_rst (rst ),
.m_axis_tdata (o_tdata[idx] ),
.m_axis_tkeep ( ),
.m_axis_tlast (o_tlast[idx] ),
.m_axis_tvalid(o_tvalid[idx] ),
.m_axis_tready(o_tready[idx] )
);
//-----------------------------------------
// TUSER Handling
//-----------------------------------------
// We write to the TUSER FIFO in lock-step with the axis_width_conv
// module. But read it out at a rate of 1/IN_WORDS so that the TUSER
// output matches the same data it did on the way in.
logic user_fifo_i_tready;
logic user_fifo_o_tvalid;
logic user_fifo_o_tready;
logic [COUNT_W-1:0] word_count;
// This counter tells when we're outputting the last TUSER for the
// current input word, so we know when to pop the output from the FIFO.
always_ff @(posedge clk) begin
if (o_tvalid[idx] && o_tready[idx]) begin
if (word_count == IN_WORDS-1) begin
word_count <= '0;
end else begin
word_count <= word_count + 1;
end
end
if (rst) begin
word_count <= '0;
end
end
assign user_fifo_o_tready = (word_count == IN_WORDS-1) && o_tvalid[idx] && o_tready[idx];
axi_fifo #(
.WIDTH(USER_W),
.SIZE (2 )
) axi_fifo_tuser (
.clk (clk ),
.reset (rst ),
.clear ('0 ),
.i_tdata (out_fifo_tuser[idx] ),
.i_tvalid(out_fifo_tvalid[idx] && out_fifo_tready[idx]),
.i_tready(user_fifo_i_tready ),
.o_tdata (o_tuser[idx] ),
.o_tvalid(user_fifo_o_tvalid ),
.o_tready(user_fifo_o_tready ),
.occupied( ),
.space ( )
);
// Make sure we don't overflow/underflow the TUSER FIFO
//synthesis translate_off
always_ff @(posedge clk) begin
if (out_fifo_tvalid[idx] && out_fifo_tready[idx] && !user_fifo_i_tready) begin
$error("TUSER FIFO overflow");
end
if (user_fifo_o_tready && !user_fifo_o_tvalid) begin
$error("TUSER FIFO underflow");
end
end
//synthesis translate_on
end
end
endmodule : axis_load_split
`default_nettype wire
|