File: fft_depacketize.sv

package info (click to toggle)
uhd 4.9.0.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 184,180 kB
  • sloc: cpp: 262,887; python: 112,011; ansic: 102,670; vhdl: 57,031; tcl: 19,924; xml: 8,581; makefile: 3,028; sh: 2,812; pascal: 230; javascript: 120; csh: 94; asm: 20; perl: 11
file content (623 lines) | stat: -rw-r--r-- 24,397 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
//
// Copyright 2025 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: fft_depacketize
//
// Description:
//
//   This module converts the packets coming from the FFT logic into packets
//   for the RFNoC shell's AXI-stream data interface. It works in collaboration
//   with the fft_packetize module, which converts in the other direction.
//   Relevant information about the burst and number of FFTs is passed to this
//   module using side-band AXI-stream buses (i_burst and i_symbol) from the
//   packetizer.
//
//   This module takes into account any cyclic prefix insertion being performed
//   by the FFT block to ensure that the data is packetized for the NoC shell
//   appropriately, including setting EOV.
//
//   The FFT packet, which may include a cyclic prefix, is input onto the i_fft
//   bus. The repacketized RFNoC data, resized to the burst's packet size, is
//   output on the o_noc bus.
//
//   The cyclic prefix length to be inserted for each symbol is input on the
//   i_cp_ins bus. A copy of the cyclic prefix length that was input is then
//   output onto the o_cp_ins bus for use by downstream FFT logic, where the
//   actual insertion is performed.
//
//   Timestamps are also supported. Per the RFNoC specification, bursts are
//   expected to be a contiguous stream of samples. With cyclic prefix
//   insertion or removal, this may not be the case. To keep things simple, we
//   output the samples/items from the FFT block as if they were contiguous.
//   The timestamp from the start of each burst (provided via the i_burst bus)
//   is used as the timestamp for the first packet of the burst output on
//   o_noc. Subsequent timestamps on o_noc will be automatically calculated and
//   included for the remainder of the burst if EN_TIME_ALL_PKTS is 1. In this
//   case, the timestamp of each packet output on o_noc will be incremented as
//   if the data were contiguous. It's up to the user application to correct
//   the time for the packets based on the cyclic prefix information if needed.
//
//   This module also supports multiple synchronized channels by setting
//   NUM_CHAN to a number greater than 1. In this case, all the sideband
//   signals are assumed to be shared by all channels (tvalid, tready, tkeep,
//   tlength, ttimestamp, etc.) but the tdata field is NUM_CHAN times wider to
//   accommodate the data from the other channels.
//
//   The outgoing RFNoC packets and the cyclic prefix length must both be a
//   multiple of NIPC. Trailing data (i.e., when TKEEP is not all ones) is only
//   allowed on the last transfer of the last FFT of a burst.
//
// Parameters:
//
//   ITEM_W              : Item size (or sample size) in bits for the FFT/IFFT
//                         core.
//   NIPC                : Number of items per clock cycle. Each word is
//                         NIPC*ITEM_W bits wide. It must be a power of 2.
//   NUM_CHAN            : Number of parallel channels sharing the sideband
//                         information.
//   EN_CP_INSERTION     : Indicates whether to support cyclic prefix insertion.
//   MAX_PKT_SIZE_LOG2   : Maximum packet payload size in items, expressed as a
//                         log base 2. In other words, the maximum packet size
//                         is 2**PKT_SIZE_LOG items.
//   MAX_FFT_SIZE_LOG2   : Maximum FFT size in items, expressed as a log base
//                         2. In other words, the maximum FFT size is
//                         2**MAX_FFT_SIZE_LOG2 items.
//   DATA_FIFO_SIZE_LOG2 : Depth of the internal FIFO that stores input data
//                         from i_fft, expressed as a log base 2. In other
//                         words, the FIFO size is 2**DATA_FIFO_SIZE_LOG2 items
//                         for each channel. This can be used to provide
//                         additional buffering, if needed. Set to -1 to remove
//                         the FIFO.
//   CP_FIFO_SIZE_LOG2   : Depth of the internal FIFO that stores cyclic prefix
//                         lengths, expressed as a log base 2. In other words,
//                         the FIFO size is 2**CP_FIFO_SIZE_LOG2 lengths deep.
//                         This FIFO is used to pass i_cp_ins to o_cp_ins and
//                         must be deep enough to account for the maximum
//                         number of FFT operations that are in flight at one
//                         time.
//   SYMB_FIFO_SIZE_LOG2 : Depth of the internal FIFO that stores symbol
//                         information, expressed as a log base 2. In other
//                         words, the FIFO size is 2**SYMB_FIFO_SIZE_LOG2
//                         entries deep (one entry per symbol). This FIFO is
//                         used to store information about each symbol and must
//                         be deep enough to account for the maximum number of
//                         FFT operations that are in flight at one time.
//   EN_TIME_ALL_PKTS    : When set to 1, the timestamp is updated for each
//                         packet. When 0, only the first packet of each burst
//                         will have a timestamp.
//

`default_nettype none


module fft_depacketize
  import rfnoc_chdr_utils_pkg::*;
  import fft_packetize_pkg::*;
#(
  int ITEM_W              = 32,
  int NIPC                = 1,
  int NUM_CHAN            = 1,
  bit EN_CP_INSERTION     = 1'b1,
  int MAX_PKT_SIZE_LOG2   = 11,
  int MAX_FFT_SIZE_LOG2   = 10,
  int DATA_FIFO_SIZE_LOG2 = -1,
  int CP_FIFO_SIZE_LOG2   = 5,
  int SYMB_FIFO_SIZE_LOG2 = 5,
  bit EN_TIME_ALL_PKTS    = 1,

  // Internal constants
  localparam int DATA_W          = NUM_CHAN * ITEM_W * NIPC,
  localparam int KEEP_W          = NIPC,
  localparam int PKT_SIZE_W      = MAX_PKT_SIZE_LOG2 + 1,
  localparam int FFT_SIZE_W      = MAX_FFT_SIZE_LOG2 + 1,
  localparam int FFT_SIZE_LOG2_W = $clog2(MAX_FFT_SIZE_LOG2 + 1),
  localparam int CP_LEN_W        = MAX_FFT_SIZE_LOG2
) (
  input  wire                         clk,
  input  wire                         rst,

  input  wire  [ FFT_SIZE_LOG2_W-1:0] fft_size_log2,

  // Information about each burst (packet size in items, timestamp)
  input  wire  burst_info_t           i_burst_tdata,
  input  wire                         i_burst_tvalid,
  output logic                        i_burst_tready = 1'b0,

  // The symbol information, which comes from the packetizer, tells us whether
  // or not each symbol is the last in the burst.
  input  wire  symbol_info_t          i_symbol_tdata,
  input  wire                         i_symbol_tvalid,
  output logic                        i_symbol_tready = 1'b0,

  // Input from cyclic prefix insertion list
  input  wire  [        CP_LEN_W-1:0] i_cp_ins_tdata,
  input  wire                         i_cp_ins_tvalid,
  output logic                        i_cp_ins_tready,

  // Output to cyclic prefix insertion logic
  output logic [        CP_LEN_W-1:0] o_cp_ins_tdata,
  output logic                        o_cp_ins_tvalid,
  input  wire                         o_cp_ins_tready,

  // Input from FFT core
  input  wire  [          DATA_W-1:0] i_fft_tdata,
  input  wire  [          KEEP_W-1:0] i_fft_tkeep,
  input  wire                         i_fft_tlast,
  input  wire                         i_fft_tvalid,
  output logic                        i_fft_tready,

  // Output to NoC Shell
  output logic [          DATA_W-1:0] o_noc_tdata,
  output logic [          KEEP_W-1:0] o_noc_tkeep,
  output logic                        o_noc_tlast,
  output logic                        o_noc_tvalid,
  input  wire                         o_noc_tready,
  output logic [CHDR_TIMESTAMP_W-1:0] o_noc_ttimestamp,
  output logic                        o_noc_thas_time,
  output logic [   CHDR_LENGTH_W-1:0] o_noc_tlength,
  output logic                        o_noc_teov,
  output logic                        o_noc_teob
);

  // Make sure NIPC is a power of 2
  if (NIPC != 2**$clog2(NIPC)) begin : gen_nipc_assertion
    $error("NIPC must be a power of 2");
  end

  // Create masks to remove unused bits
  localparam logic [  CP_LEN_W-1:0] CP_LEN_MASK   = $clog2(NIPC);
  localparam logic [PKT_SIZE_W-1:0] PKT_SIZE_MASK = $clog2(NIPC);


  //---------------------------------------------------------------------------
  // FFT Size Register
  //---------------------------------------------------------------------------
  //
  // We assume the fft_size input is set well in advance of any data being
  // received and that it does not change during a burst. This means that we
  // can tolerate a few cycles of delay on these registers.
  //
  //---------------------------------------------------------------------------

  localparam int FFT_SIZE_MASK_W = FFT_SIZE_W - 1;

  logic [     FFT_SIZE_W-1:0] fft_size;
  logic [FFT_SIZE_MASK_W-1:0] fft_size_mask;

  always_ff @(posedge clk) begin
    fft_size      <= 1 << fft_size_log2;
    fft_size_mask <= fft_size-1;
  end


  //---------------------------------------------------------------------------
  // Symbol Size and Cyclic Prefix Logic
  //---------------------------------------------------------------------------
  //
  // This logic here figures out the next symbol size, based on the cyclic
  // prefix, and passes it along to downstream logic. If cyclic prefix is
  // disabled, then most of this logic is not needed.
  //
  //---------------------------------------------------------------------------

  typedef struct packed {
    logic                  last;    // Is this symbol the last of the burst?
    logic [FFT_SIZE_W-1:0] length;  // Length of symbol in items/samples
  } symbol_fifo_t;

  // Output of the symbol information FIFO
  symbol_fifo_t o_symbol_fifo_tdata;
  logic         o_symbol_fifo_tvalid;
  logic         o_symbol_fifo_tready;


  if (EN_CP_INSERTION) begin : gen_symbol_size_fsm

    //---------------------------------------------
    // Symbol Size and Cyclic Prefix State Machine
    //---------------------------------------------

    typedef enum logic [1:0] {
      WAIT_SYMBOL_ST,
      CALC_SYMBOL_ST,
      PASS_SYMBOL_ST
    } symbol_state_t;

    symbol_state_t symbol_state = WAIT_SYMBOL_ST;

    logic                  cp_last_symbol;
    logic                  prefix_rd_stb = 1'b0;
    logic [  CP_LEN_W-1:0] cp_len;
    logic [FFT_SIZE_W-1:0] symbol_size;

    // Input to the symbol information FIFO
    symbol_fifo_t i_symbol_fifo_tdata;
    logic         i_symbol_fifo_tvalid;
    logic         i_symbol_fifo_tready;

    // Input to the CP insertion length FIFO
    logic [CP_LEN_W-1:0] i_cp_ins_fifo_tdata;
    logic                i_cp_ins_fifo_tvalid;
    logic                i_cp_ins_fifo_tready;

    always_ff @(posedge clk) begin : symbol_fsm_reg
      i_symbol_tready      <= 1'b0;
      prefix_rd_stb        <= 1'b0;
      i_symbol_fifo_tvalid <= 1'b0;

      case (symbol_state)
        WAIT_SYMBOL_ST : begin
          // Wait until we are told by the packetizer about a new symbol. When
          // we are, we capture the current cyclic-prefix length. We require
          // that this always be valid, so it's OK to read it without checking
          // i_cp_ins_tvalid.
          //
          // To avoid overfilling the symbol and CP insertion length FIFOs, we
          // wait for their tready signals to be asserted, which on the
          // axi_fifo indicates that they are not full.
          i_symbol_tready <= i_symbol_fifo_tready && i_cp_ins_fifo_tready;
          cp_last_symbol  <= i_symbol_tdata.last;
          cp_len          <= i_cp_ins_tdata;
          if (i_symbol_tvalid && i_symbol_tready) begin
            i_symbol_tready <= 1'b0;
            prefix_rd_stb <= 1'b1;
            symbol_state    <= CALC_SYMBOL_ST;
          end
        end

        CALC_SYMBOL_ST : begin
          // Calculate the length of the next symbol to be output.
          i_symbol_fifo_tvalid <= 1'b1;
          symbol_size          <= fft_size + (cp_len & ~CP_LEN_MASK);
          symbol_state         <= PASS_SYMBOL_ST;
        end

        PASS_SYMBOL_ST : begin
          // Pass the calculated length to a FIFO.
          i_symbol_fifo_tvalid <= 1'b1;
          if (i_symbol_fifo_tready) begin
            i_symbol_fifo_tvalid <= 1'b0;
            symbol_state         <= WAIT_SYMBOL_ST;
          end
        end
      endcase

      if (rst) begin
        symbol_state         <= WAIT_SYMBOL_ST;
        prefix_rd_stb        <= 1'b0;
        i_symbol_tready      <= 1'b0;
        i_symbol_fifo_tvalid <= 1'b0;
        cp_last_symbol       <= 1'bX;
        cp_len               <= 'X;
        symbol_size          <= 'X;
      end
    end : symbol_fsm_reg


    //---------------------------------
    // Symbol Information FIFO
    //---------------------------------

    assign i_symbol_fifo_tdata = '{ cp_last_symbol, symbol_size };

    axi_fifo #(
      .WIDTH($bits(symbol_fifo_t)),
      .SIZE (SYMB_FIFO_SIZE_LOG2 )
    ) axis_fifo_symbol_info (
      .clk     (clk                 ),
      .reset   (rst                 ),
      .clear   (1'b0                ),
      .i_tdata (i_symbol_fifo_tdata ),
      .i_tvalid(i_symbol_fifo_tvalid),
      .i_tready(i_symbol_fifo_tready),
      .o_tdata (o_symbol_fifo_tdata ),
      .o_tvalid(o_symbol_fifo_tvalid),
      .o_tready(o_symbol_fifo_tready),
      .space   (                    ),
      .occupied(                    )
    );


    //---------------------------------
    // Cyclic Prefix Length FIFO
    //---------------------------------

    logic [15:0] cp_ins_fifo_space;

    assign i_cp_ins_tready      = prefix_rd_stb;
    assign i_cp_ins_fifo_tdata  = i_cp_ins_tdata & ~CP_LEN_MASK; // Clear the unused bits
    assign i_cp_ins_fifo_tvalid = prefix_rd_stb;

    axi_fifo #(
      .WIDTH(CP_LEN_W         ),
      .SIZE (CP_FIFO_SIZE_LOG2)
    ) axis_fifo_cp_length (
      .clk     (clk                 ),
      .reset   (rst                 ),
      .clear   (1'b0                ),
      .i_tdata (i_cp_ins_fifo_tdata ),
      .i_tvalid(i_cp_ins_fifo_tvalid),
      .i_tready(i_cp_ins_fifo_tready),
      .o_tdata (o_cp_ins_tdata      ),
      .o_tvalid(o_cp_ins_tvalid     ),
      .o_tready(o_cp_ins_tready     ),
      .space   (cp_ins_fifo_space   ),
      .occupied(                    )
    );

    // The cyclic prefix length FIFO should be large enough for all the symbols
    // that are in flight. Filling up might be an indication that it's sized
    // too small.
    //synthesis translate_off
    logic cp_ins_fifo_empty_prev = 0;
    always_ff @(posedge clk) begin
      cp_ins_fifo_empty_prev <= (cp_ins_fifo_space == 0);
      if (!cp_ins_fifo_empty_prev && cp_ins_fifo_space == 0) begin
        $warning("CP insertion FIFO has filled");
      end
    end
    //synthesis translate_on


  end else begin : gen_no_symbol_size_fsm
    //---------------------------------
    // Cyclic Prefix Disabled
    //---------------------------------

    // If there's no cyclic prefix, then the symbol length is fixed, so we only
    // need to pass along the symbol info and the configured fft_size.
    assign o_symbol_fifo_tdata  = '{ i_symbol_tdata.last, fft_size };
    assign o_symbol_fifo_tvalid = i_symbol_tvalid;
    always_comb i_symbol_tready = o_symbol_fifo_tready;

    // There's no cyclic prefix length to pass through.
    assign i_cp_ins_tready = 1'b1;
    assign o_cp_ins_tdata  = '0;
    assign o_cp_ins_tvalid = 1'b0;
  end


  //---------------------------------------------------------------------------
  // Input Data FIFO
  //---------------------------------------------------------------------------

  logic [DATA_W-1:0] o_fft_tdata;
  logic [KEEP_W-1:0] o_fft_tkeep;
  logic              o_fft_tlast;
  logic              o_fft_tvalid;
  logic              o_fft_tready;

  if (DATA_FIFO_SIZE_LOG2 > -1) begin : gen_input_fifo
    axi_fifo #(
      .WIDTH(1 + KEEP_W + DATA_W               ),
      .SIZE (DATA_FIFO_SIZE_LOG2 - $clog2(NIPC))
    ) axi_fifo_i (
      .clk     (clk                                    ),
      .reset   (rst                                    ),
      .clear   (1'b0                                   ),
      .i_tdata ({i_fft_tlast, i_fft_tkeep, i_fft_tdata}),
      .i_tvalid(i_fft_tvalid                           ),
      .i_tready(i_fft_tready                           ),
      .o_tdata ({o_fft_tlast, o_fft_tkeep, o_fft_tdata}),
      .o_tvalid(o_fft_tvalid                           ),
      .o_tready(o_fft_tready                           ),
      .space   (                                       ),
      .occupied(                                       )

    );
  end else begin : gen_no_input_fifo
    assign o_fft_tdata  = i_fft_tdata;
    assign o_fft_tkeep  = i_fft_tkeep;
    assign o_fft_tlast  = i_fft_tlast;
    assign o_fft_tvalid = i_fft_tvalid;
    assign i_fft_tready = o_fft_tready;
  end


  //---------------------------------------------------------------------------
  // Packet Resize State Machine
  //---------------------------------------------------------------------------
  //
  // Here we figure out the information for each packet to be output to the NoC
  // shell (length, EOV, EOB), resize the symbol-sized packets to RFNoC packet
  // sizes, and pass through the FFT data.
  //
  //---------------------------------------------------------------------------

  typedef enum logic [2:0] {
    WAIT_BURST_ST,
    CALC_ITEMS_ST,
    CALC_PACKET_ST,
    CALC_VECTOR_ST,
    CALC_EOV_ST,
    PASS_PACKET_ST
  } state_t;

  state_t state = WAIT_BURST_ST;

  // Information for the current burst
  logic [      PKT_SIZE_W-1:0] pkt_size;   // Packet size in items
  logic [CHDR_TIMESTAMP_W-1:0] timestamp;
  logic                        has_time;

  // Sideband information for the next packet to send
  logic                        next_pkt_last;
  logic [      PKT_SIZE_W-1:0] next_pkt_size;
  logic                        next_pkt_eob;
  logic                        next_pkt_eov;
  logic [CHDR_TIMESTAMP_W-1:0] next_pkt_timestamp;
  logic                        next_pkt_has_time;

  logic last_symbol;

  // Item counter to track progress in current packet
  logic [PKT_SIZE_W-1:0] pkt_item_count;

  // Item counter to track vector alignment
  logic [MAX_FFT_SIZE_LOG2-1:0] vect_item_count;

  // Total number of items left to send for the symbols we know about so far.
  // In the worst case, this must be large enough to hold just less than the
  // number of items in a maximum sized packet (2**MAX_PKT_SIZE_LOG2) plus a
  // maximum sized symbol (2**MAX_FFT_SIZE_LOG2), including a maximum cyclic
  // prefix (2**MAX_FFT_SIZE_LOG-1).
  localparam int ITEMS_TO_SEND_W = (EN_CP_INSERTION) ?
     $clog2(2**MAX_PKT_SIZE_LOG2 + 2**(MAX_FFT_SIZE_LOG2+1)-1 + 1) :
     $clog2(2**MAX_PKT_SIZE_LOG2 + 2**MAX_FFT_SIZE_LOG2 + 1);
  logic [ITEMS_TO_SEND_W-1:0] items_to_send;


  always_ff @(posedge clk) begin
    i_burst_tready       <= 1'b0;
    o_symbol_fifo_tready <= 1'b0;

    unique case (state)
      WAIT_BURST_ST : begin
        // Grab the packet and FFT size for this burst
        items_to_send   <= '0;
        vect_item_count <= '0;
        i_burst_tready  <= 1'b1;
        if (i_burst_tvalid) begin
          //synthesis translate_off
          assert (i_burst_tdata.length % (NIPC) == 0) else
            $error("fft_depacketize: Input packet length is not a multiple of NIPC");
          //synthesis translate_on
          pkt_size             <= i_burst_tdata.length & ~PKT_SIZE_MASK;
          timestamp            <= i_burst_tdata.timestamp;
          has_time             <= i_burst_tdata.has_time;
          o_symbol_fifo_tready <= 1'b1;
          state                <= CALC_ITEMS_ST;
          if (!EN_TIME_ALL_PKTS) begin
            next_pkt_timestamp <= i_burst_tdata.timestamp;
          end
        end
      end

      CALC_ITEMS_ST : begin
        // Wait for the next symbol's information to arrive
        o_symbol_fifo_tready <= 1'b1;
        last_symbol          <= o_symbol_fifo_tdata.last;
        if (o_symbol_fifo_tvalid) begin
          items_to_send        <= items_to_send + o_symbol_fifo_tdata.length;
          o_symbol_fifo_tready <= 1'b0;
          state                <= CALC_PACKET_ST;
        end
      end

      CALC_PACKET_ST : begin
        // Do we have enough to send a packet? If not, get another prefix
        // unless we're at the end.
        pkt_item_count    <= 2*NIPC;   // Account for one cycle of delay, plus one for tlast
        next_pkt_size     <= pkt_size;
        next_pkt_eob      <= 1'b0;
        next_pkt_has_time <= has_time;
        if (EN_TIME_ALL_PKTS) begin
          next_pkt_timestamp <= timestamp;
        end

        if (items_to_send > pkt_size) begin
          // Send the next packet, but we know we have at least one more packet
          // to send after this.
          next_pkt_size <= pkt_size;
          next_pkt_eob  <= 1'b0;
          state         <= CALC_VECTOR_ST;
        end else if (last_symbol) begin
          // We don't have a full packet, but we're on the last symbol, so
          // send what we have.
          next_pkt_size <= items_to_send;
          next_pkt_eob  <= 1'b1;
          state         <= CALC_VECTOR_ST;
        end else if (items_to_send == pkt_size) begin
          // We have exactly a full packet, but we're NOT on the last symbol
          next_pkt_size <= pkt_size;
          next_pkt_eob  <= 1'b0;
          state         <= CALC_VECTOR_ST;
        end else begin
          // We don't have a full packet, but we have more symbols to go, so
          // get the next symbol size.
          next_pkt_size        <= 'X;
          next_pkt_eob         <= 'X;
          o_symbol_fifo_tready <= 1'b1;
          state                <= CALC_ITEMS_ST;
        end
      end

      CALC_VECTOR_ST : begin
        // Calculate where we are in the current vector
        vect_item_count <= vect_item_count + next_pkt_size;
        state           <= CALC_EOV_ST;
      end

      CALC_EOV_ST : begin
        // Calculate if EOV flag should be set for this packet
        next_pkt_eov  <= (vect_item_count[FFT_SIZE_MASK_W-1:0] & fft_size_mask) == 0;
        // Check if the packet is a single transfer
        next_pkt_last <= NIPC >= next_pkt_size;
        state         <= PASS_PACKET_ST;
      end

      PASS_PACKET_ST : begin
        if (!EN_TIME_ALL_PKTS) begin
          has_time <= 1'b0;
        end
        if (o_noc_tvalid && o_noc_tready) begin
          if (EN_TIME_ALL_PKTS) begin
            timestamp <= timestamp + NIPC;
          end
          items_to_send  <= items_to_send - NIPC;
          pkt_item_count <= pkt_item_count + NIPC;
          next_pkt_last  <= pkt_item_count >= next_pkt_size;

          if (o_noc_tlast) begin
            if (o_noc_teob) begin
              state <= WAIT_BURST_ST;
            end else begin
              state <= CALC_PACKET_ST;
            end
          end
        end
      end
    endcase

    if (rst) begin
      state                <= WAIT_BURST_ST;
      i_burst_tready       <= 1'b0;
      o_symbol_fifo_tready <= 1'b0;
      items_to_send        <= 'X;
      pkt_size             <= 'X;
      timestamp            <= 'X;
      has_time             <= 'X;
      last_symbol          <= 'X;
      next_pkt_last        <= 'X;
      next_pkt_size        <= 'X;
      next_pkt_eob         <= 'X;
      next_pkt_eov         <= 'X;
      next_pkt_timestamp   <= 'X;
      next_pkt_has_time    <= 'X;
      pkt_item_count       <= 'X;
      vect_item_count      <= 'X;
    end
  end


  //---------------------------------------------------------------------------
  // Data Pass-through Logic
  //---------------------------------------------------------------------------

  assign o_noc_tdata      = o_fft_tdata;
  assign o_noc_tkeep      = o_fft_tkeep;
  assign o_noc_tlast      = next_pkt_last;
  assign o_noc_tlength    = next_pkt_size * (ITEM_W/8);  // Convert to bytes
  assign o_noc_teob       = next_pkt_eob;
  assign o_noc_teov       = next_pkt_eov;
  assign o_noc_ttimestamp = next_pkt_timestamp;
  assign o_noc_thas_time  = next_pkt_has_time;
  assign o_noc_tvalid     = (state == PASS_PACKET_ST) ? o_fft_tvalid : 1'b0;
  assign o_fft_tready     = (state == PASS_PACKET_ST) ? o_noc_tready : 1'b0;

endmodule : fft_depacketize


`default_nettype wire