1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
//
// Copyright 2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Adds 6 bytes at the beginning of every packet
// This gives us good32/64bit alignment of IP/UDP headers.
//
// The 6 bytes added include an octet passed as a parameter allowing a label to
// be added as metatdata in the header padding. This is typically the ingress
// port to be tagged in the packet as metadata.
//
// bit[65] EOF
// bit[64] SOF
// bit[68:66] occ
//
// This design will break if downstream can not be guarenteed to be ready to accept data.
// XGE MAC expects to be able to stream whole packet with no handshaking.
// We force downstream packet gate to discard packet by signalling error with tlast and
// resynchronizing with upstream.
//
module xge64_to_axi64
#(parameter LABEL=0)
(
input clk,
input reset,
input clear,
input [63:0] datain,
input [2:0] occ,
input sof,
input eof,
input err,
input valid,
output reg [63:0] axis_tdata,
output reg [3:0] axis_tuser,
output reg axis_tlast,
output reg axis_tvalid, // Signal data avilable to downstream
input axis_tready
);
localparam EMPTY = 0;
localparam IN_USE = 1;
localparam FLUSHING3 = 2;
localparam FLUSHING4 = 3;
localparam FLUSHING5 = 4;
localparam FLUSHING6 = 5;
localparam FLUSHING7 = 6;
localparam FLUSHING8 = 7;
localparam ERROR1 = 8;
localparam EOF1 = 3'b001;
localparam EOF2 = 3'b010;
localparam EOF3 = 3'b011;
localparam EOF4 = 3'b100;
localparam EOF5 = 3'b101;
localparam EOF6 = 3'b110;
localparam EOF7 = 3'b111;
localparam EOF8 = 3'b000;
reg [3:0] state;
reg err_reg;
reg [47:0] holding_reg;
always @(posedge clk)
if(reset | clear) begin
state <= EMPTY;
axis_tdata <= 0;
holding_reg <= 0;
axis_tvalid <= 0;
end else begin
// Defaults
axis_tvalid <= 0;
axis_tuser <= 0;
axis_tlast <= 0;
err_reg <= 0;
case(state)
EMPTY: begin
if (valid & axis_tready & sof) begin
// Start of packet should always be received in this state.
// It should NEVER be possible to get a packet from the MAC with EOF also set in
// the first 64 bits so not designed for.
// Add pad. Store last 6 octets into holding, change state to show data in holding.
state <= IN_USE;
axis_tvalid <= 1;
end
else if (valid & ~axis_tready)
// Assert on this condition, add H/W to deal with overflow later.
$display("ERROR: xge64_to_axi64, valid & ~axis_tready");
holding_reg <= datain[16 +: 48];
axis_tdata[48 +: 16] <= datain[15:0];
axis_tdata[47:0] <= {40'h0, LABEL}; // Tag packet with label
end
IN_USE: begin
if (valid & axis_tready & (eof | err)) begin
// End of packet should always be received in this state.
// If Error is asserted from MAC, immediate EOF is forced,
// and the error flag set in tuser. State machine will return to WAIT
// state and search for new SOF thereby discarding anything left of error packet.
//
// In the case of 3 through 8 valid octets in the final 64bits input,
// we must run another cycle afterwards since we have 6 more bytes still in holding.
err_reg <= err;
holding_reg <= datain[16 +: 48];
axis_tdata[63:48] <= datain[15:0];
axis_tdata[47:0] <= holding_reg;
axis_tvalid <= 1;
case(occ[2:0])
// 8 valid Octets in last word of packet, finish next cycle
0: begin
state <= FLUSHING8;
end
// 7 valid Octets in last word of packet, finish next cycle
7: begin
state <= FLUSHING7;
end
// 6 valid octets in last word of packet, finish next cycle
6: begin
state <= FLUSHING6;
end
// 5 valid octets in last word of packet, finish next cycle
5: begin
state <= FLUSHING5;
end
// 4 valid octets in last word of packet, finish next cycle
4: begin
state <= FLUSHING4;
end
// 3 valid octets in last word of packet, finish next cycle
3: begin
state <= FLUSHING3;
end
// 2 valid octets in last word of packet, finish this cycle
2: begin
axis_tuser <= {err,EOF8};
state <= EMPTY;
axis_tlast <= 1;
end
// 1 valid octets in last word of packet, finish this cycle
1: begin
axis_tuser <= {err,EOF7};
state <= EMPTY;
axis_tlast <= 1;
end
endcase // case (occ[2:0])
end // if (valid & axis_tready & eof)
else if (valid & axis_tready) begin
// No EOF indication so in packet payload somewhere still.
state <= IN_USE;
holding_reg <= datain[16 +: 48];
axis_tdata[63:48] <= datain[15:0];
axis_tdata[47:0] <= holding_reg;
axis_tvalid <= 1;
end
else if (valid & ~axis_tready) begin
// Assert on this condition
$display("ERROR: xge64_to_axi64, valid & ~axis_tready");
// Keep error state asserted ready for downstream to accept
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end else if (~valid) begin
// Assert on this condition, don't expect the MAC to ever throtle dataflow intra-packet.
$display("ERROR: xge64_to_axi64, ~valid ");
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end
end // case: IN_USE
FLUSHING3: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 1 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF1};
axis_tdata[47:0] <= holding_reg;
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING4: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 2 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF2};
axis_tdata[47:0] <= holding_reg;
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING5: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 3 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF3};
axis_tdata[47:0] <= holding_reg;
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING6: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 4 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF4};
axis_tdata[47:0] <= holding_reg;
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING7: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 5 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF5};
axis_tdata[47:0] <= holding_reg;
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING8: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 6 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF6};
axis_tdata[47:0] <= holding_reg;
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
ERROR1: begin
// We were already actively receiving a packet from the upstream MAC and the downstream
// signaled not ready by de-asserting tready. Since we can't back pressure the MAC we have to
// abandon the current packet, discarding any data already sent down stream by sending an asserted error
// with a tlast when ever tready becomes asserted again. Meanwhile we start dropping arriving MAC
// data on the floor since there is nothing useful we can do with it currently.
if (axis_tready)
begin
// OK tready is asserted again so tlast is geting accepted this cycle along with an asserted error.
state <= EMPTY;
end else begin
// Keep error state asserted ready for downstream to accept
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end
end // case: ERROR1
endcase // case(state)
end // else: !if(reset | clear)
endmodule
|