1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: eth_internal
//
// Description:
//
// This internal Ethernet port is responsible for routing CHDR data between
// the ARM CPU and RFNoC. Treating the RFNoC interface to the CPU like an
// internal Ethernet device allows the ARM processor to take advantage of
// highly optimized DMA engines and software designed for Ethernet. This
// block also includes an ARP responder for IP address discovery.
//
// Prefixes are used to distinguish the various AXI-Stream buses:
//
// - e2h : Ethernet to Host (Ethernet transport adapter to ARM)
// - h2e : Host to Ethernet (ARM to Ethernet transport adapter)
// - e2v : Ethernet to CHDR (Ethernet transport to RFNoC)
// - v2e : CHDR to Ethernet (RFNoC to Ethernet transport adapter)
// - e2c : Ethernet to CPU (Ethernet transport adapter to ARP responder)
// - c2e : CPU to Ethernet (ARP responder to Ethernet transport adapter)
//
// Parameters:
//
// DWIDTH : Data width for AXI-Lite interface (32 or 64)
// AWIDTH : Address width for AXI-Lite interface
// PORTNUM : Ethernet port number
// BYTE_MTU : Sets the MTU to 2^BYTE_MTU bytes
// RFNOC_PROTOVER : 16-bit RFNoC protocol version (major[7:0], minor[7:0])
// NODE_INST : The node instance to identify this transport adapter
//
`default_nettype none
module eth_internal #(
parameter DWIDTH = 32,
parameter AWIDTH = 14,
parameter [7:0] PORTNUM = 0,
parameter BYTE_MTU = $clog2(8192),
parameter [15:0] RFNOC_PROTOVER = {8'd1, 8'd0},
parameter NODE_INST = 0
)(
// Resets
input wire bus_rst,
// Clocks
input wire bus_clk,
//Axi-lite
input wire s_axi_aclk,
input wire s_axi_aresetn,
input wire [AWIDTH-1:0] s_axi_awaddr,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [DWIDTH-1:0] s_axi_wdata,
input wire [DWIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [1:0] s_axi_bresp,
output wire s_axi_bvalid,
input wire s_axi_bready,
input wire [AWIDTH-1:0] s_axi_araddr,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [DWIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rvalid,
input wire s_axi_rready,
// Host-Ethernet DMA interface
output wire [63:0] e2h_tdata,
output wire [7:0] e2h_tkeep,
output wire e2h_tlast,
output wire e2h_tvalid,
input wire e2h_tready,
input wire [63:0] h2e_tdata,
input wire [7:0] h2e_tkeep,
input wire h2e_tlast,
input wire h2e_tvalid,
output wire h2e_tready,
// RFNoC interface
output wire [63:0] e2v_tdata,
output wire e2v_tlast,
output wire e2v_tvalid,
input wire e2v_tready,
input wire [63:0] v2e_tdata,
input wire v2e_tlast,
input wire v2e_tvalid,
output wire v2e_tready,
// MISC
output wire [31:0] port_info,
input wire [15:0] device_id,
output wire link_up,
output reg activity
);
localparam REG_BASE_ETH_IO = 14'h0;
localparam REG_BASE_ETH_SWITCH = 14'h1000;
// AXI4-Lite to RegPort (PS to PL Register Access)
wire reg_wr_req;
wire [AWIDTH-1:0] reg_wr_addr;
wire [DWIDTH-1:0] reg_wr_data;
wire reg_rd_req;
wire [AWIDTH-1:0] reg_rd_addr;
wire reg_rd_resp, reg_rd_resp_eth_if;
reg reg_rd_resp_io = 1'b0;
wire [DWIDTH-1:0] reg_rd_data, reg_rd_data_eth_if;
reg [DWIDTH-1:0] reg_rd_data_io = 'd0;
axil_regport_master #(
.DWIDTH (DWIDTH), // Width of the AXI4-Lite data bus (must be 32 or 64)
.AWIDTH (AWIDTH), // Width of the address bus
.WRBASE (0), // Write address base
.RDBASE (0), // Read address base
.TIMEOUT (10) // log2(timeout). Read will timeout after (2^TIMEOUT - 1) cycles
) eth_dma_reg_mst_i (
// Clock and reset
.s_axi_aclk (s_axi_aclk),
.s_axi_aresetn (s_axi_aresetn),
// AXI4-Lite: Write address port (domain: s_axi_aclk)
.s_axi_awaddr (s_axi_awaddr),
.s_axi_awvalid (s_axi_awvalid),
.s_axi_awready (s_axi_awready),
// AXI4-Lite: Write data port (domain: s_axi_aclk)
.s_axi_wdata (s_axi_wdata),
.s_axi_wstrb (s_axi_wstrb),
.s_axi_wvalid (s_axi_wvalid),
.s_axi_wready (s_axi_wready),
// AXI4-Lite: Write response port (domain: s_axi_aclk)
.s_axi_bresp (s_axi_bresp),
.s_axi_bvalid (s_axi_bvalid),
.s_axi_bready (s_axi_bready),
// AXI4-Lite: Read address port (domain: s_axi_aclk)
.s_axi_araddr (s_axi_araddr),
.s_axi_arvalid (s_axi_arvalid),
.s_axi_arready (s_axi_arready),
// AXI4-Lite: Read data port (domain: s_axi_aclk)
.s_axi_rdata (s_axi_rdata),
.s_axi_rresp (s_axi_rresp),
.s_axi_rvalid (s_axi_rvalid),
.s_axi_rready (s_axi_rready),
// Register port: Write port (domain: reg_clk)
.reg_clk (bus_clk),
.reg_wr_req (reg_wr_req),
.reg_wr_addr (reg_wr_addr),
.reg_wr_data (reg_wr_data),
// Register port: Read port (domain: reg_clk)
.reg_rd_req (reg_rd_req),
.reg_rd_addr (reg_rd_addr),
.reg_rd_resp (reg_rd_resp),
.reg_rd_data (reg_rd_data)
);
// Regport Mux for response
regport_resp_mux #(
.WIDTH (DWIDTH),
.NUM_SLAVES (2)
) reg_resp_mux_i (
.clk(bus_clk), .reset(bus_rst),
.sla_rd_resp({reg_rd_resp_eth_if, reg_rd_resp_io}),
.sla_rd_data({reg_rd_data_eth_if, reg_rd_data_io}),
.mst_rd_resp(reg_rd_resp), .mst_rd_data(reg_rd_data)
);
// ARP responder
wire [63:0] e2c_tdata;
wire [7:0] e2c_tkeep;
wire e2c_tlast;
wire e2c_tvalid;
wire e2c_tready;
wire [63:0] c2e_tdata;
wire [7:0] c2e_tkeep;
wire c2e_tlast;
wire c2e_tvalid;
wire c2e_tready;
wire [3:0] e2c_tuser;
wire [3:0] c2e_tuser;
// ARM Host-to-Ethernet
wire [3:0] e2h_tuser;
wire [3:0] h2e_tuser;
// Host Ethernet-to-CHDR
wire [63:0] h2e_chdr_tdata;
wire [3:0] h2e_chdr_tuser;
wire h2e_chdr_tlast;
wire h2e_chdr_tvalid;
wire h2e_chdr_tready;
wire [63:0] e2h_chdr_tdata;
wire [3:0] e2h_chdr_tuser;
wire e2h_chdr_tlast;
wire e2h_chdr_tvalid;
wire e2h_chdr_tready;
// In AXI Stream, tkeep is the byte qualifier that indicates
// whether the content of the associated byte
// of TDATA is processed as part of the data stream.
// tuser as used in eth_interface is the number of valid bytes
// Converting tuser to tkeep for ingress packets
assign e2c_tkeep = ~e2c_tlast ? 8'b1111_1111
: (e2c_tuser == 4'd0) ? 8'b1111_1111
: (e2c_tuser == 4'd1) ? 8'b0000_0001
: (e2c_tuser == 4'd2) ? 8'b0000_0011
: (e2c_tuser == 4'd3) ? 8'b0000_0111
: (e2c_tuser == 4'd4) ? 8'b0000_1111
: (e2c_tuser == 4'd5) ? 8'b0001_1111
: (e2c_tuser == 4'd6) ? 8'b0011_1111
: 8'b0111_1111;
// Converting tkeep to tuser for egress packets
assign c2e_tuser = ~c2e_tlast ? 4'd0
: (c2e_tkeep == 8'b1111_1111) ? 4'd0
: (c2e_tkeep == 8'b0111_1111) ? 4'd7
: (c2e_tkeep == 8'b0011_1111) ? 4'd6
: (c2e_tkeep == 8'b0001_1111) ? 4'd5
: (c2e_tkeep == 8'b0000_1111) ? 4'd4
: (c2e_tkeep == 8'b0000_0111) ? 4'd3
: (c2e_tkeep == 8'b0000_0011) ? 4'd2
: (c2e_tkeep == 8'b0000_0001) ? 4'd1
: 4'd0;
// Converting tuser to tkeep for ingress packets
assign e2h_tkeep = ~e2h_tlast ? 8'b1111_1111
: (e2h_tuser == 4'd0) ? 8'b1111_1111
: (e2h_tuser == 4'd1) ? 8'b0000_0001
: (e2h_tuser == 4'd2) ? 8'b0000_0011
: (e2h_tuser == 4'd3) ? 8'b0000_0111
: (e2h_tuser == 4'd4) ? 8'b0000_1111
: (e2h_tuser == 4'd5) ? 8'b0001_1111
: (e2h_tuser == 4'd6) ? 8'b0011_1111
: 8'b0111_1111;
// Converting tkeep to tuser for egress packets
assign h2e_tuser = ~h2e_tlast ? 4'd0
: (h2e_tkeep == 8'b1111_1111) ? 4'd0
: (h2e_tkeep == 8'b0111_1111) ? 4'd7
: (h2e_tkeep == 8'b0011_1111) ? 4'd6
: (h2e_tkeep == 8'b0001_1111) ? 4'd5
: (h2e_tkeep == 8'b0000_1111) ? 4'd4
: (h2e_tkeep == 8'b0000_0111) ? 4'd3
: (h2e_tkeep == 8'b0000_0011) ? 4'd2
: (h2e_tkeep == 8'b0000_0001) ? 4'd1
: 4'd0;
// FPGA-side addresses for the ARP responder
wire [47:0] my_mac;
wire [31:0] my_ip;
wire [15:0] my_udp_port;
arm_deframer arm_deframer_i (
.clk(bus_clk),
.reset(bus_rst),
.clear(1'b0),
.s_axis_tdata(h2e_tdata),
.s_axis_tuser(h2e_tuser),
.s_axis_tlast(h2e_tlast),
.s_axis_tvalid(h2e_tvalid),
.s_axis_tready(h2e_tready),
.m_axis_tdata(h2e_chdr_tdata),
.m_axis_tuser(h2e_chdr_tuser),
.m_axis_tlast(h2e_chdr_tlast),
.m_axis_tvalid(h2e_chdr_tvalid),
.m_axis_tready(h2e_chdr_tready)
);
axi64_to_xge64 arm_framer (
.clk(bus_clk),
.reset(bus_rst),
.clear(1'b0),
.s_axis_tdata(e2h_chdr_tdata),
.s_axis_tuser(e2h_chdr_tuser),
.s_axis_tlast(e2h_chdr_tlast),
.s_axis_tvalid(e2h_chdr_tvalid),
.s_axis_tready(e2h_chdr_tready),
.m_axis_tdata(e2h_tdata),
.m_axis_tuser(e2h_tuser),
.m_axis_tlast(e2h_tlast),
.m_axis_tvalid(e2h_tvalid),
.m_axis_tready(e2h_tready)
);
eth_interface #(
.PROTOVER(RFNOC_PROTOVER),
.MTU(BYTE_MTU-3), // Log base 2 of the MTU in 64-bit words
.NODE_INST(NODE_INST),
.REG_AWIDTH (AWIDTH),
.BASE(REG_BASE_ETH_SWITCH)
) eth_interface (
.clk (bus_clk),
.reset (bus_rst),
.device_id (device_id),
.reg_wr_req (reg_wr_req),
.reg_wr_addr (reg_wr_addr),
.reg_wr_data (reg_wr_data),
.reg_rd_req (reg_rd_req),
.reg_rd_addr (reg_rd_addr),
.reg_rd_resp (reg_rd_resp_eth_if),
.reg_rd_data (reg_rd_data_eth_if),
.my_mac (my_mac),
.my_ip (my_ip),
.my_udp_port (my_udp_port),
.eth_tx_tdata (e2h_chdr_tdata),
.eth_tx_tuser (e2h_chdr_tuser),
.eth_tx_tlast (e2h_chdr_tlast),
.eth_tx_tvalid (e2h_chdr_tvalid),
.eth_tx_tready (e2h_chdr_tready),
.eth_rx_tdata (h2e_chdr_tdata),
.eth_rx_tuser (h2e_chdr_tuser),
.eth_rx_tlast (h2e_chdr_tlast),
.eth_rx_tvalid (h2e_chdr_tvalid),
.eth_rx_tready (h2e_chdr_tready),
.e2v_tdata (e2v_tdata),
.e2v_tlast (e2v_tlast),
.e2v_tvalid (e2v_tvalid),
.e2v_tready (e2v_tready),
.v2e_tdata (v2e_tdata),
.v2e_tlast (v2e_tlast),
.v2e_tvalid (v2e_tvalid),
.v2e_tready (v2e_tready),
.e2c_tdata (e2c_tdata),
.e2c_tuser (e2c_tuser),
.e2c_tlast (e2c_tlast),
.e2c_tvalid (e2c_tvalid),
.e2c_tready (e2c_tready),
.c2e_tdata (c2e_tdata),
.c2e_tuser (c2e_tuser),
.c2e_tlast (c2e_tlast),
.c2e_tvalid (c2e_tvalid),
.c2e_tready (c2e_tready)
);
arp_responder arp_responder_i (
.aclk (bus_clk),
.aresetn (~bus_rst),
.mac_addr (my_mac),
.ip_addr (my_ip),
.s_axis_tdata (e2c_tdata),
.s_axis_tvalid (e2c_tvalid),
.s_axis_tready (e2c_tready),
.s_axis_tkeep (e2c_tkeep),
.s_axis_tlast (e2c_tlast),
.s_axis_tuser (1'b0),
.m_axis_tdata (c2e_tdata),
.m_axis_tvalid (c2e_tvalid),
.m_axis_tready (c2e_tready),
.m_axis_tkeep (c2e_tkeep),
.m_axis_tlast (c2e_tlast),
.m_axis_tuser ()
);
//-----------------------------------------------------------------
// "I/O" Registers
//-----------------------------------------------------------------
localparam [7:0] COMPAT_NUM = 8'd2;
localparam [7:0] MGT_PROTOCOL = 8'd4; // 10 GbE Internal (8'd2 is 10 GbE External)
// Common registers
localparam REG_PORT_INFO = REG_BASE_ETH_IO + 'h0;
localparam REG_MAC_CTRL_STATUS = REG_BASE_ETH_IO + 'h4;
localparam REG_PHY_CTRL_STATUS = REG_BASE_ETH_IO + 'h8;
localparam REG_MAC_LED_CTL = REG_BASE_ETH_IO + 'hC;
// Protocol specific constants
localparam [1:0] MAC_LED_CTL_RST_VAL = 2'h0;
localparam [31:0] MAC_CTRL_RST_VAL = {31'h0, 1'b1}; // tx_enable on reset
localparam [31:0] PHY_CTRL_RST_VAL = 32'h0;
// Writable registers
reg [31:0] mac_ctrl_reg = MAC_CTRL_RST_VAL;
reg [31:0] phy_ctrl_reg = PHY_CTRL_RST_VAL;
reg [1:0] mac_led_ctl = MAC_LED_CTL_RST_VAL;
always @(posedge bus_clk) begin
if (bus_rst) begin
mac_ctrl_reg <= MAC_CTRL_RST_VAL;
phy_ctrl_reg <= PHY_CTRL_RST_VAL;
mac_led_ctl <= MAC_LED_CTL_RST_VAL;
end else if (reg_wr_req) begin
case(reg_wr_addr)
REG_MAC_CTRL_STATUS:
mac_ctrl_reg <= reg_wr_data;
REG_PHY_CTRL_STATUS:
phy_ctrl_reg <= reg_wr_data;
REG_MAC_LED_CTL:
mac_led_ctl <= reg_wr_data[1:0];
endcase
end
end
// Readable registers
wire [31:0] mac_status, phy_status;
assign port_info = {COMPAT_NUM, 6'h0, activity, link_up, MGT_PROTOCOL, PORTNUM};
always @(posedge bus_clk) begin
// No reset handling needed for readback
if (reg_rd_req) begin
reg_rd_resp_io <= 1'b1;
case(reg_rd_addr)
REG_PORT_INFO:
reg_rd_data_io <= port_info;
REG_MAC_CTRL_STATUS:
reg_rd_data_io <= mac_status;
REG_PHY_CTRL_STATUS:
reg_rd_data_io <= phy_status;
REG_MAC_LED_CTL:
reg_rd_data_io <= {30'd0, mac_led_ctl};
default:
reg_rd_resp_io <= 1'b0;
endcase
end if (reg_rd_resp_io) begin
reg_rd_resp_io <= 1'b0;
end
end
assign mac_status = 'd0;
assign phy_status[31:8] = 24'h0;
assign link_up = 1'b1;
wire identify_enable = mac_led_ctl[0];
wire identify_value = mac_led_ctl[1];
//-----------------------------------------------------------------
// Activity detector
//-----------------------------------------------------------------
wire activity_int;
pulse_stretch act_pulse_str_i (
.clk(bus_clk),
.rst(bus_rst | ~link_up),
.pulse((h2e_tvalid & h2e_tready) | (e2h_tvalid & e2h_tready)),
.pulse_stretched(activity_int)
);
always @ (posedge bus_clk) activity <= identify_enable ? identify_value : activity_int;
endmodule
`default_nettype wire
|