1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
|
//
// Copyright 2025 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: fft_depacketize
//
// Description:
//
// This module converts the packets coming from the FFT logic into packets
// for the RFNoC shell's AXI-stream data interface. It works in collaboration
// with the fft_packetize module, which converts in the other direction.
// Relevant information about the burst and number of FFTs is passed to this
// module using side-band AXI-stream buses (i_burst and i_symbol) from the
// packetizer.
//
// This module takes into account any cyclic prefix insertion being performed
// by the FFT block to ensure that the data is packetized for the NoC shell
// appropriately, including setting EOV.
//
// The FFT packet, which may include a cyclic prefix, is input onto the i_fft
// bus. The repacketized RFNoC data, resized to the burst's packet size, is
// output on the o_noc bus.
//
// The cyclic prefix length to be inserted for each symbol is input on the
// i_cp_ins bus. A copy of the cyclic prefix length that was input is then
// output onto the o_cp_ins bus for use by downstream FFT logic, where the
// actual insertion is performed.
//
// Timestamps are also supported. Per the RFNoC specification, bursts are
// expected to be a contiguous stream of samples. With cyclic prefix
// insertion or removal, this may not be the case. To keep things simple, we
// output the samples/items from the FFT block as if they were contiguous.
// The timestamp from the start of each burst (provided via the i_burst bus)
// is used as the timestamp for the first packet of the burst output on
// o_noc. Subsequent timestamps on o_noc will be automatically calculated and
// included for the remainder of the burst if EN_TIME_ALL_PKTS is 1. In this
// case, the timestamp of each packet output on o_noc will be incremented as
// if the data were contiguous. It's up to the user application to correct
// the time for the packets based on the cyclic prefix information if needed.
//
// This module also supports multiple synchronized channels by setting
// NUM_CHAN to a number greater than 1. In this case, all the sideband
// signals are assumed to be shared by all channels (tvalid, tready, tkeep,
// tlength, ttimestamp, etc.) but the tdata field is NUM_CHAN times wider to
// accommodate the data from the other channels.
//
// The outgoing RFNoC packets and the cyclic prefix length must both be a
// multiple of NIPC. Trailing data (i.e., when TKEEP is not all ones) is only
// allowed on the last transfer of the last FFT of a burst.
//
// Parameters:
//
// ITEM_W : Item size (or sample size) in bits for the FFT/IFFT
// core.
// NIPC : Number of items per clock cycle. Each word is
// NIPC*ITEM_W bits wide. It must be a power of 2.
// NUM_CHAN : Number of parallel channels sharing the sideband
// information.
// EN_CP_INSERTION : Indicates whether to support cyclic prefix insertion.
// MAX_PKT_SIZE_LOG2 : Maximum packet payload size in items, expressed as a
// log base 2. In other words, the maximum packet size
// is 2**PKT_SIZE_LOG items.
// MAX_FFT_SIZE_LOG2 : Maximum FFT size in items, expressed as a log base
// 2. In other words, the maximum FFT size is
// 2**MAX_FFT_SIZE_LOG2 items.
// DATA_FIFO_SIZE_LOG2 : Depth of the internal FIFO that stores input data
// from i_fft, expressed as a log base 2. In other
// words, the FIFO size is 2**DATA_FIFO_SIZE_LOG2 items
// for each channel. This can be used to provide
// additional buffering, if needed. Set to -1 to remove
// the FIFO.
// CP_FIFO_SIZE_LOG2 : Depth of the internal FIFO that stores cyclic prefix
// lengths, expressed as a log base 2. In other words,
// the FIFO size is 2**CP_FIFO_SIZE_LOG2 lengths deep.
// This FIFO is used to pass i_cp_ins to o_cp_ins and
// must be deep enough to account for the maximum
// number of FFT operations that are in flight at one
// time.
// SYMB_FIFO_SIZE_LOG2 : Depth of the internal FIFO that stores symbol
// information, expressed as a log base 2. In other
// words, the FIFO size is 2**SYMB_FIFO_SIZE_LOG2
// entries deep (one entry per symbol). This FIFO is
// used to store information about each symbol and must
// be deep enough to account for the maximum number of
// FFT operations that are in flight at one time.
// EN_TIME_ALL_PKTS : When set to 1, the timestamp is updated for each
// packet. When 0, only the first packet of each burst
// will have a timestamp.
//
`default_nettype none
module fft_depacketize
import rfnoc_chdr_utils_pkg::*;
import fft_packetize_pkg::*;
#(
int ITEM_W = 32,
int NIPC = 1,
int NUM_CHAN = 1,
bit EN_CP_INSERTION = 1'b1,
int MAX_PKT_SIZE_LOG2 = 11,
int MAX_FFT_SIZE_LOG2 = 10,
int DATA_FIFO_SIZE_LOG2 = -1,
int CP_FIFO_SIZE_LOG2 = 5,
int SYMB_FIFO_SIZE_LOG2 = 5,
bit EN_TIME_ALL_PKTS = 1,
// Internal constants
localparam int DATA_W = NUM_CHAN * ITEM_W * NIPC,
localparam int KEEP_W = NIPC,
localparam int PKT_SIZE_W = MAX_PKT_SIZE_LOG2 + 1,
localparam int FFT_SIZE_W = MAX_FFT_SIZE_LOG2 + 1,
localparam int FFT_SIZE_LOG2_W = $clog2(MAX_FFT_SIZE_LOG2 + 1),
localparam int CP_LEN_W = MAX_FFT_SIZE_LOG2
) (
input wire clk,
input wire rst,
input wire [ FFT_SIZE_LOG2_W-1:0] fft_size_log2,
// Information about each burst (packet size in items, timestamp)
input wire burst_info_t i_burst_tdata,
input wire i_burst_tvalid,
output logic i_burst_tready = 1'b0,
// The symbol information, which comes from the packetizer, tells us whether
// or not each symbol is the last in the burst.
input wire symbol_info_t i_symbol_tdata,
input wire i_symbol_tvalid,
output logic i_symbol_tready = 1'b0,
// Input from cyclic prefix insertion list
input wire [ CP_LEN_W-1:0] i_cp_ins_tdata,
input wire i_cp_ins_tvalid,
output logic i_cp_ins_tready,
// Output to cyclic prefix insertion logic
output logic [ CP_LEN_W-1:0] o_cp_ins_tdata,
output logic o_cp_ins_tvalid,
input wire o_cp_ins_tready,
// Input from FFT core
input wire [ DATA_W-1:0] i_fft_tdata,
input wire [ KEEP_W-1:0] i_fft_tkeep,
input wire i_fft_tlast,
input wire i_fft_tvalid,
output logic i_fft_tready,
// Output to NoC Shell
output logic [ DATA_W-1:0] o_noc_tdata,
output logic [ KEEP_W-1:0] o_noc_tkeep,
output logic o_noc_tlast,
output logic o_noc_tvalid,
input wire o_noc_tready,
output logic [CHDR_TIMESTAMP_W-1:0] o_noc_ttimestamp,
output logic o_noc_thas_time,
output logic [ CHDR_LENGTH_W-1:0] o_noc_tlength,
output logic o_noc_teov,
output logic o_noc_teob
);
// Make sure NIPC is a power of 2
if (NIPC != 2**$clog2(NIPC)) begin : gen_nipc_assertion
$error("NIPC must be a power of 2");
end
// Create masks to remove unused bits
localparam logic [ CP_LEN_W-1:0] CP_LEN_MASK = $clog2(NIPC);
localparam logic [PKT_SIZE_W-1:0] PKT_SIZE_MASK = $clog2(NIPC);
//---------------------------------------------------------------------------
// FFT Size Register
//---------------------------------------------------------------------------
//
// We assume the fft_size input is set well in advance of any data being
// received and that it does not change during a burst. This means that we
// can tolerate a few cycles of delay on these registers.
//
//---------------------------------------------------------------------------
localparam int FFT_SIZE_MASK_W = FFT_SIZE_W - 1;
logic [ FFT_SIZE_W-1:0] fft_size;
logic [FFT_SIZE_MASK_W-1:0] fft_size_mask;
always_ff @(posedge clk) begin
fft_size <= 1 << fft_size_log2;
fft_size_mask <= fft_size-1;
end
//---------------------------------------------------------------------------
// Symbol Size and Cyclic Prefix Logic
//---------------------------------------------------------------------------
//
// This logic here figures out the next symbol size, based on the cyclic
// prefix, and passes it along to downstream logic. If cyclic prefix is
// disabled, then most of this logic is not needed.
//
//---------------------------------------------------------------------------
typedef struct packed {
logic last; // Is this symbol the last of the burst?
logic [FFT_SIZE_W-1:0] length; // Length of symbol in items/samples
} symbol_fifo_t;
// Output of the symbol information FIFO
symbol_fifo_t o_symbol_fifo_tdata;
logic o_symbol_fifo_tvalid;
logic o_symbol_fifo_tready;
if (EN_CP_INSERTION) begin : gen_symbol_size_fsm
//---------------------------------------------
// Symbol Size and Cyclic Prefix State Machine
//---------------------------------------------
typedef enum logic [1:0] {
WAIT_SYMBOL_ST,
CALC_SYMBOL_ST,
PASS_SYMBOL_ST
} symbol_state_t;
symbol_state_t symbol_state = WAIT_SYMBOL_ST;
logic cp_last_symbol;
logic prefix_rd_stb = 1'b0;
logic [ CP_LEN_W-1:0] cp_len;
logic [FFT_SIZE_W-1:0] symbol_size;
// Input to the symbol information FIFO
symbol_fifo_t i_symbol_fifo_tdata;
logic i_symbol_fifo_tvalid;
logic i_symbol_fifo_tready;
// Input to the CP insertion length FIFO
logic [CP_LEN_W-1:0] i_cp_ins_fifo_tdata;
logic i_cp_ins_fifo_tvalid;
logic i_cp_ins_fifo_tready;
always_ff @(posedge clk) begin : symbol_fsm_reg
i_symbol_tready <= 1'b0;
prefix_rd_stb <= 1'b0;
i_symbol_fifo_tvalid <= 1'b0;
case (symbol_state)
WAIT_SYMBOL_ST : begin
// Wait until we are told by the packetizer about a new symbol. When
// we are, we capture the current cyclic-prefix length. We require
// that this always be valid, so it's OK to read it without checking
// i_cp_ins_tvalid.
//
// To avoid overfilling the symbol and CP insertion length FIFOs, we
// wait for their tready signals to be asserted, which on the
// axi_fifo indicates that they are not full.
i_symbol_tready <= i_symbol_fifo_tready && i_cp_ins_fifo_tready;
cp_last_symbol <= i_symbol_tdata.last;
cp_len <= i_cp_ins_tdata;
if (i_symbol_tvalid && i_symbol_tready) begin
i_symbol_tready <= 1'b0;
prefix_rd_stb <= 1'b1;
symbol_state <= CALC_SYMBOL_ST;
end
end
CALC_SYMBOL_ST : begin
// Calculate the length of the next symbol to be output.
i_symbol_fifo_tvalid <= 1'b1;
symbol_size <= fft_size + (cp_len & ~CP_LEN_MASK);
symbol_state <= PASS_SYMBOL_ST;
end
PASS_SYMBOL_ST : begin
// Pass the calculated length to a FIFO.
i_symbol_fifo_tvalid <= 1'b1;
if (i_symbol_fifo_tready) begin
i_symbol_fifo_tvalid <= 1'b0;
symbol_state <= WAIT_SYMBOL_ST;
end
end
endcase
if (rst) begin
symbol_state <= WAIT_SYMBOL_ST;
prefix_rd_stb <= 1'b0;
i_symbol_tready <= 1'b0;
i_symbol_fifo_tvalid <= 1'b0;
cp_last_symbol <= 1'bX;
cp_len <= 'X;
symbol_size <= 'X;
end
end : symbol_fsm_reg
//---------------------------------
// Symbol Information FIFO
//---------------------------------
assign i_symbol_fifo_tdata = '{ cp_last_symbol, symbol_size };
axi_fifo #(
.WIDTH($bits(symbol_fifo_t)),
.SIZE (SYMB_FIFO_SIZE_LOG2 )
) axis_fifo_symbol_info (
.clk (clk ),
.reset (rst ),
.clear (1'b0 ),
.i_tdata (i_symbol_fifo_tdata ),
.i_tvalid(i_symbol_fifo_tvalid),
.i_tready(i_symbol_fifo_tready),
.o_tdata (o_symbol_fifo_tdata ),
.o_tvalid(o_symbol_fifo_tvalid),
.o_tready(o_symbol_fifo_tready),
.space ( ),
.occupied( )
);
//---------------------------------
// Cyclic Prefix Length FIFO
//---------------------------------
logic [15:0] cp_ins_fifo_space;
assign i_cp_ins_tready = prefix_rd_stb;
assign i_cp_ins_fifo_tdata = i_cp_ins_tdata & ~CP_LEN_MASK; // Clear the unused bits
assign i_cp_ins_fifo_tvalid = prefix_rd_stb;
axi_fifo #(
.WIDTH(CP_LEN_W ),
.SIZE (CP_FIFO_SIZE_LOG2)
) axis_fifo_cp_length (
.clk (clk ),
.reset (rst ),
.clear (1'b0 ),
.i_tdata (i_cp_ins_fifo_tdata ),
.i_tvalid(i_cp_ins_fifo_tvalid),
.i_tready(i_cp_ins_fifo_tready),
.o_tdata (o_cp_ins_tdata ),
.o_tvalid(o_cp_ins_tvalid ),
.o_tready(o_cp_ins_tready ),
.space (cp_ins_fifo_space ),
.occupied( )
);
// The cyclic prefix length FIFO should be large enough for all the symbols
// that are in flight. Filling up might be an indication that it's sized
// too small.
//synthesis translate_off
logic cp_ins_fifo_empty_prev = 0;
always_ff @(posedge clk) begin
cp_ins_fifo_empty_prev <= (cp_ins_fifo_space == 0);
if (!cp_ins_fifo_empty_prev && cp_ins_fifo_space == 0) begin
$warning("CP insertion FIFO has filled");
end
end
//synthesis translate_on
end else begin : gen_no_symbol_size_fsm
//---------------------------------
// Cyclic Prefix Disabled
//---------------------------------
// If there's no cyclic prefix, then the symbol length is fixed, so we only
// need to pass along the symbol info and the configured fft_size.
assign o_symbol_fifo_tdata = '{ i_symbol_tdata.last, fft_size };
assign o_symbol_fifo_tvalid = i_symbol_tvalid;
always_comb i_symbol_tready = o_symbol_fifo_tready;
// There's no cyclic prefix length to pass through.
assign i_cp_ins_tready = 1'b1;
assign o_cp_ins_tdata = '0;
assign o_cp_ins_tvalid = 1'b0;
end
//---------------------------------------------------------------------------
// Input Data FIFO
//---------------------------------------------------------------------------
logic [DATA_W-1:0] o_fft_tdata;
logic [KEEP_W-1:0] o_fft_tkeep;
logic o_fft_tlast;
logic o_fft_tvalid;
logic o_fft_tready;
if (DATA_FIFO_SIZE_LOG2 > -1) begin : gen_input_fifo
axi_fifo #(
.WIDTH(1 + KEEP_W + DATA_W ),
.SIZE (DATA_FIFO_SIZE_LOG2 - $clog2(NIPC))
) axi_fifo_i (
.clk (clk ),
.reset (rst ),
.clear (1'b0 ),
.i_tdata ({i_fft_tlast, i_fft_tkeep, i_fft_tdata}),
.i_tvalid(i_fft_tvalid ),
.i_tready(i_fft_tready ),
.o_tdata ({o_fft_tlast, o_fft_tkeep, o_fft_tdata}),
.o_tvalid(o_fft_tvalid ),
.o_tready(o_fft_tready ),
.space ( ),
.occupied( )
);
end else begin : gen_no_input_fifo
assign o_fft_tdata = i_fft_tdata;
assign o_fft_tkeep = i_fft_tkeep;
assign o_fft_tlast = i_fft_tlast;
assign o_fft_tvalid = i_fft_tvalid;
assign i_fft_tready = o_fft_tready;
end
//---------------------------------------------------------------------------
// Packet Resize State Machine
//---------------------------------------------------------------------------
//
// Here we figure out the information for each packet to be output to the NoC
// shell (length, EOV, EOB), resize the symbol-sized packets to RFNoC packet
// sizes, and pass through the FFT data.
//
//---------------------------------------------------------------------------
typedef enum logic [2:0] {
WAIT_BURST_ST,
CALC_ITEMS_ST,
CALC_PACKET_ST,
CALC_VECTOR_ST,
CALC_EOV_ST,
PASS_PACKET_ST
} state_t;
state_t state = WAIT_BURST_ST;
// Information for the current burst
logic [ PKT_SIZE_W-1:0] pkt_size; // Packet size in items
logic [CHDR_TIMESTAMP_W-1:0] timestamp;
logic has_time;
// Sideband information for the next packet to send
logic next_pkt_last;
logic [ PKT_SIZE_W-1:0] next_pkt_size;
logic next_pkt_eob;
logic next_pkt_eov;
logic [CHDR_TIMESTAMP_W-1:0] next_pkt_timestamp;
logic next_pkt_has_time;
logic last_symbol;
// Item counter to track progress in current packet
logic [PKT_SIZE_W-1:0] pkt_item_count;
// Item counter to track vector alignment
logic [MAX_FFT_SIZE_LOG2-1:0] vect_item_count;
// Total number of items left to send for the symbols we know about so far.
// In the worst case, this must be large enough to hold just less than the
// number of items in a maximum sized packet (2**MAX_PKT_SIZE_LOG2) plus a
// maximum sized symbol (2**MAX_FFT_SIZE_LOG2), including a maximum cyclic
// prefix (2**MAX_FFT_SIZE_LOG-1).
localparam int ITEMS_TO_SEND_W = (EN_CP_INSERTION) ?
$clog2(2**MAX_PKT_SIZE_LOG2 + 2**(MAX_FFT_SIZE_LOG2+1)-1 + 1) :
$clog2(2**MAX_PKT_SIZE_LOG2 + 2**MAX_FFT_SIZE_LOG2 + 1);
logic [ITEMS_TO_SEND_W-1:0] items_to_send;
always_ff @(posedge clk) begin
i_burst_tready <= 1'b0;
o_symbol_fifo_tready <= 1'b0;
unique case (state)
WAIT_BURST_ST : begin
// Grab the packet and FFT size for this burst
items_to_send <= '0;
vect_item_count <= '0;
i_burst_tready <= 1'b1;
if (i_burst_tvalid) begin
//synthesis translate_off
assert (i_burst_tdata.length % (NIPC) == 0) else
$error("fft_depacketize: Input packet length is not a multiple of NIPC");
//synthesis translate_on
pkt_size <= i_burst_tdata.length & ~PKT_SIZE_MASK;
timestamp <= i_burst_tdata.timestamp;
has_time <= i_burst_tdata.has_time;
o_symbol_fifo_tready <= 1'b1;
state <= CALC_ITEMS_ST;
if (!EN_TIME_ALL_PKTS) begin
next_pkt_timestamp <= i_burst_tdata.timestamp;
end
end
end
CALC_ITEMS_ST : begin
// Wait for the next symbol's information to arrive
o_symbol_fifo_tready <= 1'b1;
last_symbol <= o_symbol_fifo_tdata.last;
if (o_symbol_fifo_tvalid) begin
items_to_send <= items_to_send + o_symbol_fifo_tdata.length;
o_symbol_fifo_tready <= 1'b0;
state <= CALC_PACKET_ST;
end
end
CALC_PACKET_ST : begin
// Do we have enough to send a packet? If not, get another prefix
// unless we're at the end.
pkt_item_count <= 2*NIPC; // Account for one cycle of delay, plus one for tlast
next_pkt_size <= pkt_size;
next_pkt_eob <= 1'b0;
next_pkt_has_time <= has_time;
if (EN_TIME_ALL_PKTS) begin
next_pkt_timestamp <= timestamp;
end
if (items_to_send > pkt_size) begin
// Send the next packet, but we know we have at least one more packet
// to send after this.
next_pkt_size <= pkt_size;
next_pkt_eob <= 1'b0;
state <= CALC_VECTOR_ST;
end else if (last_symbol) begin
// We don't have a full packet, but we're on the last symbol, so
// send what we have.
next_pkt_size <= items_to_send;
next_pkt_eob <= 1'b1;
state <= CALC_VECTOR_ST;
end else if (items_to_send == pkt_size) begin
// We have exactly a full packet, but we're NOT on the last symbol
next_pkt_size <= pkt_size;
next_pkt_eob <= 1'b0;
state <= CALC_VECTOR_ST;
end else begin
// We don't have a full packet, but we have more symbols to go, so
// get the next symbol size.
next_pkt_size <= 'X;
next_pkt_eob <= 'X;
o_symbol_fifo_tready <= 1'b1;
state <= CALC_ITEMS_ST;
end
end
CALC_VECTOR_ST : begin
// Calculate where we are in the current vector
vect_item_count <= vect_item_count + next_pkt_size;
state <= CALC_EOV_ST;
end
CALC_EOV_ST : begin
// Calculate if EOV flag should be set for this packet
next_pkt_eov <= (vect_item_count[FFT_SIZE_MASK_W-1:0] & fft_size_mask) == 0;
// Check if the packet is a single transfer
next_pkt_last <= NIPC >= next_pkt_size;
state <= PASS_PACKET_ST;
end
PASS_PACKET_ST : begin
if (!EN_TIME_ALL_PKTS) begin
has_time <= 1'b0;
end
if (o_noc_tvalid && o_noc_tready) begin
if (EN_TIME_ALL_PKTS) begin
timestamp <= timestamp + NIPC;
end
items_to_send <= items_to_send - NIPC;
pkt_item_count <= pkt_item_count + NIPC;
next_pkt_last <= pkt_item_count >= next_pkt_size;
if (o_noc_tlast) begin
if (o_noc_teob) begin
state <= WAIT_BURST_ST;
end else begin
state <= CALC_PACKET_ST;
end
end
end
end
endcase
if (rst) begin
state <= WAIT_BURST_ST;
i_burst_tready <= 1'b0;
o_symbol_fifo_tready <= 1'b0;
items_to_send <= 'X;
pkt_size <= 'X;
timestamp <= 'X;
has_time <= 'X;
last_symbol <= 'X;
next_pkt_last <= 'X;
next_pkt_size <= 'X;
next_pkt_eob <= 'X;
next_pkt_eov <= 'X;
next_pkt_timestamp <= 'X;
next_pkt_has_time <= 'X;
pkt_item_count <= 'X;
vect_item_count <= 'X;
end
end
//---------------------------------------------------------------------------
// Data Pass-through Logic
//---------------------------------------------------------------------------
assign o_noc_tdata = o_fft_tdata;
assign o_noc_tkeep = o_fft_tkeep;
assign o_noc_tlast = next_pkt_last;
assign o_noc_tlength = next_pkt_size * (ITEM_W/8); // Convert to bytes
assign o_noc_teob = next_pkt_eob;
assign o_noc_teov = next_pkt_eov;
assign o_noc_ttimestamp = next_pkt_timestamp;
assign o_noc_thas_time = next_pkt_has_time;
assign o_noc_tvalid = (state == PASS_PACKET_ST) ? o_fft_tvalid : 1'b0;
assign o_fft_tready = (state == PASS_PACKET_ST) ? o_noc_tready : 1'b0;
endmodule : fft_depacketize
`default_nettype wire
|