1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
//
// Copyright 2019 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: chdr_xport_adapter_generic
// Description: A generic transport adapter module that can be used in
// a variety of transports. It does the following:
// - Exposes a configuration port for mgmt packets to configure the node
// - Implements a return-address map for packets with metadata other than
// the CHDR. Additional metadata can be passed as a tuser to this module
// which will store it in a map indexed by the SrcEPID in a management
// packet. For all returning packets, the metadata will be looked up in
// the map and attached as the outgoing tuser.
// - Implements a loopback path for node-info discovery
// - Converts data stream to/from "RFNoC Network Order" (64-bit-Big-Endian)
//
// Parameters:
// - PROTOVER: RFNoC protocol version {8'd<major>, 8'd<minor>}
// - CHDR_W: Width of the CHDR bus in bits
// - USER_W: Width of the tuser bus in bits
// - TBL_SIZE: Log2 of the depth of the routing table
// - NODE_SUBTYPE: The node subtype to return for a node-info discovery
// - NODE_INST: The node type to return for a node-info discovery
// - ALLOW_DISC: Controls if the external transport network should be
// discoverable by management packets from RFNoC side.
//
// Signals:
// - device_id : The ID of the device that has instantiated this module
// - s_axis_xport_*: The input CHDR stream from the transport (plus tuser metadata)
// - m_axis_xport_*: The output CHDR stream to transport (plus tuser metadata)
// - s_axis_rfnoc_*: The input CHDR stream from the rfnoc infrastructure
// - m_axis_rfnoc_*: The output CHDR stream to the rfnoc infrastructure
// - ctrlport_* : The ctrlport interface for the configuration port
//
module chdr_xport_adapter_generic #(
parameter [15:0] PROTOVER = {8'd1, 8'd0},
parameter CHDR_W = 256,
parameter USER_W = 16,
parameter TBL_SIZE = 6,
parameter [7:0] NODE_SUBTYPE = 8'd0,
parameter NODE_INST = 0,
parameter ALLOW_DISC = 1
)(
// Clock and reset
input wire clk,
input wire rst,
// Device info
input wire [15:0] device_id,
// Transport stream in (AXI-Stream)
input wire [CHDR_W-1:0] s_axis_xport_tdata,
input wire [USER_W-1:0] s_axis_xport_tuser,
input wire s_axis_xport_tlast,
input wire s_axis_xport_tvalid,
output wire s_axis_xport_tready,
// Transport stream out (AXI-Stream)
output wire [CHDR_W-1:0] m_axis_xport_tdata,
output wire [USER_W-1:0] m_axis_xport_tuser,
output wire m_axis_xport_tlast,
output wire m_axis_xport_tvalid,
input wire m_axis_xport_tready,
// RFNoC stream in (AXI-Stream)
input wire [CHDR_W-1:0] s_axis_rfnoc_tdata,
input wire s_axis_rfnoc_tlast,
input wire s_axis_rfnoc_tvalid,
output wire s_axis_rfnoc_tready,
// RFNoC stream out (AXI-Stream)
output wire [CHDR_W-1:0] m_axis_rfnoc_tdata,
output wire m_axis_rfnoc_tlast,
output wire m_axis_rfnoc_tvalid,
input wire m_axis_rfnoc_tready,
// Control port endpoint
output wire ctrlport_req_wr,
output wire ctrlport_req_rd,
output wire [15:0] ctrlport_req_addr,
output wire [31:0] ctrlport_req_data,
input wire ctrlport_resp_ack,
input wire [31:0] ctrlport_resp_data
);
// ---------------------------------------------------
// RFNoC Includes
// ---------------------------------------------------
`include "../core/rfnoc_chdr_utils.vh"
`include "../core/rfnoc_chdr_internal_utils.vh"
// ---------------------------------------------------
// Reverse groups of 64-bit words to translate
// stream to "RFNoC Network Order" i.e. Big-Endian
// in groups of 8 bytes
// ---------------------------------------------------
wire [CHDR_W-1:0] i_xport_tdata;
wire [USER_W-1:0] i_xport_tuser;
wire i_xport_tlast, i_xport_tvalid, i_xport_tready;
wire [CHDR_W-1:0] o_xport_tdata;
wire [USER_W-1:0] o_xport_tuser;
wire o_xport_tlast, o_xport_tvalid, o_xport_tready;
localparam [$clog2(CHDR_W)-1:0] SWAP_LANES = ((CHDR_W / 64) - 1) << 6;
axis_data_swap #(
.DATA_W(CHDR_W), .USER_W(USER_W), .STAGES_EN(SWAP_LANES), .DYNAMIC(0)
) xport_in_swap_i (
.clk(clk), .rst(rst),
.s_axis_tdata(s_axis_xport_tdata), .s_axis_tswap({$clog2(CHDR_W)-1{1'b0}}),
.s_axis_tuser(s_axis_xport_tuser), .s_axis_tlast(s_axis_xport_tlast),
.s_axis_tvalid(s_axis_xport_tvalid), .s_axis_tready(s_axis_xport_tready),
.m_axis_tdata (i_xport_tdata), .m_axis_tuser(i_xport_tuser),
.m_axis_tlast (i_xport_tlast),
.m_axis_tvalid(i_xport_tvalid), .m_axis_tready(i_xport_tready)
);
axis_data_swap #(
.DATA_W(CHDR_W), .USER_W(USER_W), .STAGES_EN(SWAP_LANES), .DYNAMIC(0)
) xport_out_swap_i (
.clk(clk), .rst(rst),
.s_axis_tdata(o_xport_tdata), .s_axis_tswap({$clog2(CHDR_W)-1{1'b0}}),
.s_axis_tuser(o_xport_tuser), .s_axis_tlast(o_xport_tlast),
.s_axis_tvalid(o_xport_tvalid), .s_axis_tready(o_xport_tready),
.m_axis_tdata (m_axis_xport_tdata), .m_axis_tuser (m_axis_xport_tuser),
.m_axis_tlast (m_axis_xport_tlast),
.m_axis_tvalid(m_axis_xport_tvalid), .m_axis_tready(m_axis_xport_tready)
);
wire [CHDR_W-1:0] x2d_tdata; // Xport => Demux
reg [USER_W-1:0] x2d_tuser;
wire [1:0] x2d_tid;
wire x2d_tlast, x2d_tvalid, x2d_tready;
wire [CHDR_W-1:0] x2x_tdata; // Xport => Xport (loopback)
wire [USER_W-1:0] x2x_tuser;
wire x2x_tlast, x2x_tvalid, x2x_tready;
wire [CHDR_W-1:0] m2x_tdata; // Mux => Xport
wire m2x_tdest; // 1: Return to src, 0: CHDR input
wire [USER_W-1:0] m2x_tuser;
wire m2x_tlast, m2x_tvalid, m2x_tready;
// ---------------------------------------------------
// Transport => DEMUX
// ---------------------------------------------------
wire op_stb;
wire [15:0] op_src_epid;
wire [USER_W-1:0] op_data;
wire lookup_stb, lookup_done_stb, lookup_result_match;
wire [15:0] lookup_epid;
wire [USER_W-1:0] lookup_result_value;
wire [47:0] node_info;
assign node_info = chdr_mgmt_build_node_info({ 10'h0, NODE_SUBTYPE},
NODE_INST, NODE_TYPE_TRANSPORT, device_id);
chdr_mgmt_pkt_handler #(
.PROTOVER(PROTOVER), .CHDR_W(CHDR_W), .USER_W(USER_W), .MGMT_ONLY(0)
) mgmt_ep_i (
.clk(clk), .rst(rst),
.node_info(node_info),
.s_axis_chdr_tdata(i_xport_tdata), .s_axis_chdr_tlast(i_xport_tlast),
.s_axis_chdr_tvalid(i_xport_tvalid), .s_axis_chdr_tready(i_xport_tready),
.s_axis_chdr_tuser(i_xport_tuser),
.m_axis_chdr_tdata(x2d_tdata), .m_axis_chdr_tlast(x2d_tlast),
.m_axis_chdr_tdest(/* unused */), .m_axis_chdr_tid(x2d_tid),
.m_axis_chdr_tvalid(x2d_tvalid), .m_axis_chdr_tready(x2d_tready),
.ctrlport_req_wr(ctrlport_req_wr), .ctrlport_req_rd(ctrlport_req_rd),
.ctrlport_req_addr(ctrlport_req_addr), .ctrlport_req_data(ctrlport_req_data),
.ctrlport_resp_ack(ctrlport_resp_ack), .ctrlport_resp_data(ctrlport_resp_data),
.op_stb(op_stb), .op_dst_epid(/* unused */), .op_src_epid(op_src_epid), .op_data(op_data)
);
kv_map #(
.KEY_WIDTH(16), .VAL_WIDTH(USER_W), .SIZE(TBL_SIZE)
) kv_map_i (
.clk(clk), .reset(rst),
.insert_stb(op_stb), .insert_key(op_src_epid), .insert_val(op_data),
.insert_busy(/* Time between op_stb > Insertion time */),
.find_key_stb(lookup_stb), .find_key(lookup_epid),
.find_res_stb(lookup_done_stb),
.find_res_match(lookup_result_match), .find_res_val(lookup_result_value),
.count(/* unused */)
);
reg i_xport_hdr = 1'b1;
always @(posedge clk) begin
if (rst)
i_xport_hdr <= 1'b1;
else if (i_xport_tvalid && i_xport_tready)
i_xport_hdr <= i_xport_tlast;
end
// chdr_mgmt_pkt_handler does not buffer packets and has at least one cycle of delay
// TODO: The tuser caching logic could be more robust
always @(posedge clk) begin
if (i_xport_tvalid && i_xport_tready && i_xport_hdr)
x2d_tuser <= i_xport_tuser;
end
// ---------------------------------------------------
// Optional management filter
// ---------------------------------------------------
wire [CHDR_W-1:0] f2m_tdata;
wire f2m_tlast;
wire f2m_tvalid;
wire f2m_tready;
if (ALLOW_DISC) begin : gen_no_mgmt_filter
// Allow all packets to pass through
assign f2m_tdata = s_axis_rfnoc_tdata;
assign f2m_tlast = s_axis_rfnoc_tlast;
assign f2m_tvalid = s_axis_rfnoc_tvalid;
assign s_axis_rfnoc_tready = f2m_tready;
end else begin : gen_mgmt_filter
// Disallow forwarding of management discovery packets from RFNoC to the
// transport interface for transports that don't support them.
//vhook_nowarn unused_*
wire [CHDR_W-1:0] unused_tdata;
wire unused_tlast, unused_tvalid, unused_tready;
wire [CHDR_W-1:0] s_header;
wire dispose_pkt;
// We identify discovery packets by the fact that they are management
// packets and that they use the null EPID as the destination.
assign dispose_pkt = (chdr_get_pkt_type(s_header[63:0]) == CHDR_PKT_TYPE_MGMT) &&
(chdr_get_dst_epid(s_header[63:0]) == NULL_EPID);
axi_demux #(
.WIDTH (CHDR_W),
.SIZE (2),
.PRE_FIFO_SIZE (0),
.POST_FIFO_SIZE (1)
) axi_demux_mgmt_filter_i (
.clk (clk),
.reset (rst),
.clear (1'b0),
.header (s_header),
.dest (dispose_pkt),
.i_tdata (s_axis_rfnoc_tdata),
.i_tlast (s_axis_rfnoc_tlast),
.i_tvalid (s_axis_rfnoc_tvalid),
.i_tready (s_axis_rfnoc_tready),
.o_tdata ({unused_tdata, f2m_tdata}),
.o_tlast ({unused_tlast, f2m_tlast}),
.o_tvalid ({unused_tvalid, f2m_tvalid}),
.o_tready ({1'b1, f2m_tready})
);
end
// ---------------------------------------------------
// MUX and DEMUX for return path
// ---------------------------------------------------
wire [USER_W-1:0] unused_tuser;
axis_switch #(
.DATA_W(CHDR_W+USER_W), .DEST_W(1), .IN_PORTS(1), .OUT_PORTS(2), .PIPELINE(0)
) rtn_demux_i (
.clk(clk), .reset(rst),
.s_axis_tdata({x2d_tuser, x2d_tdata}), .s_axis_alloc(1'b0),
.s_axis_tdest(x2d_tid == CHDR_MGMT_RETURN_TO_SRC ? 2'b01 : 2'b00),
.s_axis_tlast(x2d_tlast), .s_axis_tvalid(x2d_tvalid), .s_axis_tready(x2d_tready),
.m_axis_tdata({x2x_tuser, x2x_tdata, unused_tuser, m_axis_rfnoc_tdata}),
.m_axis_tdest(/* unused */),
.m_axis_tlast({x2x_tlast, m_axis_rfnoc_tlast}),
.m_axis_tvalid({x2x_tvalid, m_axis_rfnoc_tvalid}),
.m_axis_tready({x2x_tready, m_axis_rfnoc_tready})
);
axi_mux #(
.WIDTH(CHDR_W+USER_W+1), .SIZE(2), .PRE_FIFO_SIZE(0), .POST_FIFO_SIZE(0)
) rtn_mux_i (
.clk(clk), .reset(rst), .clear(1'b0),
.i_tdata({1'b1, x2x_tuser, x2x_tdata, 1'b0, {USER_W{1'b0}}, f2m_tdata}),
.i_tlast({x2x_tlast, f2m_tlast}),
.i_tvalid({x2x_tvalid, f2m_tvalid}), .i_tready({x2x_tready, f2m_tready}),
.o_tdata({m2x_tdest, m2x_tuser, m2x_tdata}), .o_tlast(m2x_tlast),
.o_tvalid(m2x_tvalid), .o_tready(m2x_tready)
);
// ---------------------------------------------------
// MUX => Transport
// ---------------------------------------------------
// In this section we must determine what value to put in tuser. If tdest is
// 1 then tuser is passed through unchanged. If tdest is 0 then the tuser
// value is looked up in the KV map using the EPID in the packet header.
//
// To do this we split the data (tdata, tlast) and the routing information
// (tdest, tuser, and the EPID) into two FIFOs. This allows us to perform a
// routing lookup and decide what to do while we continue to buffer data.
//
// With small packets, multiple routing lookups might be enqueued in the
// lookup_fifo, but we can only do one lookup at a time. Output logic
// controls release of packets from the data FIFO to ensure we only output
// one packet per lookup after the lookup is complete.
wire data_fifo_i_tready;
wire [CHDR_W-1:0] data_fifo_o_tdata;
wire data_fifo_o_tlast;
wire data_fifo_o_tvalid;
wire data_fifo_o_tready;
wire lookup_fifo_i_tready;
wire lookup_fifo_tdest;
wire [USER_W-1:0] lookup_fifo_tuser;
wire [ 15:0] lookup_fifo_tepid;
wire lookup_fifo_o_tvalid;
wire lookup_fifo_o_tready;
wire non_lookup_done_stb;
reg data_fifo_o_hdr = 1'b1;
reg pass_packet;
reg [USER_W-1:0] result_tuser;
reg result_tuser_valid;
reg [USER_W-1:0] reg_o_tuser;
// Track when the next m2x word contains is the start of a new packet
reg m2x_hdr = 1'b1;
always @(posedge clk) begin
if (rst)
m2x_hdr <= 1'b1;
else if (m2x_tvalid && m2x_tready)
m2x_hdr <= m2x_tlast;
end
// We can only accept data from the mux when when both the data_fifo and
// lookup_fifo are ready.
assign m2x_tready = data_fifo_i_tready && lookup_fifo_i_tready;
// The data_fifo only takes the packet data (tdata, tlast). We use an
// axi_fifo_short module for the data_fifo because it can tolerate tvalid
// going low before a transfer completes.
axi_fifo_short #(
.WIDTH (1+CHDR_W)
) data_fifo (
.clk (clk),
.reset (rst),
.clear (1'b0),
.i_tdata ({m2x_tlast, m2x_tdata}),
.i_tvalid (m2x_tvalid && m2x_tready),
.i_tready (data_fifo_i_tready),
.o_tdata ({data_fifo_o_tlast, data_fifo_o_tdata}),
.o_tvalid (data_fifo_o_tvalid),
.o_tready (data_fifo_o_tready),
.space (),
.occupied ()
);
// The lookup FIFO only takes the header routing info (tdest, tuser, epid).
// We use axi_fifo_short since it can tolerate tvalid going low before a
// transfer completes.
axi_fifo_short #(
.WIDTH (1+USER_W+16)
) lookup_fifo (
.clk (clk),
.reset (rst),
.clear (1'b0),
.i_tdata ({m2x_tdest, m2x_tuser, chdr_get_dst_epid(m2x_tdata[63:0])}),
.i_tvalid (m2x_tvalid && m2x_tready && m2x_hdr),
.i_tready (lookup_fifo_i_tready),
.o_tdata ({lookup_fifo_tdest, lookup_fifo_tuser, lookup_fifo_tepid}),
.o_tvalid (lookup_fifo_o_tvalid),
.o_tready (lookup_fifo_o_tready),
.space (),
.occupied ()
);
// Keep track of when we are busy doing a lookup in the KV map.
reg lookup_busy = 1'b0;
always @(posedge clk) begin
if (rst)
lookup_busy <= 1'b0;
else begin
if (lookup_stb)
lookup_busy <= 1'b1;
else if (lookup_done_stb)
lookup_busy <= 1'b0;
end
end
// Determine if we can use the output of the lookup_fifo to do a KV map
// lookup. We only perform a KV map lookup if tdest is 0 and we can only do
// so if the KV map is free and the holding register for the tuser value is
// available.
assign lookup_epid = lookup_fifo_tepid;
assign lookup_stb = lookup_fifo_o_tvalid && !lookup_busy &&
!lookup_fifo_tdest && !result_tuser_valid;
// Determine if we can use the output of the lookup FIFO directly (no lookup
// is needed). We can only use it if we're not already doing a KV lookup and
// if the holding register for the tuser value is available.
assign non_lookup_done_stb = lookup_fifo_o_tvalid && !lookup_busy &&
lookup_fifo_tdest && !result_tuser_valid;
// Pop the routing info off of the lookup_fifo if we've started its lookup
assign lookup_fifo_o_tready = lookup_stb || non_lookup_done_stb;
// Track when the next data_fifo_o word is the start of a new packet
always @(posedge clk) begin
if (rst)
data_fifo_o_hdr <= 1'b1;
else if (data_fifo_o_tvalid && data_fifo_o_tready && pass_packet)
data_fifo_o_hdr <= data_fifo_o_tlast;
end
// Store the lookup result in a holding register. This can come from the KV
// map or the incoming tuser.
always @(posedge clk) begin
if (rst) begin
result_tuser <= {USER_W{1'bX}}; // Don't care
result_tuser_valid <= 1'b0;
end else begin
// The tuser holding register becomes available as soon as we start
// transmitting the corresponding packet.
if (data_fifo_o_tvalid && data_fifo_o_tready && data_fifo_o_hdr && pass_packet) begin
result_tuser_valid <= 1'b0;
end
// Load the result of the lookup
if (lookup_done_stb) begin
result_tuser <= lookup_result_match ? lookup_result_value : {USER_W{1'b0}};
result_tuser_valid <= 1'b1;
end else if (non_lookup_done_stb) begin
result_tuser <= lookup_fifo_tuser;
result_tuser_valid <= 1'b1;
end
end
end
// Control when the packet from the data_fifo can be passed through. Put the
// tuser value into a register for the duration of the packet.
always @(posedge clk) begin
if (rst) begin
pass_packet <= 1'b0;
reg_o_tuser <= {USER_W{1'bX}}; // Don't care
end else begin
// We're done passing through a packet when tlast goes out
if (data_fifo_o_tvalid && data_fifo_o_tready && data_fifo_o_tlast && pass_packet) begin
pass_packet <= 1'b0;
end
// We can pass the next packet through when we're at the start of a
// packet and we have the tuser value waiting in the holding register.
if (data_fifo_o_hdr && result_tuser_valid && !pass_packet) begin
reg_o_tuser <= result_tuser;
pass_packet <= 1'b1;
end
end
end
assign o_xport_tdata = data_fifo_o_tdata;
assign o_xport_tuser = reg_o_tuser;
assign o_xport_tlast = data_fifo_o_tlast;
assign o_xport_tvalid = data_fifo_o_tvalid & pass_packet;
assign data_fifo_o_tready = o_xport_tready & pass_packet;
endmodule // chdr_xport_adapter_generic
|