File: simple_spi_core_64bit.v

package info (click to toggle)
uhd 4.9.0.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 184,180 kB
  • sloc: cpp: 262,887; python: 112,011; ansic: 102,670; vhdl: 57,031; tcl: 19,924; xml: 8,581; makefile: 3,028; sh: 2,812; pascal: 230; javascript: 120; csh: 94; asm: 20; perl: 11
file content (286 lines) | stat: -rw-r--r-- 8,984 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//
// Copyright 2020 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: simple_spi_core_64bit
// Description:
// Simple SPI core based on simple_spi_core.v. Extended to 64 bit transmissions
// while preserving the same control interface for 32 bit transmissions.

// Settings register controlled.
// 4 settings regs, control and data
// 1 up to 64-bit readback and status signal

// Settings reg map:
//
// BASE+0 divider setting
// bits [15:0] spi clock divider
//
// BASE+1 configuration input
// bits [23:0] slave select, bit0 = slave0 enabled
// bits [29:24] num bits (0 through 63; value of 0 transmits 64 bits)
// bit [30] data input edge = in data bit latched on rising edge of clock
// bit [31] data output edge = out data bit latched on rising edge of clock
//
// BASE+2 input data (bits 63...32)
// Writing this register begins a spi transaction. If up to 32 bits (MAX_BITS <=
// 32) are required only this input data register needs to be written. Bits are
// latched out from bit 63. Therefore, load this register aligning with MSBs.
//
// BASE+3 input data (bits 31...0, present if MAX_BITS>32)
// This register needs to be written before accessing BASE+2 input data
// register when MAX_BITS > 32.
//
// Readback
// Bits are latched into bit 0.

module simple_spi_core_64bit
  #(
    //settings register base address
    parameter BASE = 0,

    //width of serial enables (up to 24 is possible)
    parameter WIDTH = 8,

    //idle state of the spi clock
    parameter CLK_IDLE = 0,

    //idle state of the serial enables
    parameter SEN_IDLE = 24'hffffff,

    //maximum number of bits for single transmission (<=64)
    parameter MAX_BITS = 32
  )
  (
    //clock and synchronous reset
    input clock, input reset,

    //32-bit settings bus inputs
    input set_stb, input [7:0] set_addr, input [31:0] set_data,

    //up to 64-bit data readback
    output [MAX_BITS-1:0] readback,
    output reg readback_stb,

    //read is high when spi core can begin another transaction
    output ready,

    //spi interface, slave selects, clock, data in, data out
    output [WIDTH-1:0] sen,
    output reg sclk = CLK_IDLE,
    output reg mosi,
    input miso,

    //optional debug output
    output [23:0] debug
  );

  // assert for MAX_BITS
  generate
  if (MAX_BITS > 64 || MAX_BITS < 1) begin
    MAX_BITS_must_be_between_1_and_64();
  end
  endgenerate

  wire [15:0] sclk_divider;
  setting_reg #(.my_addr(BASE+0),.width(16)) divider_sr(
    .clk(clock),.rst(reset),.strobe(set_stb),.addr(set_addr),.in(set_data),
    .out(sclk_divider),.changed());

  wire [23:0] slave_select;
  wire [5:0] num_bits;
  wire datain_edge, dataout_edge;
  setting_reg #(.my_addr(BASE+1),.width(32)) ctrl_sr(
    .clk(clock),.rst(reset),.strobe(set_stb),.addr(set_addr),.in(set_data),
    .out({dataout_edge, datain_edge, num_bits, slave_select}),.changed());

  wire [63:0] mosi_data;
  wire trigger_spi;
  setting_reg #(.my_addr(BASE+2),.width(32)) data_upper_sr(
    .clk(clock),.rst(reset),.strobe(set_stb),.addr(set_addr),.in(set_data),
    .out(mosi_data[63:32]),.changed(trigger_spi));
  setting_reg #(.my_addr(BASE+3),.width(32)) data_lower_sr(
    .clk(clock),.rst(reset),.strobe(set_stb),.addr(set_addr),.in(set_data),
    .out(mosi_data[31:0]),.changed());

  localparam WAIT_TRIG = 0;
  localparam PRE_IDLE = 1;
  localparam CLK_REG = 2;
  localparam CLK_INV = 3;
  localparam POST_IDLE = 4;
  localparam IDLE_SEN = 5;

  reg [2:0] state = WAIT_TRIG;

  reg ready_reg;
  assign ready = ready_reg && ~trigger_spi;

  //serial clock either idles or is in one of two clock states
  //One pipeline stage to align output data with clock edge.
  reg sclk_reg = CLK_IDLE;
  always @(posedge clock) begin
    sclk <= sclk_reg;
  end

  //serial enables either idle or enabled based on state
  // IJB. One pipeline stage to break critical path from register in I/O pads.
  wire sen_is_idle = (state == WAIT_TRIG) || (state == IDLE_SEN);
  wire [23:0] sen24 = (sen_is_idle) ? SEN_IDLE : (SEN_IDLE ^ slave_select);
  reg [WIDTH-1:0] sen_reg = SEN_IDLE[WIDTH-1:0];
  always @(posedge clock) begin
    if (reset) begin
      sen_reg <= SEN_IDLE[WIDTH-1:0];
    end else begin
      sen_reg <= sen24[WIDTH-1:0];
    end
  end
  assign sen = sen_reg;

  //data output shift register
  // IJB. One pipeline stage to break critical path from register in I/O pads.
  reg [MAX_BITS-1:0] dataout_reg = {MAX_BITS {1'b0}};
  wire [MAX_BITS-1:0] dataout_next = {dataout_reg[MAX_BITS-2:0], 1'b0};

  always @(posedge clock) begin
    mosi <= dataout_reg[MAX_BITS-1];
  end

  //data input shift register
  // IJB. Two pipeline stages to break critical path from register in I/O pads.
  reg  miso_pipe, miso_pipe2;
  always @(posedge clock) begin
    miso_pipe2 <= miso;
    miso_pipe <= miso_pipe2;
  end

  // Register to control input data capturing, compensating 2 miso_pipe
  // registers and the output register on mosi/sclk.
  //
  // When sclk_counter_done is asserted the FSM below updates sclk_reg and
  // dataout_reg (compensated by datain_capture_reg).
  // One clock cycle later those values get propagated to sclk and mosi. On
  // the active datain_edge miso would be capture into miso_pipe2. This clock
  // cycle is compensated by datain_capture_pipe[0].
  // Propagation of miso data to miso_pipe is compensated by
  // datain_capture_pipe[1].
  // On the next clock edge datain_capture_pipe[1] serves as enable signal for
  // datain_reg which then consumes the aligned data from miso_pipe.
  reg datain_capture_reg = 1'b0;
  reg [1:0] datain_capture_pipe;
  wire capturing_done = ~| {datain_capture_reg, datain_capture_pipe};

  reg [MAX_BITS-1:0] datain_reg;
  wire [MAX_BITS-1:0] datain_next = {datain_reg[MAX_BITS-2:0], miso_pipe};
  assign readback = datain_reg;

  always @(posedge clock) begin
    datain_capture_pipe <= {datain_capture_pipe[0], datain_capture_reg};
    if (datain_capture_pipe[1]) begin
      datain_reg <= datain_next;
    end
  end

  //counter for spi clock
  reg [15:0] sclk_counter = 16'b0;
  wire sclk_counter_done = (sclk_counter == sclk_divider);
  wire [15:0] sclk_counter_next = (sclk_counter_done)? 0 : sclk_counter + 1;

  //counter for latching bits miso/mosi
  reg [5:0] bit_counter = 6'b0;
  wire [5:0] bit_counter_next = bit_counter + 1;
  wire bit_counter_done = (bit_counter_next == num_bits);

  always @(posedge clock) begin
    if (reset) begin
      state <= WAIT_TRIG;
      sclk_reg <= CLK_IDLE;
      ready_reg <= 0;
      readback_stb <= 1'b0;
    end else begin
      datain_capture_reg <= 1'b0;

      case (state)
        WAIT_TRIG: begin
          if (trigger_spi) begin
            state <= PRE_IDLE;
          end
          readback_stb <= 1'b0;
          ready_reg <= ~trigger_spi;
          dataout_reg <= mosi_data[63:64-MAX_BITS];
          sclk_counter <= 0;
          bit_counter <= 0;
          sclk_reg <= CLK_IDLE;
        end

        PRE_IDLE: begin
          if (sclk_counter_done) begin
            state <= CLK_REG;
          end
          sclk_counter <= sclk_counter_next;
          sclk_reg <= CLK_IDLE;
        end

        CLK_REG: begin
          if (sclk_counter_done) begin
            state <= CLK_INV;
            if (datain_edge  != CLK_IDLE) begin
              datain_capture_reg <= 1'b1;
            end
            if (dataout_edge != CLK_IDLE && bit_counter != 0) begin
              dataout_reg <= dataout_next;
            end
            sclk_reg <= ~CLK_IDLE; //transition to rising when CLK_IDLE == 0
          end
          sclk_counter <= sclk_counter_next;
        end

        CLK_INV: begin
          if (sclk_counter_done) begin
            state <= (bit_counter_done) ? POST_IDLE : CLK_REG;
            bit_counter <= bit_counter_next;
            if (datain_edge  == CLK_IDLE) begin
              datain_capture_reg <= 1'b1;
            end
            if (dataout_edge == CLK_IDLE && ~bit_counter_done) begin
              dataout_reg <= dataout_next;
            end
            sclk_reg <= CLK_IDLE; //transition to falling when CLK_IDLE == 0
          end
          sclk_counter <= sclk_counter_next;
        end

        POST_IDLE: begin
          if (sclk_counter_done) begin
            state <= IDLE_SEN;
          end
          sclk_counter <= sclk_counter_next;
          sclk_reg <= CLK_IDLE;
        end

        IDLE_SEN: begin
          if (sclk_counter_done && capturing_done) begin
            ready_reg <= 1'b1;
            readback_stb <= 1'b1;
            state <= WAIT_TRIG;
          end
          sclk_counter <= sclk_counter_next;
          sclk_reg <= CLK_IDLE;
        end

        default: begin
          state <= WAIT_TRIG;
        end
      endcase //state
    end
  end

  assign debug = {
    trigger_spi, state, //4
    sclk, mosi, miso, ready, //4
    2'b0, bit_counter[5:0], //8
    sclk_counter_done, bit_counter_done, //2
    sclk_counter[5:0] //6
  };

endmodule //simple_spi_core