1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
//
// Copyright 2019 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: ctrlport_to_settings_bus
//
// Description:
//
// Converts CTRL port interface requests to a user register settings bus
// access. This can be used to connect RFNoC block IP settings registers and
// user read-back registers to a control port.
//
// There are a few key differences between control port and the settings bus
// that need to be accounted for.
//
// * Control port uses byte address whereas the settings bus uses a
// word address.
// * Control port is 32-bit whereas the settings bus supports
// 32-bit writes and 64-bit reads.
// * The settings bus always does both a write and a read for each
// transaction. If the intent is to read a register, then it writes the
// address for the read to SR_RB_ADDR. If the intent is to write a
// register, then the read result is ignored.
//
// This block handles these differences by allocating a 2048-byte address
// space to each settings bus. Each word of the settings bus is treated like
// a 64-bit word on an eight-byte boundary. To write to a settings register
// N, simply write a 32-bit value to address N*8. To read read-back register
// N, simply perform a 32-bit read from address N*8 followed by a 32-bit read
// from address N*8+4 to get the full 64-bits. If only the lower 32-bits are
// needed then it is not necessary to read the upper 32 bits. Note however,
// that software must always read the lower 32-bits before trying to read the
// upper 32-bits and that these reads should be atomic (no intervening reads
// should occur).
//
// Parameters:
//
// NUM_PORTS : The number of settings buses you wish to connect
//
// SR_RB_ADDR : Address to use for the settings register that holds the
// read-back address. Set to 124 to model register access to
// user logic registers. Set to 127 to model access to internal
// NoC shell registers.
//
// USE_TIME : When 0, timestamps are simply passed from ctrlport to
// settings bus and the timestamp input is not used. When 1,
// this block will wait until the indicated time to arrive on
// the timestamp input before issuing the transaction on the
// settings bus. In this case, the time must be provided on the
// timestamp input.
//
module ctrlport_to_settings_bus #(
parameter NUM_PORTS = 1,
parameter SR_RB_ADDR = 124,
parameter USE_TIME = 0
) (
input wire ctrlport_clk,
input wire ctrlport_rst,
//---------------------------------------------------------------------------
// CTRL Port Interface
//---------------------------------------------------------------------------
input wire s_ctrlport_req_wr,
input wire s_ctrlport_req_rd,
input wire [19:0] s_ctrlport_req_addr,
input wire [31:0] s_ctrlport_req_data,
input wire s_ctrlport_req_has_time,
input wire [63:0] s_ctrlport_req_time,
output reg s_ctrlport_resp_ack = 0,
output reg [31:0] s_ctrlport_resp_data,
//---------------------------------------------------------------------------
// Settings Bus Interface
//---------------------------------------------------------------------------
output wire [NUM_PORTS*32-1:0] set_data,
output wire [ NUM_PORTS*8-1:0] set_addr,
output reg [ NUM_PORTS-1:0] set_stb = 0,
output wire [NUM_PORTS*64-1:0] set_time,
output wire [ NUM_PORTS-1:0] set_has_time,
input [NUM_PORTS-1:0] rb_stb,
output [NUM_PORTS*8-1:0] rb_addr,
input [NUM_PORTS*64-1:0] rb_data,
//---------------------------------------------------------------------------
// Timestamp
//---------------------------------------------------------------------------
// Current timestamp, synchronous to ctrlport_clk
input wire [63:0] timestamp
);
localparam PORT_W = (NUM_PORTS > 1) ? $clog2(NUM_PORTS) : 1;
wire [PORT_W-1:0] port_num;
reg [PORT_W-1:0] port_num_reg;
wire msw_access;
reg [31:0] set_data_reg;
reg [ 7:0] set_addr_reg;
reg [63:0] set_time_reg;
reg set_has_time_reg;
reg [ 7:0] rb_addr_reg;
reg [31:0] upper_word;
// Extract the port index from the address (the bits above the lower 11 bits)
assign port_num = (NUM_PORTS > 1) ? s_ctrlport_req_addr[(PORT_W+11)-1:11] : 0;
// Determine if the upper word is being accessed
assign msw_access = s_ctrlport_req_addr[2];
localparam ST_IDLE = 0;
localparam ST_TIME_CHECK = 1;
localparam ST_STROBE_WAIT = 2;
localparam ST_WAIT_RESP = 3;
reg [2:0] state = ST_IDLE;
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
s_ctrlport_resp_ack <= 0;
set_stb <= 0;
state <= ST_IDLE;
s_ctrlport_resp_data <= 32'hX;
set_addr_reg <= 8'hX;
rb_addr_reg <= 8'hX;
port_num_reg <= 8'hX;
upper_word <= 32'hX;
end else begin
// Default assignments
s_ctrlport_resp_ack <= 0;
set_stb <= 0;
case (state)
ST_IDLE : begin
if (s_ctrlport_req_rd && port_num < NUM_PORTS) begin
// Handle register reads (read-back registers)
if (msw_access) begin
// Reading the upper word always returns the cached upper-word value
// from the previous lower-word read.
s_ctrlport_resp_ack <= 1;
s_ctrlport_resp_data <= upper_word;
end else begin
// Handle register reads (read-back registers)
rb_addr_reg <= s_ctrlport_req_addr[10:3];
// Read-back of a user register on settings bus is always
// combined with a write to the SR_RB_ADDR address.
set_addr_reg <= SR_RB_ADDR;
set_data_reg <= 32'bX; // CtrlPort has no data in this case
set_time_reg <= s_ctrlport_req_time;
set_has_time_reg <= s_ctrlport_req_has_time;
// Save which port the read is for so that we only watch for
// acknowledgments from that port.
port_num_reg <= port_num;
if (USE_TIME) begin
state <= ST_TIME_CHECK;
end else begin
set_stb[port_num] <= 1;
state <= ST_STROBE_WAIT;
end
end
end else if (s_ctrlport_req_wr && port_num < NUM_PORTS) begin
// Handle register writes (settings registers)
set_addr_reg <= s_ctrlport_req_addr[10:3];
set_data_reg <= s_ctrlport_req_data;
set_time_reg <= s_ctrlport_req_time;
set_has_time_reg <= s_ctrlport_req_has_time;
// Save which port the write is for so that we only watch for
// acknowledgments from that port.
port_num_reg <= port_num;
if (USE_TIME) begin
state <= ST_TIME_CHECK;
end else begin
set_stb[port_num] <= 1;
state <= ST_STROBE_WAIT;
end
end
end
ST_TIME_CHECK : begin
// If the transaction is timed, wait until the time arrives before
// starting. This state is only reachable if USE_TIME is true.
if (set_has_time_reg) begin
if (timestamp >= set_time_reg) begin
set_stb[port_num_reg] <= 1;
state <= ST_STROBE_WAIT;
end
end else begin
set_stb[port_num_reg] <= 1;
state <= ST_STROBE_WAIT;
end
end
ST_STROBE_WAIT : begin
// Wait a cycle before checking for a response
state <= ST_WAIT_RESP;
end
ST_WAIT_RESP : begin
// Wait for read completion on settings bus, acknowledged by rb_stb.
// The read-back data will be ignored by ctrlport if this is a write.
upper_word <= rb_data[(64*port_num_reg + 32) +: 32];
s_ctrlport_resp_data <= rb_data[(64*port_num_reg + 0) +: 32];
if (rb_stb[port_num_reg] == 1) begin
s_ctrlport_resp_ack <= 1;
state <= ST_IDLE;
end
end
endcase
end
end
genvar i;
generate
for (i = 0; i < NUM_PORTS; i = i+1) begin : gen_settings_bus
// Drive all settings buses with the same values, except the strobe
assign rb_addr [ 8*i +: 8] = rb_addr_reg;
assign set_data [32*i +: 32] = set_data_reg;
assign set_addr [ 8*i +: 8] = set_addr_reg;
assign set_time [64*i +: 64] = set_time_reg;
assign set_has_time [ i] = set_has_time_reg;
end
endgenerate
endmodule
|