1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
//
// Copyright 2018-2019 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: chdr_stream_input
// Description:
// Implements the CHDR input port for a stream endpoint.
// The module accepts stream command and data packets and
// emits stream status packets. Flow control and error state
// is communicated using stream status packets. There are no
// external config interfaces because all configuration is done
// using stream command packets.
//
// Parameters:
// - DEVICE_FAMILY: The FPGA device family (e.g., "7SERIES" or "ULTRASCALE")
// - CHDR_W: Width of the CHDR bus in bits
// - BUFF_SIZE: Buffer size in log2 of the number of words in the
// ingress buffer for the stream
// - FLUSH_TIMEOUT_W: log2 of the number of cycles to wait in order
// to flush the input stream
// - SIGNAL_ERRS: If set to 1 then all stream errors will be notified
// upstream, otherwise ALL errors are ignored
//
// Signals:
// - s_axis_chdr_* : Input CHDR stream (AXI-Stream)
// - m_axis_chdr_* : Output flow-controlled CHDR stream (AXI-Stream)
// - m_axis_strs_* : Output stream status (AXI-Stream)
// - data_err_stb : If asserted, a data error notification is sent upstream
//
module chdr_stream_input #(
parameter DEVICE_FAMILY = "7SERIES",
parameter CHDR_W = 256,
parameter BUFF_SIZE = 14,
parameter FLUSH_TIMEOUT_W = 14,
parameter MONITOR_EN = 1,
parameter SIGNAL_ERRS = 1
)(
// Clock, reset and settings
input wire clk,
input wire rst,
// CHDR in (AXI-Stream)
input wire [CHDR_W-1:0] s_axis_chdr_tdata,
input wire s_axis_chdr_tlast,
input wire s_axis_chdr_tvalid,
output wire s_axis_chdr_tready,
// Flow controlled data out (AXI-Stream)
output wire [CHDR_W-1:0] m_axis_data_tdata,
output wire m_axis_data_tlast,
output wire m_axis_data_tvalid,
input wire m_axis_data_tready,
// Stream status out (AXI-Stream)
output reg [CHDR_W-1:0] m_axis_strs_tdata,
output wire m_axis_strs_tlast,
output wire m_axis_strs_tvalid,
input wire m_axis_strs_tready,
// External stream error signal
input wire data_err_stb
);
// The buffer size depends on the BUFF_SIZE parameter
localparam [40:0] BUFF_SIZE_BYTES = ((41'h1 << BUFF_SIZE) * (CHDR_W / 8)) - 41'h1;
// This is a flit-buffer. No packet limits
localparam [23:0] BUFF_SIZE_PKTS = 24'hFFFFFF;
// ---------------------------------------------------
// RFNoC Includes
// ---------------------------------------------------
`include "rfnoc_chdr_utils.vh"
`include "rfnoc_chdr_internal_utils.vh"
// ---------------------------------------------------
// Ingress Buffer and Flow Control Logic
// ---------------------------------------------------
wire [CHDR_W-1:0] buff_tdata;
wire buff_tlast, buff_tvalid;
reg buff_tready;
wire [15:0] buff_info;
chdr_ingress_fifo #(
.DEVICE(DEVICE_FAMILY), .WIDTH(CHDR_W), .SIZE(BUFF_SIZE)
) ingress_fifo_i (
.clk(clk), .reset(rst), .clear(1'b0),
.i_tdata(s_axis_chdr_tdata), .i_tlast(s_axis_chdr_tlast),
.i_tvalid(s_axis_chdr_tvalid), .i_tready(s_axis_chdr_tready),
.o_tdata(buff_tdata), .o_tlast(buff_tlast),
.o_tvalid(buff_tvalid), .o_tready(buff_tready)
);
generate if (MONITOR_EN) begin
wire [BUFF_SIZE:0] occ_lines;
axis_fifo_monitor #( .COUNT_W(BUFF_SIZE+1) ) fifo_mon_i (
.clk(clk), .reset(rst),
.i_tlast(s_axis_chdr_tlast), .i_tvalid(s_axis_chdr_tvalid), .i_tready(s_axis_chdr_tready),
.o_tlast(buff_tlast), .o_tvalid(buff_tvalid), .o_tready(buff_tready),
.i_sop(), .i_eop(), .o_sop(), .o_eop(),
.occupied(occ_lines), .occupied_pkts()
);
// buff_info represents a fraction of the fullness of the buffer
// fullness percentage = (buff_info / 32768) * 100
if (BUFF_SIZE + 1 >= 16)
assign buff_info = occ_lines[BUFF_SIZE:(BUFF_SIZE-15)];
else
assign buff_info = {occ_lines, {(15-BUFF_SIZE){1'b0}}};
end else begin
assign buff_info = 16'd0;
end endgenerate
// Flow Control State
// xfer_cnt: Total transfer count since fc_enabled = 1
// accum: Transfer count since last FC response
// fc_freq: The threshold for sending an FC response
reg [63:0] xfer_cnt_bytes = 64'd0;
reg [39:0] xfer_cnt_pkts = 40'd0;
reg [63:0] accum_bytes = 64'd0;
reg [39:0] accum_pkts = 40'd0;
reg [63:0] fc_freq_bytes = 64'd0;
reg [39:0] fc_freq_pkts = 40'd0;
// State machine transition signals info
reg fc_enabled = 1'b0; // Is flow control enabled?
wire fc_ping; // A flow control response was requested
wire fc_first_resp; // Send the first flow control response
wire fc_refresh; // Refresh accumulated values
wire fc_override; // Override total xfer counts
reg fc_override_del = 1'b0;
reg [3:0] fc_due_shreg = 4'hF; // Is a response due? (shift register)
// Endpoint IDs of this endpoint and the stream source
reg [15:0] this_epid = 16'd0, return_epid = 16'd0;
// Cached values from a stream command
reg [63:0] strc_num_bytes;
reg [39:0] strc_num_pkts;
reg [3:0] strc_op_data; // Unused for now
reg [3:0] strc_op_code;
// Total transfer count updater
always @(posedge clk) begin
if (rst || !fc_enabled) begin
// Reset
xfer_cnt_bytes <= 64'd0;
xfer_cnt_pkts <= 40'd0;
end else if (fc_override) begin
// Override
xfer_cnt_bytes <= strc_num_bytes;
xfer_cnt_pkts <= strc_num_pkts;
end else if (buff_tvalid && buff_tready) begin
// Count
xfer_cnt_bytes <= xfer_cnt_bytes + (CHDR_W/8);
if (buff_tlast)
xfer_cnt_pkts <= xfer_cnt_pkts + 40'd1;
end
end
// Accumulated transfer count updater
always @(posedge clk) begin
if (rst || !fc_enabled || fc_refresh) begin
// Reset
accum_bytes <= 64'd0;
accum_pkts <= 40'd0;
end else if (buff_tvalid && buff_tready) begin
// Count
accum_bytes <= accum_bytes + (CHDR_W/8);
if (buff_tlast)
accum_pkts <= accum_pkts + 40'd1;
end
end
// Flow control trigger
// Why a shift-register here?
// 1. For edge detection
// 2. To allow the tools to re-time the wide comparators.
// We don't care about the latency here because stream
// status messages are asynchronous wrt the input.
always @(posedge clk) begin
if (rst || !fc_enabled) begin
// Reset to all ones so we don't send an extra stream status packet
// immediately after flow control is re-enabled. This also ensures we
// don't send an extra status packet when we get the first init command
// which has zero for num_bytes and num_pkts.
fc_due_shreg <= 4'hF;
end else begin
fc_due_shreg <= {
fc_due_shreg[2:0],
(accum_bytes >= fc_freq_bytes) || (accum_pkts >= fc_freq_pkts)
};
end
end
wire fc_resp_due = fc_due_shreg[2] && !fc_due_shreg[3];
// ---------------------------------------------------
// Stream Command Handler
// ---------------------------------------------------
localparam [2:0] ST_IN_HDR = 3'd0; // The CHDR header of an input pkt
localparam [2:0] ST_IN_DATA = 3'd1; // The CHDR body (incl. mdata) of an input pkt
localparam [2:0] ST_STRC_W0 = 3'd2; // The first word of a stream command
localparam [2:0] ST_STRC_W1 = 3'd3; // The second word of a stream command
localparam [2:0] ST_STRC_EXEC = 3'd4; // A stream command is executing
localparam [2:0] ST_FLUSH = 3'd5; // Input is flushing
localparam [2:0] ST_DROP = 3'd6; // Current packet is being dropped
reg [2:0] state = ST_IN_HDR; // State of the input state machine
reg pkt_too_long = 1'b0; // Error case. Packet is too long
reg is_first_strc_pkt = 1'b1; // Is this the strm cmd data pkt after fc_enabled = 1?
reg [15:0] exp_data_seq_num = 16'd0; // Expected sequence number for the next data pkt
reg [15:0] exp_strc_seq_num = 16'd0; // Expected sequence number for the next stream cmd pkt
reg [15:0] strc_dst_epid = 16'd0; // EPID in CHDR header of STRC packet
reg [15:0] last_strc_seq_num= 16'd0; // Last sequence number of a stream command packet
reg stop_on_seq_err_en = 1'b0; // State configured from the host to terminate stream on sequence errors
reg seq_error_occured = 1'b0; // Kept after sequence error to terminate subsequent packets
reg [FLUSH_TIMEOUT_W-1:0] flush_counter = {FLUSH_TIMEOUT_W{1'b0}};
// Shortcuts
wire is_data_pkt =
chdr_get_pkt_type(buff_tdata[63:0]) == CHDR_PKT_TYPE_DATA ||
chdr_get_pkt_type(buff_tdata[63:0]) == CHDR_PKT_TYPE_DATA_TS;
wire is_strc_pkt =
chdr_get_pkt_type(buff_tdata[63:0]) == CHDR_PKT_TYPE_STRC;
// Error Logic
wire data_seq_err_stb = (state == ST_IN_HDR) && is_data_pkt &&
(chdr_get_seq_num(buff_tdata[63:0]) != exp_data_seq_num);
wire strc_seq_err_stb = (state == ST_IN_HDR) && is_strc_pkt && !is_first_strc_pkt &&
(chdr_get_seq_num(buff_tdata[63:0]) != exp_strc_seq_num);
wire seq_err_stb = (data_seq_err_stb || strc_seq_err_stb) && buff_tvalid && buff_tready;
wire route_err_stb = buff_tvalid && buff_tready && (state == ST_IN_HDR) &&
(chdr_get_dst_epid(buff_tdata[63:0]) != this_epid);
// Break critical paths to response FIFO
reg [47:0] stream_err_info = 48'h0;
reg stream_err_stb = 1'b0;
reg [3:0] stream_err_status = CHDR_STRS_STATUS_OKAY;
always @(posedge clk) begin
if (rst || (SIGNAL_ERRS == 0)) begin
stream_err_stb <= 1'b0;
end else begin
stream_err_stb <= seq_err_stb | route_err_stb | data_err_stb;
if (seq_err_stb) begin
stream_err_status <= CHDR_STRS_STATUS_SEQERR;
// The extended info has the packet type (to detect which stream
// had an error), the expected and actual sequence number.
stream_err_info <= {2'b0, seq_error_occured, stop_on_seq_err_en, 9'b0, chdr_get_pkt_type(buff_tdata[63:0]),
data_seq_err_stb ? exp_data_seq_num : exp_strc_seq_num,
chdr_get_seq_num(buff_tdata[63:0])};
end else if (route_err_stb) begin
stream_err_status <= CHDR_STRS_STATUS_RTERR;
// The extended info has the expected and actual destination EPID.
stream_err_info <= {16'd0, this_epid, chdr_get_dst_epid(buff_tdata[63:0])};
end else begin
stream_err_status <= CHDR_STRS_STATUS_DATAERR;
// The extended info has the expected and actual destination EPID.
stream_err_info <= {16'd0, this_epid, chdr_get_dst_epid(buff_tdata[63:0])};
end
end
end
// Input State Machine
// - Pass data packets forward
// - Consume stream cmd packets
always @(posedge clk) begin
if (rst) begin
state <= ST_IN_HDR;
pkt_too_long <= 1'b0;
fc_enabled <= 1'b0;
seq_error_occured <= 1'b0;
end else begin
case (state)
ST_IN_HDR: begin
if (buff_tvalid && buff_tready) begin
if (!buff_tlast) begin
// Classify packet and...
if (is_strc_pkt) begin
// ...consume if it is a stream command or...
state <= ST_STRC_W0;
last_strc_seq_num <= chdr_get_seq_num(buff_tdata[63:0]);
end else if (is_data_pkt) begin
// .. drop the packet if seq error occurred or occurs with this packet
// FIXME: Looks like there's a bug here where if the packet is a single cycle, then it won't get dropped because we only get here if !buff_tlast.
if (seq_error_occured || (data_seq_err_stb && stop_on_seq_err_en)) begin
seq_error_occured <= stop_on_seq_err_en;
state <= ST_DROP;
// ...pass to output if it is a data packet...
end else begin
state <= ST_IN_DATA;
end
end else begin
// ... otherwise drop.
state <= ST_DROP;
end
end
// Update other state vars
pkt_too_long <= 1'b0;
if (is_strc_pkt) begin
is_first_strc_pkt <= 1'b0;
strc_dst_epid <= chdr_get_dst_epid(buff_tdata[63:0]);
exp_strc_seq_num <= chdr_get_seq_num(buff_tdata[63:0]) + 16'd1;
end else if (is_data_pkt) begin
// stall the counter in error case when configured for reliable transmission
if (~stop_on_seq_err_en || (~data_seq_err_stb && ~seq_error_occured)) begin
exp_data_seq_num <= chdr_get_seq_num(buff_tdata[63:0]) + 16'd1;
end
end
end
end
ST_IN_DATA: begin
// Pass the data packet forward
if (buff_tvalid && buff_tready && buff_tlast)
state <= ST_IN_HDR;
end
ST_STRC_W0: begin
if (buff_tvalid && buff_tready) begin
// Consume the first word of a stream command packet
if (CHDR_W > 64) begin
strc_num_bytes <= chdr128_strc_get_num_bytes(buff_tdata[127:0]);
strc_num_pkts <= chdr128_strc_get_num_pkts (buff_tdata[127:0]);
strc_op_data <= chdr128_strc_get_op_data (buff_tdata[127:0]);
strc_op_code <= chdr128_strc_get_op_code (buff_tdata[127:0]);
return_epid <= chdr128_strs_get_src_epid (buff_tdata[127:0]);
state <= ST_STRC_EXEC;
pkt_too_long <= ~buff_tlast;
end else begin
strc_num_pkts <= chdr64_strc_get_num_pkts(buff_tdata[63:0]);
strc_op_data <= chdr64_strc_get_op_data (buff_tdata[63:0]);
strc_op_code <= chdr64_strc_get_op_code (buff_tdata[63:0]);
return_epid <= chdr64_strs_get_src_epid(buff_tdata[63:0]);
state <= ST_STRC_W1;
end
end
end
ST_STRC_W1: begin
if (buff_tvalid && buff_tready) begin
// Consume the second word of a stream command packet
strc_num_bytes <= chdr64_strc_get_num_bytes(buff_tdata[63:0]);
state <= ST_STRC_EXEC;
pkt_too_long <= ~buff_tlast;
end
end
ST_STRC_EXEC: begin
case (strc_op_code)
CHDR_STRC_OPCODE_INIT: begin
// Configure FC but disable it temporarily
fc_freq_bytes <= strc_num_bytes;
fc_freq_pkts <= strc_num_pkts;
this_epid <= strc_dst_epid;
fc_enabled <= 1'b0;
// Flush the input
state <= ST_FLUSH;
flush_counter <= {FLUSH_TIMEOUT_W{1'b1}};
stop_on_seq_err_en <= strc_op_data[0];
seq_error_occured <= 1'b0;
exp_data_seq_num <= 16'd0;
end
CHDR_STRC_OPCODE_PING: begin
// Ping can complete in 1 cycle
state <= pkt_too_long ? ST_DROP : ST_IN_HDR;
end
CHDR_STRC_OPCODE_RESYNC: begin
// Resync can complete in 1 cycle
state <= pkt_too_long ? ST_DROP : ST_IN_HDR;
end
default: begin
state <= pkt_too_long ? ST_DROP : ST_IN_HDR;
end
endcase
end
ST_FLUSH: begin
// Drop until the next packet arrives
if (buff_tvalid && buff_tready) begin
flush_counter <= {FLUSH_TIMEOUT_W{1'b1}};
end else begin
flush_counter <= flush_counter - 'd1;
if (flush_counter == {FLUSH_TIMEOUT_W{1'b0}}) begin
// Done flushing. Re-arm flow control and reset packet
// sequence check info.
fc_enabled <= 1'b1;
is_first_strc_pkt <= 1'b1;
state <= ST_IN_HDR;
end
end
end
ST_DROP: begin
// Drop until the next packet arrives
if (buff_tvalid && buff_tready && buff_tlast)
state <= ST_IN_HDR;
end
default: begin
// We should never get here
state <= ST_IN_HDR;
end
endcase
end
end
always @(*) begin
case (state)
ST_IN_HDR:
buff_tready = m_axis_data_tready || !is_data_pkt;
ST_IN_DATA:
buff_tready = m_axis_data_tready;
ST_STRC_W0:
buff_tready = 1'b1;
ST_STRC_W1:
buff_tready = 1'b1;
ST_FLUSH:
buff_tready = 1'b1;
ST_DROP:
buff_tready = 1'b1;
default:
buff_tready = 1'b0;
endcase
end
// Figure out if we're dropping this packet due to a sequence error
wire going_to_drop = is_data_pkt &&
(seq_error_occured || (data_seq_err_stb && stop_on_seq_err_en));
// Logic to drive output port
assign m_axis_data_tdata = buff_tdata;
assign m_axis_data_tlast = buff_tlast;
assign m_axis_data_tvalid = buff_tvalid &&
((state == ST_IN_HDR && is_data_pkt && !going_to_drop) || state == ST_IN_DATA);
// Logic to drive triggers
assign fc_ping = (state == ST_STRC_EXEC) && (strc_op_code == CHDR_STRC_OPCODE_PING);
assign fc_first_resp = (state == ST_FLUSH) && (flush_counter == {FLUSH_TIMEOUT_W{1'b0}});
assign fc_override = (state == ST_STRC_EXEC) && (strc_op_code == CHDR_STRC_OPCODE_RESYNC);
always @(posedge clk) fc_override_del <= fc_override;
wire [51:0] resp_o_tdata;
wire resp_o_tvalid;
wire resp_o_tready;
reg [51:0] resp_i_tdata;
reg resp_i_tvalid = 1'b0;
// Send a stream status packet for the following cases:
// - Immediately after initialization
// - If a response is explicitly requested (ping)
// - If a response is due i.e. we have exceeded the frequency
// - If FC is resynchronized via a stream cmd
// - If an error is detected in the stream
always @(posedge clk) begin
if (rst) begin
resp_i_tvalid <= 1'b0;
resp_i_tdata <= 52'h0;
end else begin
resp_i_tvalid <= fc_first_resp || fc_ping || fc_resp_due || fc_override_del || stream_err_stb;
resp_i_tdata <= stream_err_stb ?
{stream_err_info, stream_err_status} :
{fc_resp_due, 1'b0, seq_error_occured, stop_on_seq_err_en, 12'b0,
exp_data_seq_num, last_strc_seq_num, CHDR_STRS_STATUS_OKAY};
end
end
// ---------------------------------------------------
// Stream Status Responder
// ---------------------------------------------------
localparam [2:0] ST_STRS_IDLE = 3'd0; // Waiting for response to post
localparam [2:0] ST_STRS_HDR = 3'd1; // Sending response CHDR header
localparam [2:0] ST_STRS_W0 = 3'd2; // Sending first response word
localparam [2:0] ST_STRS_W1 = 3'd3; // Sending second response word
localparam [2:0] ST_STRS_W2 = 3'd4; // Sending third response word
localparam [2:0] ST_STRS_W3 = 3'd5; // Sending fourth response word
localparam [2:0] ST_STRS_DONE = 3'd6; // Consuming response
reg [2:0] resp_state = ST_STRS_IDLE; // State of the responder
reg [15:0] resp_seq_num = 16'd0; // Current sequence number of response
assign fc_refresh = (resp_state == ST_STRS_DONE);
assign resp_o_tready = (resp_state == ST_STRS_DONE || !fc_enabled);
// A FIFO that holds up to 32 posted responses and status information
// NOTE: This is a lossy FIFO. If the downstream response port is clogged
// then we will drop responses. That should never happen in a normal operating
// scenario.
axi_fifo #(.WIDTH(48 + 4), .SIZE(5)) resp_fifo_i (
.clk(clk), .reset(rst), .clear(1'b0),
.i_tdata(resp_i_tdata), .i_tvalid(resp_i_tvalid), .i_tready(/* Lossy FIFO */),
.o_tdata(resp_o_tdata), .o_tvalid(resp_o_tvalid), .o_tready(resp_o_tready),
.space(), .occupied()
);
// Responder State Machine
// - Wait for response to appear in FIFO
// - Output a full packet (different # of xfers depending on CHDR_W)
always @(posedge clk) begin
if (rst || !fc_enabled) begin
resp_state <= ST_STRS_IDLE;
resp_seq_num <= 16'd0;
end else begin
case (resp_state)
ST_STRS_IDLE: begin
if (resp_o_tvalid)
resp_state <= ST_STRS_HDR;
end
ST_STRS_HDR: begin
if (m_axis_strs_tready)
resp_state <= ST_STRS_W0;
end
ST_STRS_W0: begin
if (m_axis_strs_tready)
if (CHDR_W < 256)
resp_state <= ST_STRS_W1;
else
resp_state <= ST_STRS_DONE;
end
ST_STRS_W1: begin
if (m_axis_strs_tready)
if (CHDR_W < 128)
resp_state <= ST_STRS_W2;
else
resp_state <= ST_STRS_DONE;
end
ST_STRS_W2: begin
if (m_axis_strs_tready)
resp_state <= ST_STRS_W3;
end
ST_STRS_W3: begin
if (m_axis_strs_tready)
resp_state <= ST_STRS_DONE;
end
ST_STRS_DONE: begin
resp_state <= ST_STRS_IDLE;
resp_seq_num <= resp_seq_num + 16'd1;
end
default: begin
// We should never get here
resp_state <= ST_STRS_IDLE;
end
endcase
end
end
// Output data. Header and Payload
wire [63:0] strs_header = chdr_build_header(
/*VC*/ 6'd0, /*eob*/ 1'b0, /*eov*/ 1'b0, CHDR_PKT_TYPE_STRS, CHDR_NO_MDATA,
resp_seq_num, 16'd32+(CHDR_W/8), return_epid);
wire [255:0] strs_payload = chdr256_strs_build(
/*statusinfo*/ resp_o_tdata[51:4], buff_info,
xfer_cnt_bytes, xfer_cnt_pkts,
BUFF_SIZE_PKTS[23:0], BUFF_SIZE_BYTES[39:0],
resp_o_tdata[3:0], this_epid);
// m_axis_strs_* signal values depend on CHDR_W
generate
if (CHDR_W == 64) begin
// Response spans 5 transfers (header + 4 words)
assign m_axis_strs_tlast = (resp_state == ST_STRS_W3);
always @(*) begin
case (resp_state)
ST_STRS_W0:
m_axis_strs_tdata = strs_payload[63:0];
ST_STRS_W1:
m_axis_strs_tdata = strs_payload[127:64];
ST_STRS_W2:
m_axis_strs_tdata = strs_payload[191:128];
ST_STRS_W3:
m_axis_strs_tdata = strs_payload[255:192];
default:
m_axis_strs_tdata = strs_header;
endcase
end
end else if (CHDR_W == 128) begin
// Response spans 3 transfers (header + 2 words)
assign m_axis_strs_tlast = (resp_state == ST_STRS_W1);
always @(*) begin
case (resp_state)
ST_STRS_W0:
m_axis_strs_tdata = strs_payload[127:0];
ST_STRS_W1:
m_axis_strs_tdata = strs_payload[255:128];
default:
m_axis_strs_tdata = {64'h0, strs_header};
endcase
end
end else begin
// Response spans 2 transfers (header + word)
assign m_axis_strs_tlast = (resp_state == ST_STRS_W0);
always @(*) begin
case (resp_state)
ST_STRS_W0:
m_axis_strs_tdata[255:0] = strs_payload;
default:
m_axis_strs_tdata[255:0] = {192'h0, strs_header};
endcase
if (CHDR_W > 256) begin
m_axis_strs_tdata[CHDR_W-1:256] = 'h0;
end
end
end
endgenerate
assign m_axis_strs_tvalid = (resp_state != ST_STRS_IDLE) && (resp_state != ST_STRS_DONE);
endmodule // chdr_stream_input
|