1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
//
// Copyright 2021 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: chdr_resize
//
// Description:
//
// Takes a CHDR packet data stream and converts it from one CHDR width to a
// different CHDR width. It can also do CHDR width conversion without
// changing the bus width, if the bus width is the same size as the smaller
// CHDR width.
//
// For example, to convert from a 64-bit CHDR_W to a 256-bit CHDR_W, you
// would set I_CHDR_W to 64 and O_CHDR_W to 256 (by default, I_DATA_W will be
// set to 64 and O_DATA_W will be set to 256).
//
// But you could also convert from 64-bit CHDR to 256-bit CHDR while keeping
// the bus width at 64 bits. In this case you would set I_CHDR_W to 64 and
// O_CHDR_W to 256, but set both I_DATA_W and O_DATA_W to 64.
//
// There are some restrictions, including the requirement that I_CHDR_W ==
// I_DATA_W or O_CHDR_W == O_DATA_W, and that MIN(I_DATA_W, O_DATA_W) ==
// MIN(I_CHDR_W, O_CHDR_W). Basically, it can't do CHDR width conversion
// where the smaller CHDR width is smaller than the bus width(s). For
// example, you could not do conversion from 64-bit to 256-bit CHDR with
// input and output bus widths of 256.
//
// TUSER is supported, but is not resized. TUSER is sampled along with the
// first word of the input packet and is assumed to be the same for the
// duration of the packet.
//
// Also, note that packets with different CHDR_W have a different maximum
// number of metadata bytes. This module repacks the metadata in
// little-endian order in the new word size. If there is too much metadata
// for a smaller CHDR_W packet, the extra data will be discarded.
//
// Parameters:
//
// I_CHDR_W : CHDR_W for the input data stream on i_chdr.
// O_CHDR_W : CHDR_W for the output data stream on o_chdr.
// I_DATA_W : Bus width for i_chdr_tdata.
// O_DATA_W : Bus width for o_chdr_tdata.
// USER_W : Width for i_chdr_tuser and o_chdr_tuser.
// PIPELINE : Indicates whether to add pipeline stages to the input and/or
// output. This can be: "NONE", "IN", "OUT", or "INOUT".
//
`default_nettype none
module chdr_resize #(
parameter I_CHDR_W = 64,
parameter O_CHDR_W = 512,
parameter I_DATA_W = I_CHDR_W,
parameter O_DATA_W = O_CHDR_W,
parameter USER_W = 1,
parameter PIPELINE = "NONE"
) (
input wire clk,
input wire rst,
// Input
input wire [I_DATA_W-1:0] i_chdr_tdata,
input wire [ USER_W-1:0] i_chdr_tuser,
input wire i_chdr_tlast,
input wire i_chdr_tvalid,
output wire i_chdr_tready,
// Input
output wire [O_DATA_W-1:0] o_chdr_tdata,
output wire [ USER_W-1:0] o_chdr_tuser,
output wire o_chdr_tlast,
output wire o_chdr_tvalid,
input wire o_chdr_tready
);
`define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
// Determine the bus width of the CHDR converter, which is always the smaller
// bus width of the input and output.
localparam CONVERT_W = `MIN(I_DATA_W, O_DATA_W);
// Determine if we need the bus down-sizer
localparam DO_DOWNSIZE = (I_DATA_W > O_DATA_W);
// Determine if we need the CHDR width converter
localparam DO_CONVERT = (I_CHDR_W != O_CHDR_W);
// Determine if we need the bus up-sizer
localparam DO_UPSIZE = (I_DATA_W < O_DATA_W);
// Determine the pipeline settings. We want pipeline stages on the input
// and/or output, depending on the PIPELINE parameter, as well as between the
// up-sizer and converter, and between the converter and down-sizer, any of
// which may or may not be present. We don't, however, want back-to-back
// pipeline stages (e.g., on the output of the down-sizer and the input to
// the converter). If both an up/down-sizer and converter are used, the
// settings below will turn on the adjacent pipeline stage in the converter
// and turn off the corresponding pipeline stage in the up/down-sizer.
localparam DOWNSIZE_PIPELINE =
(PIPELINE == "IN" && DO_CONVERT) ? "IN" :
(PIPELINE == "IN" && !DO_CONVERT) ? "IN" :
(PIPELINE == "INOUT" && DO_CONVERT) ? "IN" :
(PIPELINE == "INOUT" && !DO_CONVERT) ? "INOUT" :
(PIPELINE == "OUT" && DO_CONVERT) ? "NONE" :
(PIPELINE == "OUT" && !DO_CONVERT) ? "OUT" :
"NONE" ;
localparam CONVERT_PIPELINE =
(PIPELINE == "IN" && DO_DOWNSIZE) ? "IN" :
(PIPELINE == "IN" && DO_UPSIZE ) ? "INOUT" :
(PIPELINE == "IN" /* neither */) ? "IN" :
(PIPELINE == "INOUT" && DO_DOWNSIZE) ? "INOUT" :
(PIPELINE == "INOUT" && DO_UPSIZE ) ? "INOUT" :
(PIPELINE == "INOUT" /* neither */) ? "INOUT" :
(PIPELINE == "OUT" && DO_DOWNSIZE) ? "INOUT" :
(PIPELINE == "OUT" && DO_UPSIZE ) ? "OUT" :
(PIPELINE == "OUT" /* neither */) ? "OUT" :
"NONE" ;
localparam UPSIZE_PIPELINE =
(PIPELINE == "IN" && DO_CONVERT) ? "NONE" :
(PIPELINE == "IN" && !DO_CONVERT) ? "IN" :
(PIPELINE == "INOUT" && DO_CONVERT) ? "OUT" :
(PIPELINE == "INOUT" && !DO_CONVERT) ? "INOUT" :
(PIPELINE == "OUT" && DO_CONVERT) ? "OUT" :
(PIPELINE == "OUT" && !DO_CONVERT) ? "OUT" :
"NONE" ;
generate
//-------------------------------------------------------------------------
// Check Parameters
//-------------------------------------------------------------------------
if (!(
// All widths must be valid CHDR widths (at least 64 and powers of 2)
(2**$clog2(I_CHDR_W) == I_CHDR_W) &&
(2**$clog2(O_CHDR_W) == O_CHDR_W) &&
(2**$clog2(I_DATA_W) == I_DATA_W) &&
(2**$clog2(O_DATA_W) == O_DATA_W) &&
(I_CHDR_W >= 64) &&
(O_CHDR_W >= 64) &&
(I_DATA_W >= 64) &&
(O_DATA_W >= 64) &&
// The converter width must match the smaller bus width. It doesn't work
// on buses wider than the CHDR width.
(CONVERT_W == `MIN(I_CHDR_W, O_CHDR_W))
)) begin : gen_error
ERROR__Invalid_CHDR_or_data_width_parameters();
end
//-------------------------------------------------------------------------
// TUSER Data Path
//-------------------------------------------------------------------------
//
// Sample TUSER at the beginning of the input packet and output it for the
// duration of the output packet.
//
//-------------------------------------------------------------------------
if (DO_DOWNSIZE || DO_UPSIZE || DO_CONVERT || PIPELINE == "INOUT") begin : gen_tuser_buffer
if (!DO_DOWNSIZE && !DO_UPSIZE && DO_CONVERT && PIPELINE == "NONE") begin : gen_tuser_reg
// In this case, there's a combinatorial path from i_chdr to o_chdr, so
// we can't use a FIFO to buffer TUSER.
// Track start of packet on o_chdr
reg o_chdr_sop = 1;
always @(posedge clk) begin
if (rst) begin
o_chdr_sop <= 1;
end else if (o_chdr_tvalid && o_chdr_tready) begin
o_chdr_sop <= o_chdr_tlast;
end
end
reg [USER_W-1:0] o_tuser_reg;
always @(posedge clk) begin
if (rst) begin
o_tuser_reg <= {USER_W{1'bX}};
end else if (o_chdr_tvalid && o_chdr_tready && o_chdr_sop) begin
o_tuser_reg <= i_chdr_tuser;
end
end
// Pass through TUSER for first word in the packet, then use a holding
// register for the rest of the packet.
assign o_chdr_tuser = (o_chdr_sop) ? i_chdr_tuser : o_tuser_reg;
end else begin : gen_tuser_fifo
// In this case we use a FIFO to buffer TUSER.
// Track start of packet on i_chdr
reg i_chdr_sop = 1;
always @(posedge clk) begin
if (rst) begin
i_chdr_sop <= 1;
end else if (i_chdr_tvalid && i_chdr_tready) begin
i_chdr_sop <= i_chdr_tlast;
end
end
axi_fifo_short #(
.WIDTH (USER_W)
) axi_fifo_short_i (
.clk (clk),
.reset (rst),
.clear (1'b0),
.i_tdata (i_chdr_tuser),
.i_tvalid (i_chdr_tvalid && i_chdr_tready && i_chdr_sop),
.i_tready (),
.o_tdata (o_chdr_tuser),
.o_tvalid (),
.o_tready (o_chdr_tready && o_chdr_tvalid && o_chdr_tlast),
.space (),
.occupied ()
);
end
end else begin : gen_tuser_pass_through
// In this case there's no logic on the data path, so we can pass TUSER
// through directly.
assign o_chdr_tuser = i_chdr_tuser;
end
//-------------------------------------------------------------------------
// Down-Size Input Bus Width
//-------------------------------------------------------------------------
wire [CONVERT_W-1:0] resized_tdata;
wire resized_tlast;
wire resized_tvalid;
wire resized_tready;
if (DO_DOWNSIZE) begin : gen_bus_downsize
axis_width_conv #(
.WORD_W (CONVERT_W),
.IN_WORDS (I_DATA_W / CONVERT_W),
.OUT_WORDS (1),
.SYNC_CLKS (1),
.PIPELINE (DOWNSIZE_PIPELINE)
) axis_width_conv_i (
.s_axis_aclk (clk),
.s_axis_rst (rst),
.s_axis_tdata (i_chdr_tdata),
.s_axis_tkeep ({(I_DATA_W / CONVERT_W){1'b1}}),
.s_axis_tlast (i_chdr_tlast),
.s_axis_tvalid (i_chdr_tvalid),
.s_axis_tready (i_chdr_tready),
.m_axis_aclk (clk),
.m_axis_rst (rst),
.m_axis_tdata (resized_tdata),
.m_axis_tkeep (),
.m_axis_tlast (resized_tlast),
.m_axis_tvalid (resized_tvalid),
.m_axis_tready (resized_tready)
);
end else begin : gen_no_bus_downsize
assign resized_tdata = i_chdr_tdata;
assign resized_tlast = i_chdr_tlast;
assign resized_tvalid = i_chdr_tvalid;
assign i_chdr_tready = resized_tready;
end
//-------------------------------------------------------------------------
// CHDR Width Protocol Conversion
//-------------------------------------------------------------------------
wire [CONVERT_W-1:0] converted_tdata;
wire converted_tlast;
wire converted_tvalid;
wire converted_tready;
if (DO_CONVERT) begin : gen_convert
if (I_CHDR_W > O_CHDR_W) begin : gen_chdr_convert_down
chdr_convert_down #(
.I_CHDR_W (I_CHDR_W),
.DATA_W (CONVERT_W),
.PIPELINE (CONVERT_PIPELINE)
) chdr_convert_down_i (
.clk (clk),
.rst (rst),
.i_chdr_tdata (resized_tdata),
.i_chdr_tlast (resized_tlast),
.i_chdr_tvalid (resized_tvalid),
.i_chdr_tready (resized_tready),
.o_chdr_tdata (o_chdr_tdata),
.o_chdr_tlast (o_chdr_tlast),
.o_chdr_tvalid (o_chdr_tvalid),
.o_chdr_tready (o_chdr_tready)
);
end else if (I_CHDR_W < O_CHDR_W) begin : gen_chdr_convert_up
chdr_convert_up #(
.DATA_W (CONVERT_W),
.O_CHDR_W (O_CHDR_W),
.PIPELINE (PIPELINE)
) chdr_convert_up_i (
.clk (clk),
.rst (rst),
.i_chdr_tdata (resized_tdata),
.i_chdr_tlast (resized_tlast),
.i_chdr_tvalid (resized_tvalid),
.i_chdr_tready (resized_tready),
.o_chdr_tdata (converted_tdata),
.o_chdr_tlast (converted_tlast),
.o_chdr_tvalid (converted_tvalid),
.o_chdr_tready (converted_tready)
);
end
end else begin : gen_no_convert
if (PIPELINE == "INOUT" && !DO_DOWNSIZE && !DO_UPSIZE) begin : gen_pipeline
// In this case there's no conversion or up-size/down-size, so we're
// just passing the data through unchanged. However, if PIPELINE is set
// to INOUT then we should have a pipeline stage, so we add that here.
axi_fifo_flop2 #(
.WIDTH (1 + CONVERT_W)
) axi_fifo_flop2_i (
.clk (clk),
.reset (rst),
.clear (1'b0),
.i_tdata ({ resized_tlast, resized_tdata }),
.i_tvalid (resized_tvalid),
.i_tready (resized_tready),
.o_tdata ({ converted_tlast, converted_tdata }),
.o_tvalid (converted_tvalid),
.o_tready (converted_tready),
.space (),
.occupied ()
);
end else begin : gen_convert_bypass
assign converted_tdata = resized_tdata;
assign converted_tlast = resized_tlast;
assign converted_tvalid = resized_tvalid;
assign resized_tready = converted_tready;
end
end
//-------------------------------------------------------------------------
// Up-Size Output Bus Width
//-------------------------------------------------------------------------
if (DO_UPSIZE) begin : gen_bus_upsize
axis_width_conv #(
.WORD_W (CONVERT_W),
.IN_WORDS (1),
.OUT_WORDS (O_DATA_W / CONVERT_W),
.SYNC_CLKS (1),
.PIPELINE (UPSIZE_PIPELINE)
) axis_width_conv_i (
.s_axis_aclk (clk),
.s_axis_rst (rst),
.s_axis_tdata (converted_tdata),
.s_axis_tkeep (1'b1),
.s_axis_tlast (converted_tlast),
.s_axis_tvalid (converted_tvalid),
.s_axis_tready (converted_tready),
.m_axis_aclk (clk),
.m_axis_rst (rst),
.m_axis_tdata (o_chdr_tdata),
.m_axis_tkeep (),
.m_axis_tlast (o_chdr_tlast),
.m_axis_tvalid (o_chdr_tvalid),
.m_axis_tready (o_chdr_tready)
);
end else begin : gen_no_bus_upsize
assign o_chdr_tdata = converted_tdata;
assign o_chdr_tlast = converted_tlast;
assign o_chdr_tvalid = converted_tvalid;
assign converted_tready = o_chdr_tready;
end
endgenerate
endmodule
`default_nettype wire
|