1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
//
// Copyright 2018 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: kv_map
module kv_map #(
parameter KEY_WIDTH = 16,
parameter VAL_WIDTH = 32,
parameter SIZE = 6
) (
// Clock and reset
input wire clk,
input wire reset,
// Insert port
input wire insert_stb,
input wire [KEY_WIDTH-1:0] insert_key,
input wire [VAL_WIDTH-1:0] insert_val,
output wire insert_busy,
// Find port
input wire find_key_stb,
input wire [KEY_WIDTH-1:0] find_key,
output wire find_res_stb,
output wire find_res_match,
output wire [VAL_WIDTH-1:0] find_res_val,
// Count
output reg [SIZE-1:0] count = {SIZE{1'b0}}
);
//-------------------------------------------------
// Instantiate a CAM and a RAM
//-------------------------------------------------
// The CAM serves as a "set" and the RAM serves as a
// random addressable "array". Using thse two data structures
// we can build a map. The role of the CAM is to compress
// the key to an address that can be used to lookup data
// stored in the RAM
wire cam_wr_en, cam_wr_busy, cam_rd_match;
wire [SIZE-1:0] cam_wr_addr, cam_rd_addr;
wire [KEY_WIDTH-1:0] cam_wr_data, cam_rd_key;
wire ram_wr_en;
wire [SIZE-1:0] ram_wr_addr;
reg [SIZE-1:0] ram_rd_addr;
wire [VAL_WIDTH-1:0] ram_wr_data, ram_rd_data;
cam #(
.DATA_WIDTH (KEY_WIDTH),
.ADDR_WIDTH (SIZE),
.CAM_STYLE (SIZE > 8 ? "BRAM" : "SRL"),
.SLICE_WIDTH (SIZE > 8 ? 9 : 5)
) cam_i (
.clk (clk),
.rst (reset),
.write_addr (cam_wr_addr),
.write_data (cam_wr_data),
.write_delete(1'b0),
.write_enable(cam_wr_en),
.write_busy (cam_wr_busy),
.compare_data(cam_rd_key),
.match_addr (cam_rd_addr),
.match (cam_rd_match),
.match_many (),
.match_single()
);
ram_2port #(
.DWIDTH(VAL_WIDTH),
.AWIDTH(SIZE)
) mem_i (
.clka (clk),
.ena (ram_wr_en),
.wea (1'b1),
.addra (ram_wr_addr),
.dia (ram_wr_data),
.doa (/* Write port only */),
.clkb (clk),
.enb (1'b1),
.web (1'b0),
.addrb (ram_rd_addr),
.dib (/* Read port only */),
.dob (ram_rd_data)
);
// Pipeline read address into RAM
always @(posedge clk)
ram_rd_addr <= cam_rd_addr;
//-------------------------------------------------
// Find state machine
//-------------------------------------------------
// The lookup process has three cycles of latency
// - CAM lookup has a 1 cycle latency
// - The lookup address into the RAM is delayed by 1 cycle for timing
// - The RAM takes 1 cycle to produce data
localparam FIND_CYC = 3;
reg [FIND_CYC-1:0] find_key_stb_shreg = {FIND_CYC{1'b0}};
reg [FIND_CYC-2:0] find_match_shreg = {(FIND_CYC-1){1'b0}};
reg find_pending = 1'b0;
wire find_busy = find_pending | find_key_stb;
// Delay the find valid signal to account for the latency
// of the CAM and RAM
always @(posedge clk) begin
find_key_stb_shreg <= reset ? {FIND_CYC{1'b0}} :
{find_key_stb_shreg[FIND_CYC-2:0], find_key_stb};
end
assign find_res_stb = find_key_stb_shreg[FIND_CYC-1];
// Latch the find signal to compute pending
always @(posedge clk) begin
if (find_key_stb)
find_pending <= 1'b1;
else if (find_pending)
find_pending <= ~find_res_stb;
end
// Delay the match signal to account for the latency of the RAM
always @(posedge clk) begin
find_match_shreg <= reset ? {(FIND_CYC-1){1'b0}} :
{find_match_shreg[FIND_CYC-3:0], cam_rd_match};
end
assign find_res_match = find_match_shreg[FIND_CYC-2];
//-------------------------------------------------
// Insert state machine
//-------------------------------------------------
localparam [2:0] ST_IDLE = 3'd0;
localparam [2:0] ST_WAIT_FIND = 3'd1;
localparam [2:0] ST_CAM_READ = 3'd2;
localparam [2:0] ST_CAM_CHECK_MATCH = 3'd3;
localparam [2:0] ST_CAM_RAM_WRITE = 3'd4;
localparam [2:0] ST_CAM_WRITE_WAIT = 3'd5;
localparam [2:0] ST_RAM_WRITE = 3'd6;
reg [2:0] ins_state = ST_IDLE;
reg [KEY_WIDTH-1:0] ins_key_cached;
reg [VAL_WIDTH-1:0] ins_val_cached;
reg [SIZE-1:0] write_addr = {SIZE{1'b0}};
reg [SIZE-1:0] next_addr = {SIZE{1'b0}};
always @(posedge clk) begin
if (reset) begin
ins_state <= ST_IDLE;
next_addr <= {SIZE{1'b0}};
end else begin
case (ins_state)
// Idle and waiting for an insert transaction
//
ST_IDLE: begin
// Cache insertion parameters
if (insert_stb) begin
ins_key_cached <= insert_key;
ins_val_cached <= insert_val;
// Wait for find to finish
ins_state <= find_busy ? ST_WAIT_FIND : ST_CAM_READ;
end
end
// Wait for a find transaction to finish
//
ST_WAIT_FIND: begin
// Wait for find to finish
if (~find_busy)
ins_state <= ST_CAM_READ;
end
// Read the CAM to check if the key to insert already exists
//
ST_CAM_READ: begin
// Ensure that find always has priority
if (~find_key_stb)
ins_state <= ST_CAM_CHECK_MATCH;
end
// Look at the CAM match signal to evaluate if we skip writing the CAM
//
ST_CAM_CHECK_MATCH: begin
// If the CAM already has this key, then overwrite it
if (cam_rd_match) begin
ins_state <= ST_RAM_WRITE;
write_addr <= cam_rd_addr;
end else if (~cam_wr_busy) begin
ins_state <= ST_CAM_RAM_WRITE;
write_addr <= next_addr;
next_addr <= next_addr + 1'b1;
end
end
// Write the specified key to the CAM and value to the RAM
//
ST_CAM_RAM_WRITE: begin
ins_state <= ST_CAM_WRITE_WAIT;
end
// Wait for CAM write to finish
//
ST_CAM_WRITE_WAIT: begin
if (~cam_wr_busy) begin
ins_state <= ST_IDLE;
count <= next_addr;
end
end
// Write the specified value to the RAM
//
ST_RAM_WRITE: begin
ins_state <= ST_IDLE;
count <= next_addr;
end
default: begin
// We should not get here
ins_state <= ST_IDLE;
end
endcase
end
end
// CAM Read Port:
// - Find has priority so it can interrupt an insert
assign cam_rd_key =
(ins_state != ST_CAM_READ || find_key_stb) ? find_key : ins_key_cached;
// RAM Write Port:
// - The RAM write enable is held high for 1 cycle
// - The address may come from a CAM lookup or could generated
assign ram_wr_en = (ins_state == ST_RAM_WRITE || ins_state == ST_CAM_RAM_WRITE);
assign ram_wr_addr = write_addr;
assign ram_wr_data = ins_val_cached;
// CAM Write Port:
// - The CAM write enable is held high for 1 cycle
// - The address may come from a CAM lookup or could generated (same as RAM)
assign cam_wr_en = (ins_state == ST_CAM_RAM_WRITE);
assign cam_wr_addr = write_addr;
assign cam_wr_data = ins_key_cached;
// Outputs
assign insert_busy = (ins_state != ST_IDLE);
assign find_res_val = ram_rd_data;
endmodule
|