File: ctrlport_if_combiner.sv

package info (click to toggle)
uhd 4.9.0.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 184,180 kB
  • sloc: cpp: 262,887; python: 112,011; ansic: 102,670; vhdl: 57,031; tcl: 19,924; xml: 8,581; makefile: 3,028; sh: 2,812; pascal: 230; javascript: 120; csh: 94; asm: 20; perl: 11
file content (248 lines) | stat: -rw-r--r-- 8,954 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//
// Copyright 2025 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: ctrlport_if_combiner
//
// Description:
//
//  This block is an arbiter that merges control-port interfaces. This block is
//  used when you have multiple control-port masters that need to access a
//  single slave. For example, a NoC block with multiple submodules that each
//  need to read and/or write registers outside of themselves.
//
//  This module combines the control-port requests from multiple masters into a
//  single request for one slave. Simultaneous requests are handled in the order
//  specified by PRIORITY. The responding ACK is routed back to the requester.
//
//  The module has been designed so that the latency through it is always the
//  same when PRIORITY=1 and there is no contention, so that it can be used in
//  applications where deterministic behavior is desired.
//
// Parameters:
//
//   NUM_MASTERS : The number of control-port masters to connect to a single
//                 control-port slave.
//   PRIORITY    : Use PRIORITY = 0 for round robin arbitration, PRIORITY = 1
//                 for priority arbitration (lowest number port serviced first).
//   TIMEOUT     : Number of cycles to wait for a response before aborting the wait for an ack.
//                 TIMEOUT = 0 will not add a timeout.
//


module ctrlport_if_combiner #(
  int NUM_MASTERS = 2,
  bit PRIORITY    = 0,
  int TIMEOUT     = 0
) (
  // Slave Interfaces
  ctrlport_if.slave s_ctrlport [NUM_MASTERS-1:0],
  // Master Interface
  ctrlport_if.master m_ctrlport
);

  import ctrlport_pkg::*;

  logic [$clog2(NUM_MASTERS)-1:0] slave_sel = '0;  // Tracks which slave port is
                                                   // currently being serviced.
  logic req_load_output = '0;
  logic timeout_occurred = '0;

  // Helper function to convert one hot vector to binary index
  // (LSB = index 0)
  function integer one_hot_to_binary(input [NUM_MASTERS-1:0] one_hot_vec);
    integer i, total;
  begin
    total = 0;
    for (i = 0; i < NUM_MASTERS; i++) begin
      if (one_hot_vec[i]) begin
        total = total + i;
      end
    end
    one_hot_to_binary = total;
  end
  endfunction

  //---------------------------------------------------------------------------
  // Input Registers
  //---------------------------------------------------------------------------
  //
  // Latch each request until it can be serviced. Only one request per slave
  // can be in progress at a time.
  //
  //---------------------------------------------------------------------------
  ctrlport_request_t req_buffer [NUM_MASTERS-1:0];
  logic [NUM_MASTERS-1:0] req_valid;

  for (genvar i = 0; i < NUM_MASTERS; i++) begin : gen_input_regs
    always_ff @(posedge m_ctrlport.clk) begin
      if (m_ctrlport.rst) begin
        req_valid[i] <= '0;
      end else begin
        if (s_ctrlport[i].req.wr | s_ctrlport[i].req.rd) begin
          // Mark this slave's request valid and save the request information
          req_valid[i]  <= '1;
        end

        // Clear the active request when it gets output
        if (req_load_output && (i == slave_sel)) begin
          req_valid[i] <= '0;
        end
      end

      // Save buffer without reset
      if (s_ctrlport[i].req.wr | s_ctrlport[i].req.rd) begin
        req_buffer[i] <= s_ctrlport[i].req;
      end
    end
  end

  //---------------------------------------------------------------------------
  // Arbitration State Machine
  //---------------------------------------------------------------------------
  //
  // This state machine tracks which slave port is being serviced and which to
  // service next. This is done using a counter that simply checks each port in
  // sequential order and then stops when it finds one that has a valid request.
  //
  //---------------------------------------------------------------------------

  logic req_active = '0;  // Indicates if there's a request being serviced
  logic [NUM_MASTERS-1:0] next_slave_one_hot; // one hot for next active request
                                             // (used for PRIORITY = 1)

  for (genvar i = 0; i < NUM_MASTERS; i++) begin : gen_next_slave_one_hot
    if (i == 0) begin
      assign next_slave_one_hot[i] = req_valid[i];
    end else begin
      assign next_slave_one_hot[i] = req_valid[i] & ~next_slave_one_hot[i-1];
    end
  end

  always_ff @(posedge m_ctrlport.clk) begin
    if (m_ctrlport.rst) begin
      slave_sel       <= '0;
      req_active      <= '0;
      req_load_output <= '0;
    end else begin
      req_load_output <= '0;

      if (req_active) begin
        // Wait until we get the response before we allow another request
        if (m_ctrlport.resp.ack || timeout_occurred) begin
          req_active <= '0;

          // Go to next slave immediately
          if(PRIORITY == 1)
            slave_sel <= one_hot_to_binary(next_slave_one_hot);
          // Round robin - Go to the next slave so we don't service the same
          // slave again
          else if(slave_sel == NUM_MASTERS-1)
            slave_sel <= '0;
          else
            slave_sel <= slave_sel + 1;
        end
      end else begin
        // No active request in progress, so check if there's a new request on
        // the selected slave.
        if (req_valid[slave_sel]) begin
          req_active      <= '1;
          req_load_output <= '1;
        end else begin
          // Go to next slave immediately
          if(PRIORITY == 1)
            slave_sel <= one_hot_to_binary(next_slave_one_hot);
          // Round robin - Nothing from this slave, so move to the next slave.
          else if (slave_sel == NUM_MASTERS-1)
            slave_sel <= '0;
          else
            slave_sel <= slave_sel + 1;
        end
      end
    end
  end


  //---------------------------------------------------------------------------
  // Output Register
  //---------------------------------------------------------------------------
  //
  // Here we load the active request for a single clock cycle and demultiplex
  // the response back to the requesting master.
  //
  //---------------------------------------------------------------------------

  always_ff @(posedge m_ctrlport.clk) begin
    // Load the active request
    if (req_load_output) begin
      m_ctrlport.req <= req_buffer[slave_sel];
    end else begin
      m_ctrlport.req.wr <= '0;
      m_ctrlport.req.rd <= '0;
    end

    if (m_ctrlport.rst) begin
      // only reset the flags of the master interface
      m_ctrlport.req.wr <= '0;
      m_ctrlport.req.rd <= '0;
    end
  end

  // Output any response to the master that made the request
  for (genvar i = 0; i < NUM_MASTERS; i++) begin : gen_output_regs
    always_ff @(posedge m_ctrlport.clk) begin
      // Give the response data to all the slaves (no demux, to save logic)
      s_ctrlport[i].resp <= m_ctrlport.resp;

      // Give the ack only to the master that made the request (use a demux)
      if (m_ctrlport.rst) begin
        s_ctrlport[i].resp.ack <= '0;
      end else if (req_active && i == slave_sel && m_ctrlport.resp.ack) begin
        s_ctrlport[i].resp.ack <= '1;
      end else begin
        s_ctrlport[i].resp.ack <= '0;
      end
    end
  end

  //---------------------------------------------------------------------------
  // optional watchdog
  //---------------------------------------------------------------------------
  if (TIMEOUT == 0) begin: gen_no_timeout
    // never set a timeout but in always_ff block to avoid error with synchronous assignment
    // in gen_timeout block below
    always_ff @(posedge m_ctrlport.clk) begin
      timeout_occurred = '0;
    end

  end else begin: gen_timeout
    // When the timeout occurred it takes 2 more clock cycles for the counter to reach zero
    // The path is: timeout_occurred -> req_active = 0 -> timeout_counter = 0
    // As the timeout counter has a minimum width of 2 bits the counter cannot reach TIMEOUT+1
    // again within these two clock cycles.
    // Therefore no other reset other than req_active is needed on this signal.
    logic [$clog2(TIMEOUT+2):0] timeout_counter = '0;

    // Reset the timeout counter when there is no active request
    always_ff @(posedge m_ctrlport.clk) begin
      if (~req_active) begin
        timeout_counter <= '0;
      end else begin
        timeout_counter <= timeout_counter + 1;
      end

      // Set the timeout flag for one cycle when the counter reaches the timeout value.
      // The delay of the additional register compensates the delay of the logic above to
      // load the active request into the output register.
      timeout_occurred <= timeout_counter == TIMEOUT;

      // synthesis translate_off
      if (timeout_occurred && req_active) begin
        $warning("Ctrlport combiner timeout occurred!");
      end
      // synthesis translate_on
    end
  end

endmodule