1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
|
/*! \page page_rdtesting R&D Testing Procedures
All defined R&D test procedures are listed here. These tests are meant as a tool
for Ettus R&D to enable faster and more reliable development. Note these tests
are no replacement for manufacturing or production tests, and should not be
treated as such. Instead, they are meant to catch common failure modes during
development. As a result, test definitions are fairly light-weight.
\section rdtesting_gpsdo GPSDO Tests
| Test Code | Device | Peripherals | Manual Test Procedure | Automatic Test Procedure |
|------------------|-----------|-------------------|------------------------------|---------------------------|
| GPS-X310-TCXO-v1 | USRP X310 | Jackson Labs TCXO | \ref rdtesting_gpsdo_manual | \ref rdtesting_gpsdo_auto |
| GPS-X310-OCXO-v1 | USRP X310 | Jackson Labs OCXO | \ref rdtesting_gpsdo_manual | \ref rdtesting_gpsdo_auto |
| GPS-X300-TCXO-v1 | USRP X300 | Jackson Labs TCXO | \ref rdtesting_gpsdo_manual | \ref rdtesting_gpsdo_auto |
| GPS-X300-OCXO-v1 | USRP X300 | Jackson Labs OCXO | \ref rdtesting_gpsdo_manual | \ref rdtesting_gpsdo_auto |
| GPS-B200-TCXO-v1 | USRP B200 | Jackson Labs TCXO | \ref rdtesting_gpsdo_manual | \ref rdtesting_gpsdo_auto |
| GPS-B210-TCXO-v1 | USRP B210 | Jackson Labs TCXO | \ref rdtesting_gpsdo_manual | \ref rdtesting_gpsdo_auto |
\subsection rdtesting_gpsdo_recommendations Recommendations
For cursory testing, not all tests within a device family are required (e.g.,
only testing the OCXO on any X-Series, and testing the TCXO on any B-Series is
sufficient).
The following tests are recommended for a minimum test (N stands for the latest
version of this test):
- One of GPS-X310-OCXO-vN or GPS-X300-OCXO-vN
- One of GPS-B210-TCXO-vN or GPS-B200-TCXO-vN
\subsection rdtesting_gpsdo_requirements Requirements
All of these tests require a device that is GPSDO capable (e.g., X3x0, B2x0,
N2x0). For those devices that have a separate GPS component (such as the Jackson
Labs GPSDOs), this component is also required (called the "peripheral" in the
following).
\subsection rdtesting_gpsdo_manual GPSDO: Manual Test Procedure
1. Without connecting the peripheral to the device, run `uhd_usrp_probe` on the
device and verify that the lack of GPSDO is correctly reported under "sensors".
No warning or error must be printed.
2. This and the following tests are run with the peripheral connected: Run
`uhd_usrp_probe` and verify that the GPSDO is correctly reported under "sensors".
Power down the device before connecting the peripheral. The GPSDO must be
reported found, and no error or warning must be printed.
3. OCXO only: Without connecting the GPS antenna input, run
`utils/query_gpsdo_sensors`. To pass, it must report the GPSDO as found, lock to
the external reference, but then report not being locked to GPS. The tool
will report a valid GPS time, and a string such as "GPS and UHD Device time
are aligned" in case of success.
4. Connect a GPS antenna to the input and make sure it is in a position to
receive GPS satellite data. Confirm that GPS lock is reported by running
`utils/query_gpsdo_sensors` within 20 minutes of connecting the antenna.
The tool `query_gpsdo_sensors` will print a string such as "GPS Locked" in
case of success.
All of these tests must pass for a 'pass' validation.
\subsection rdtesting_gpsdo_auto GPSDO: Automatic Test Procedure
tbd
\section rdtesting_devtest Devtests
The devtests are device tests designed to verify the basic functionality of UHD
devices. These unit tests can be used to ensure hardware components like clock,
sensors, GPIO, etc are functioning correctly. They also validate basic UHD API
functions and device communication. They are not meant to be exhaustive tests,
but rather a quick way to verify that the device is operational. These tests
are created in python and are located in the
`<local repo path>/host/tests/devtest/` directory. Refer
[devtest README](https://github.com/EttusResearch/uhddev/blob/master/host/tests/devtest/README.md)
for more information. The table below shows the list of devices and FPGA images
that are being tested using the devtests.
| Test Code | Device | Peripherals | Manual Test Procedure | Automatic Test Procedure |
|-------------------------|---------------|-------------|-------------------------------|-----------------------------|
| DEVTEST-X310-XG-v1 | USRP X310 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X310-HG-v1 | USRP X310 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X300-XG-v1 | USRP X300 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X300-HG-v1 | USRP X300 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-E310-SG1-v1 | USRP E310-SG1 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-E310-SG3-v1 | USRP E310-SG3 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-E320-1G-v1 | USRP E320 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-B200-v1 | USRP B200 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-B210-v1 | USRP B210 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-B200m-v1 | USRP B200mini | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-B205m-v1 | USRP B205mini | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-B206m-v1 | USRP B206mini | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-N310-XG-v1 | USRP N310 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-N310-HG-v1 | USRP N310 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-N320-HG-v1 | USRP N320 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-N320-XG-v1 | USRP N320 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-N320-XQ-v1 | USRP N320 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X410-X4_200-v1 | USRP X410 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X410-UC_200-v1 | USRP X410 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X410-CG_400-v1 | USRP X410 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X440-X4_200-v1 | USRP X440 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X440-X4_400-v1 | USRP X440 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X440-CG_400-v1 | USRP X440 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X440-X4_1600-v1 | USRP X440 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
| DEVTEST-X440-CG_1600-v1 | USRP X440 | None | \ref rdtesting_devtest_manual | \ref rdtesting_devtest_auto |
The devtests are hardware tests built in to the UHD make system. They can be run
directly from the build directory and require no configuration.
Devtests are designed to always run, regardless of the actual device
configuration. This means, by definition, that devtests cannot require special
cabling, specific daughtercards, etc.
Note: The actual devtests can change, since they're part of the code. This does
not require a version bump on the test code.
\subsection rdtesting_devtest_requirements Requirements
Devtests are only defined for some devices. When running a devtest, all
peripherals must be disconnected (e.g., no daughterboards on the X-Series, no
GPSDOs on the B- and X-Series).
Running these tests requires the yaml package. On Ubuntu, run
`sudo apt-get install python3-yaml` to install the Python 3 version of the YAML
library. Follow steps in \ref page_build_guide to setup build environment.
Note: The devtests can be executed both on the host computer or on the embedded
devices (x4xx, n3xx, e3xx) itself. In both cases, a build environment (build
folder structure created when building uhd from source) is required. The below
section \ref rdtesting_devtest_manual shows the steps to execute the devtests
on the device using host computer.
\subsection rdtesting_devtest_manual Devtest: Manual Test Procedure
### Running devtest using UHD make
To run the devtests using UHD make, follow these steps:
1. Make sure no optional peripherals are connected to the device and remove all
front panel connections, including from GPIO.
2. Connect the device to the host computer via the appropriate
interface depending upon the FPGA image. Refer below table for some examples
of test cases.
3. Run `make test_<devtest-pattern>` from the command line in the build
directory (i.e. <local repo path>/host/build). Refer below table for the
list of available `<devtest-pattern>`. By default, the devtest is executed
on all the connected devices matching the `<devtest-pattern>`. To target a
specific device use the argument `EXTRA_DEV_ARGS` and specify the device
address or name. For example, to run devtest on a specific x410:
\code
<build_directory> make test_x410 EXTRA_DEV_ARGS="addr=10.2.161.10"
\endcode
4. Devtest must report no failures for a 'pass' validation.
| Device (type) | make test_<devtest-pattern> | FPGA Image | Interface | Testing |
|---------------|-----------------------------|------------|--------------|-------------------------------------------------------------------------------------------|
| X410 (x4xx) | make test_x410 | X4_200 | 4x10GbE | Test once on SFP0 |
| X440 (x4xx) | make test_x440 | X4_400 | 4x10GbE | Test once on SFP0 |
| X3x0 (x300) | make test_x3x0 | HG, XG | 1GbE, 10GbE | For HG, test once for each connection: 1GbE (SFP0) and 10GbE (SFP1).<br> For XG, test once for either SFP0 or SFP1 is sufficient. In both cases, also test via PCIe.|
| N3xx (n3xx) | make test_n3x0 | HG, XG | 1GbE, 10GbE | For HG, test once for each connection: 1GbE (SFP0) and 10GbE (SFP1).<br>For XG, test once for either SFP0 or SFP1 is sufficient.|
| B2xx (b200) | make test_b2xx | Default | USB | Test once via USB2 and USB3 |
| E320 (e3xx) | make test_e320 | 1G, XG | 1GbE, 10GbE | Test once for each connection: 1GbE and 10GbE |
| E310 (e3xx) | make test_e3xx | sg3 | 1GbE | Test once using ethernet |
### Running devtest using python test suite
As an alternative to running the devtests using UHD make system from the
build directory, one can also directly execute the tests using
[run_testsuite.py](https://github.com/EttusResearch/uhddev/blob/master/host/tests/devtest/run_testsuite.py).
For example, in case of testing on an E320, run the following command (the
environment variables need to point to the location of the devtest code, the
location of the UHD build, and where you want to store log files, respectively)
on the host computer (or on the embedded device with build environment set up):
\code
$DEVTEST_DIR/run_testsuite.py --src-dir $DEVTEST_DIR \
--devtest-pattern e3xx \
--build-type na \
--build-dir $BUILD_DIR \
--args type=e3xx \
--log-dir $LOG_DIR
\endcode
\subsection rdtesting_devtest_auto Devtest: Automatic Test Procedure
As all these tests can be run unsupervised, they can be run automatically given
the correct device setup. The return code of the tests can be used to check for
pass/fail conditions (return code 0 means 'pass').
\section rdtesting_fpga_testbenches FPGA: Testing through Simulations
Test benches provide a faster way to verify the design through simulations.
| Test Code | Device | Peripherals | Manual Test Procedure | Automatic Test Procedure |
|------------------|-----------|-------------------|-----------------------------------------|--------------------------------------|
| FPGATB-v1 | None | None | \ref rdtesting_fpga_testbenches_manual | \ref rdtesting_fpga_testbenches_auto |
\subsection rdtesting_fpga_testbenches_requirement Requirements
These tests are simulations and do not need any device. Vivado 15.4 should be
installed.
\subsection rdtesting_fpga_testbenches_manual Manual Test Procedure
1. Go to the fpga directory depending on which test needs to be run.
1. NoC block test benches:
Most of the NoC blocks have a test bench written in System Verilog that provides stimuli to the noc_block to verify it. The test bench for a block resides in `<fpga-dir>/usrp3/lib/rfnoc/‍*_tb`.
2. Running unit test benches:
A few sub-blocks like noc-shell and sine_tone are used within the bigger noc_blocks. They have their own test benches. Their test benches reside in `<fpga-dir>/usrp3/lib/sim/rfnoc/‍*`.
3. Radio test bench:
The radio test bench resides in `<fpga-dir>/usrp3/lib/radio/noc_block_radio_core_tb/`.
4. Device specific test benches:
IPs specific to a device have test benches that exist in `<fpga-dir>/usrp3/top/x300/sim/\*`. e.g. DMA testbench, PCIe, etc.
2. Setup the environment by running `source <fpga-dir>/usrp3/top/<device>/setupenv.sh`.
3. In the test bench directory and run the test bench by 'make xsim' or 'make vsim'.
4. All of these tests must report no failure with a 'PASS' validation. Example testbench output:
\code
========================================================
TESTBENCH STARTED: noc_block_skeleton
========================================================
[TEST CASE 1] (t=000000000) BEGIN: Wait for Reset...
[TEST CASE 1] (t=000001002) DONE... Passed
[TEST CASE 2] (t=000001002) BEGIN: Check NoC ID...
Read Skeleton NOC ID: 1234000000000000
[TEST CASE 2] (t=000001238) DONE... Passed
[TEST CASE 3] (t=000001238) BEGIN: Connect RFNoC blocks...
Connecting noc_block_tb (SID: 1:0) to noc_block_skeleton (SID: 0:0)
Connecting noc_block_skeleton (SID: 0:0) to noc_block_tb (SID: 1:0)
[TEST CASE 3] (t=000005457) DONE... Passed
[TEST CASE 4] (t=000005457) BEGIN: Write / readback user registers...
[TEST CASE 4] (t=000006888) DONE... Passed
[TEST CASE 5] (t=000006888) BEGIN: Test sequence...
[TEST CASE 5] (t=000007403) DONE... Passed
========================================================
TESTBENCH FINISHED: noc_block_skeleton
- Time elapsed: 7500 ns
- Tests Expected: 5
- Tests Run: 5
- Tests Passed: 5
Result: PASSED
========================================================
\endcode
Failing tests can be debugged by checking the waveform in a Vivado GUI by
running 'make GUI=1 xsim'. More details on
debugging: https://kb.ettus.com/Debugging_FPGA_images
\subsection rdtesting_fpga_testbenches_auto Automatic Test Procedure
Go to <fpga-dir>/usrp3/ and run 'build.py xsim all'. All tests should report 'PASS'.
\section rdtesting_fpgadspverif FPGA DSP Verification
| Test Code | Device | Peripherals | Manual Test Procedure | Automatic Test Procedure |
|--------------------------|---------------|-------------|------------------------------------|----------------------------------|
| FPGADSPVERIF-X310-HG-v1 | USRP X310 | 2x UBX | \ref rdtesting_fpgadspverif_manual | \ref rdtesting_fpgadspverif_auto |
| FPGADSPVERIF-X310-XG-v1 | USRP X310 | 2x UBX | \ref rdtesting_fpgadspverif_manual | \ref rdtesting_fpgadspverif_auto |
| FPGADSPVERIF-X300-HG-v1 | USRP X300 | 2x UBX | \ref rdtesting_fpgadspverif_manual | \ref rdtesting_fpgadspverif_auto |
| FPGADSPVERIF-X300-XG-v1 | USRP X300 | 2x UBX | \ref rdtesting_fpgadspverif_manual | \ref rdtesting_fpgadspverif_auto |
| FPGADSPVERIF-E310-SG1-v1 | USRP E310 SG1 | None | \ref rdtesting_fpgadspverif_manual | \ref rdtesting_fpgadspverif_auto |
| FPGADSPVERIF-E310-SG3-v1 | USRP E310 SG3 | None | \ref rdtesting_fpgadspverif_manual | \ref rdtesting_fpgadspverif_auto |
| FPGADSPVERIF-E320-v1 | USRP E320 | None | \ref rdtesting_fpgadspverif_manual | \ref rdtesting_fpgadspverif_auto |
\subsection rdtesting_fpgadspverif_requirements Requirements
- Signal generator and spectrum analyzer
- X300 & X310 with 2x UBX daughterboard
- E310 SG1 & SG3 with SSH access
- E320 with SSH access
\subsection rdtesting_fpgadspverif_manual FPGA DSP Verification: Manual Test Procedure
This procedure tests the DDC and DUC signal quality and the block's capability
to change sample rate while streaming.
#### RX testing
1. Run calibration on device, if applicable
2. Using a signal generator, inject a sine tone into RX channel 0 at 915.5 MHz @
-40 dBm
3. Inspect the received spectrum using `uhd_fft`
- X3x0: `uhd_fft -f 915e6 -s 10e6 -g 10`
- E31x: `uhd_fft -f 915e6 -s 2e6 -g 50`
- E320: `uhd_fft -f 915e6 -s 15.36e6 -g 50`
- Embedded devices will require either using network mode or using X
forwarding over ssh to run the app natively
4. In the GUI, inspect the spectrum. There should be a strong tone at the test
tone frequency. There may be a small tone at the carrier frequency due to DC
offset and a quadrature image due to IQ imbalance.
5. Check the input tone frequencies outlined below. The tone should shift from
left to right as the frequency changes and may have some amplitude variation,
especially at the band edges.
- X3x0: 910 MHz to 920 MHz in 1 MHz steps
- E3xx: 914 MHz to 916 MHz in 200 kHz steps
6. Set input tone back to 915.5 MHz. Check the sampling rate as outlined below.
The spectrum should reflect the change in sample rate.
- X3x0: 1, 5, 20, 33.333, 50, 66.666, 100, 200 MHz
- E3x0: 0.1, 0.5, 1, 1.143, 1.684 MHz
7. Repeat on each RX channel of the device.
8. This test fails if:
- DC offset and IQ imbalance tones are unusually large
- There are any other strong tones or spectrum distortion
- The spectrum changes significantly between frequencies or sample rates
- An initial transient distortion is acceptable
- Amplitude variation on the order of +/-10 dB is acceptable
- Console reports any of the following:
- Overruns 'O' if continuous and not due to host computer's lack of
processing performance
- Dropped packets 'D'
- Sequence number errors 'S'
- Timeouts
#### TX testing
1. Run calibration on device, if applicable
2. Using `uhd_siggen_gui`, generate a sine tone TX channel 0 at 915.5 MHz:
- X3x0: `uhd_siggen_gui -f 915e6 -s 10e6 -g 10 -x 500e3 --sine`
- E31x: `uhd_siggen_gui -f 915e6 -s 2e6 -g 50 -x 500e3 --sine`
- E320: `uhd_siggen_gui -f 915e6 -s 15.36e6 -g 50 -x 500e3 --sine`
3. Using a spectrum analyzer, inspect the output spectrum. There should be a
strong tone at the test tone frequency. There may be a small tone at the
carrier frequency due to DC offset and a quadrature image due to IQ
imbalance.
4. Using the GUI, test the follow offset frequencies. The tone should shift from
left to right as the frequency changes and may have some amplitude variation,
especially at the band edges.
- X3x0: -5 to +5 MHz in 1 MHz steps
- E3xx: -1 to +1 MHz in 200 kHz steps
5. Set output tone offset back to 500e3. Change sampling rate as outlined below.
The spectrum should not significantly differ between sample rates.
- X3x0: 1, 5, 20, 33.333, 50, 66.666, 100, 200 MHz
- E3xx: 0.1, 0.5, 1, 1.143, 1.684 MHz
6. Repeat on each TX channel of the device
7. This test fails if:
- DC offset and IQ imbalance tones are unusually large
- There are any other strong tones or spectrum distortion
- The spectrum changes significantly between sample rates
- An initial transient distortion is acceptable
- Console reports any of the following:
- Underruns 'U' if continuous and not due to host computer's lack of
processing performance
- Late packets 'L'
- Sequence number errors 'S'
\subsection rdtesting_fpgadspverif_auto FPGA DSP Verification: Automatic Test Procedure
tbd
\section rdtesting_fpgafuncverif FPGA Functional Verification
| Test Code | Device | Peripherals | Manual Test Procedure | Automatic Test Procedure |
|---------------------------|---------------|-------------|-------------------------------------|-----------------------------------|
| FPGAFUNCVERIF-X310-HG-v1 | USRP X310 | 2x UBX | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-X310-XG-v1 | USRP X300 | 2x UBX | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-X300-HG-v1 | USRP X310 | 2x UBX | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-X300-XG-v1 | USRP X300 | 2x UBX | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-E310-SG1-v1 | USRP E310 SG1 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-E310-SG3-v1 | USRP E310 SG3 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-N320-HG-v1 | USRP N320 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-N320-XG-v1 | USRP N320 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-N310-HG-v1 | USRP N310 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-N310-XG-v1 | USRP N310 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-N300-HG-v1 | USRP N300 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-N300-XG-v1 | USRP N300 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-E320-1G-v1 | USRP E320 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-E320-XG-v1 | USRP E320 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
| FPGAFUNCVERIF-E320-device-v1 | USRP E320 | None | \ref rdtesting_fpgafuncverif_manual | \ref rdtesting_fpgafuncverif_auto |
The FPGA functional verification tests exercise the Digital Downconverter (DDC),
Digital Upconverter (DUC), and Radio Core RFNoC blocks.
\subsection rdtesting_fpgafuncverif_requirements Requirements
- X300 & X310 with two daughterboards
- 2x UBX recommended
- HG tests require a single 10 GigE connection, XG requires two for the 2x RX
200 MSPS test
- 1 GigE and PCIe adapters and cabling for optional tests
- E310: SG1 & SG3 with SSH access
- N310: No special requirements
- E320: SFP connection to run network mode
\subsection rdtesting_fpgafuncverif_manual FPGA Functional Verification: Manual Test Procedure
This procedure verifies that the DDC, DUC, and Radio Core can run at various sample
rates and channel configurations without any data flow issues.
1. Run `benchmark_rate` using the parameters outlined in the tables below
2. Unless otherwise noted, to pass each test:
- Benchmark rate must run without reporting any of the following:
- Underruns 'U'
- Overruns 'O'
- Dropped packets 'D'
- Sequence number errors 'S'
- Late commands 'L'
- Timeouts
- Appropriate TX/RX LEDs must be illuminated
3. Unless specified in 'Notes' column, use default values for unlisted
parameters
4. Example commands:
- X3x0: `benchmark_rate --tx_rate 1e6 --rx_rate 1e6 --channels 0,1 --duration 120`
- E3xx: `benchmark_rate --args="master_clock_rate=10e6" --tx_rate 1e6 --rx_rate 1e6 --channels 0,1 --duration 120`
#### USRP X3x0: 10 GigE Interface
- Required images to test: X310 HG
- Optional images to test: X310 XG, X300 HG, X300 XG
- Note: On TX tests, initial Us within the first 5 seconds can be ignored and do not fail the test
| Channels | Sample Rates | Duration | Notes |
|---------------|--------------------------|----------|--------------------|
| 1x RX | 10e6, 50e6, 100e6, 200e6 | 60 | Test both channels |
| 2x RX | 10e6, 50e6, 100e6 | 60 | |
| 2x RX | 200e6 | 60 | 2x 10G, XG only |
| 1x TX | 10e6, 50e6, 100e6, 200e6 | 60 | Test both channels |
| 2x TX | 10e6, 50e6, 100e6 | 60 | |
| 1x RX & 1x TX | 10e6, 50e6, 100e6 | 60 | Test both channels |
| 1x RX & 1x TX | 200e6 | 60 | Use channel 0 |
| 2x RX & 2x TX | 10e6, 50e6 | 60 | |
| 1x RX & 1x TX | 200e6 | 600 | Use channel 1 |
| 2x RX & 2x TX | 100e6 | 600 | |
#### USRP X3x0: 1 GigE Interface
- Required images to test: None
- Optional images to test: X310 HG, X310 XG, X300 HG, X300 XG
- Note: On TX tests, initial Us within the first 5 seconds can be ignored and do not fail the test
| Channels | Sample Rates | Duration |
|---------------|-------------------------|----------|
| 1x RX | 1e6, 10e6, 25e6 | 60 |
| 2x RX | 1e6, 10e6 | 60 |
| 1x TX | 1e6, 10e6, 25e6 | 60 |
| 2x TX | 1e6, 10e6 | 60 |
| 1x RX & 1x TX | 1e6, 10e6, 25e6 | 60 |
| 2x RX & 2x TX | 1e6, 10e6 | 60 |
#### USRP X3x0: PCIe Interface
- Required images to test: None
- Optional images to test: X310 HG, X310 XG, X300 HG, X300 XG
- Note: On TX tests, initial Us within the first 5 seconds can be ignored and do not fail the test
| Channels | Sample Rates | Duration |
|---------------|--------------------------|----------|
| 1x RX | 10e6, 50e6, 100e6, 200e6 | 60 |
| 2x RX | 10e6, 50e6, 100e6 | 60 |
| 1x TX | 10e6, 50e6, 100e6, 200e6 | 60 |
| 2x TX | 10e6, 50e6, 100e6 | 60 |
| 1x RX & 1x TX | 10e6, 50e6, 100e6 | 60 |
| 1x RX & 1x TX | 200e6 | 60 |
| 2x RX & 2x TX | 10e6, 50e6 | 60 |
Note: On TX tests, initial Us within the first 5 seconds can be ignored and do not fail the test
#### USRP E3xx Device (Embedded Mode)
- E320 and E310 SG3 are required tests, E310 SG1 is optional
| Channels | Master Clock Rate | Sample Rate | Duration | Notes |
|---------------|-------------------------|-------------|----------|--------------------|
| 1x RX | 10e6 | 1e6 | 60 | Test both channels |
| 1x RX | 61.44e6 | 3.84e6 | 60 | Test both channels |
| 1x TX | 10e6 | 1e6 | 60 | Test both channels |
| 1x TX | 61.44e6 | 3.84e6 | 60 | Test both channels |
| 2x RX | 10e6 | 1e6 | 60 | |
| 2x RX | 30.72e6 | 1.92e6 | 60 | |
| 2x TX | 10e6 | 1e6 | 60 | |
| 2x TX | 30.72e6 | 1.92e6 | 60 | |
| 1x RX & 1x TX | 10e6 | 1e6 | 60 | Test both channels |
| 1x RX & 1x TX | 30.72e6 | 3.84e6 | 60 | Use channel 1 |
| 2x RX & 2x TX | 10e6 | 1e6 | 60 | |
| 2x RX & 2x TX | 30.72e6 | 1.92e6 | 60 | |
| 1x RX & 1x TX | 30.72e6 | 3.84e6 | 600 | Use channel 0 |
| 2x RX & 2x TX | 30.72e6 | 1.92e6 | 600 | |
#### USRP E320: 1 GigE Interface
| Channels | Master Clock Rate | Sample Rate | Duration | Notes |
|---------------|-------------------------|-------------|----------|--------------------|
| 1x RX | 15.36e6 | 15.36e6 | 60 | Test both channels |
| 1x RX | 61.44e6 | 3.84e6 | 60 | Test both channels |
| 1x TX | 15.36e6 | 15.36e6 | 60 | Test both channels |
| 1x TX | 61.44e6 | 3.84e6 | 60 | Test both channels |
| 2x RX | 61.44e6 | 7.68e6 | 60 | |
| 2x RX | 30.72e6 | 1.92e6 | 60 | |
| 2x TX | 61.44e6 | 7.68e6 | 60 | |
| 2x TX | 30.72e6 | 1.92e6 | 60 | |
| 1x RX & 1x TX | 30.72e6 | 7.68e6 | 60 | Test both channels |
| 1x RX & 1x TX | 61.44e6 | 1.92e6 | 60 | Use channel 1 |
| 2x RX & 2x TX | 30.72e6 | 3.84e6 | 60 | |
| 2x RX & 2x TX | 30.72e6 | 1.92e6 | 60 | |
| 1x RX & 1x TX | 30.72e6 | 3.84e6 | 600 | Use channel 0 |
| 2x RX & 2x TX | 30.72e6 | 1.92e6 | 600 | |
#### USRP E320: 10 GigE Interface
| Channels | Master Clock Rate | Sample Rate | Duration | Notes |
|---------------|-------------------------|----------------------|----------|--------------------|
| 1x RX | 61.44e6 | 1.92e6, 61.44e6 | 60 | Test both channels |
| 1x TX | 61.44e6 | 1.92e6, 61.44e6 | 60 | Test both channels |
| 2x RX | 30.72e6 | 1.92e6, 30.72e6 | 60 | |
| 2x TX | 30.72e6 | 1.92e6, 30.72e6 | 60 | |
| 1x RX & 1x TX | 61.44e6 | 1.92e6, 30.72e6 | 60 | Test both channels |
| 2x RX & 2x TX | 30.72e6 | 1.92e6, 30.72e6 | 60 | |
| 1x RX & 1x TX | 61.44e6 | 1.92e6, 30.72e6 | 600 | Use channel 0 |
| 2x RX & 2x TX | 30.72e6 | 1.92e6, 30.72e6 | 600 | |
#### USRP N300/N310: 1 GigE Interface
- Required images to test: HG
- Note: On TX tests, initial Us within the first 5 seconds can be ignored and do not fail the test
<!--Note: If you change this table, also change tools/usrptest/usrp_fpga_funcverif.py!-->
| Channels | Master Clock Rate | Sample Rates | Duration | Notes |
|---------------|-------------------|-------------------------|----------|-----------------------------------|
| 1x RX | 125e6 | 1.25e6 | 60 | One test each for all 4 channels |
| 1x RX | 122.88e6 | 1.2288e6 | 60 | One test each for all 4 channels |
| 1x RX | 153.6e6 | 1.536e6 | 60 | One test each for all 4 channels |
| 1x TX | 125e6 | 1.25e6 | 60 | One test each for all 4 channels |
| 1x TX | 122.88e6 | 1.2288e6 | 60 | One test each for all 4 channels |
| 1x TX | 153.6e6 | 1.536e6 | 60 | One test each for all 4 channels |
| 2/3/4x RX | 125e6 | 1.25e6 | 60 | 3 tests total |
| 2/3/4x RX | 122.88e6 | 1.2288e6 | 60 | 3 tests total |
| 2/3/4x RX | 153.6e6 | 1.536e6 | 60 | 3 tests total |
| 2/3/4x TX | 125e6 | 1.25e6 | 60 | 3 tests total |
| 2/3/4x TX | 122.88e6 | 1.2288e6 | 60 | 3 tests total |
| 2/3/4x TX | 153.6e6 | 1.536e6 | 60 | 3 tests total |
| 4x RX & 4x TX | 125e6 | 1.25e6 | 60 | Drop to 2 channels for N300
| 4x RX & 4x TX | 122.88e6 | 1.2288e6 | 60 | Drop to 2 channels for N300
| 4x RX & 4x TX | 153e6 | 1.536e6 | 60 | Drop to 2 channels for N300
#### USRP N300/N310: 10 GigE Interface
- Required images to test: N310 HG + XG
- Note: On TX tests, initial Us within the first 5 seconds can be ignored and do not fail the test
<!--Note: If you change this table, also change tools/usrptest/usrp_fpga_funcverif.py!-->
| Channels | Master Clock Rate | Sample Rates | Duration | Notes |
|---------------|-------------------|-------------------------|----------|-----------------------------------|
| 1x RX | 125e6 | 1.25e6, 125e6 | 60 | One test each for all 4 channels |
| 1x RX | 122.88e6 | 1.2288e6, 122.88e6 | 60 | One test each for all 4 channels |
| 1x RX | 153.6e6 | 1.536e6, 153.6e6 | 60 | One test each for all 4 channels |
| 1x TX | 125e6 | 1.25e6, 125e6 | 60 | One test each for all 4 channels |
| 1x TX | 122.88e6 | 1.2288e6, 122.88e6 | 60 | One test each for all 4 channels |
| 1x TX | 153.6e6 | 1.536e6, 153.6e6 | 60 | One test each for all 4 channels |
| 2x RX | 125e6 | 1.25e6, 125e6 | 60 | |
| 2x RX | 122.88e6 | 1.2288e6, 122.88e6 | 60 | |
| 2x RX | 153.6e6 | 1.536e6 | 60 | |
| 3x RX | 125e6 | 1.25e6 | 60 | N310 only |
| 3x RX | 122.88e6 | 1.2288e6 | 60 | N310 only |
| 3x RX | 153.6e6 | 1.536e6 | 60 | N310 only |
| 2x TX | 125e6 | 1.25e6, 12.5e6 | 60 | |
| 2x TX | 122.88e6 | 1.2288e6, 12.288e6 | 60 | |
| 2x TX | 153.6e6 | 1.536e6, 15.36e6 | 60 | |
| 3x TX | 125e6 | 1.25e6 | 60 | N310 only |
| 3x TX | 122.88e6 | 1.2288e6 | 60 | N310 only |
| 3x TX | 153.6e6 | 1.536e6 | 60 | N310 only |
| 4x RX | 125e6 | 1.25e6, 62.5e6 | 60 | N310 only
| 4x TX | 125e6 | 1.25e6, 12.5e6 | 60 | N310 only
| 4x RX & 4x TX | 125e6 | 1.25e6, 62.5e6 | 60 | Drop to 2 channels for N300
| 4x RX & 4x TX | 122.88e6 | 1.2288e6, 61.44e6 | 60 | Drop to 2 channels for N300
| 4x RX & 4x TX | 153e6 | 1.536e6, 76.8e6 | 60 | Drop to 2 channels for N300
| 4x RX & 4x TX | 125e6 | 62.5e6 | 600 | Drop to 2 channels for N300
| 4x RX & 4x TX | 122.88e6 | 61.44e6 | 600 | Drop to 2 channels for N300
| 4x RX & 4x TX | 153e6 | 76.8e6 | 600 | Drop to 2 channels for N300
| 4x RX & 4x TX | 125e6 | 125e6 RX, 62.5e6 TX | 60 | Use dual 10GigE, N310 XG only
| 4x RX & 4x TX | 122.88e6 | 122.88e6 RX, 61.44e6 TX | 60 | Use dual 10GigE, N310 XG only
| 2x RX & 2x TX | 125e6 | 125e6 RX, 62.5e6 TX | 60 | Use dual 10GigE, N300 XG only
| 2x RX & 2x TX | 122.88e6 | 122.88e6 RX, 61.44e6 TX | 60 | Use dual 10GigE, N300 XG only
| 2x RX & 2x TX | 153e6 | 153e6 RX, 76.8e6 TX | 60 | Use dual 10GigE, N300 XG only
#### USRP N320/N321: 1 GigE Interface
- Required images to test: HG
- Note: On TX tests, initial Us within the first 5 seconds can be ignored and do not fail the test
- Note: The following tests need to be completed only on either N320 OR N321
<!--Note: If you change this table, also change tools/usrptest/usrp_fpga_funcverif.py!-->
| Channels | Master Clock Rate | Sample Rates | Duration | Notes |
|---------------|-------------------|-------------------------|----------|-----------------------------------|
| 1x RX | 250e6 | 2.5e6 | 60 | One test each for both channels |
| 1x RX | 245.76e6 | 2.4576e6 | 60 | One test each for both channels |
| 1x RX | 200e6 | 2e6 | 60 | One test each for both channels |
| 1x TX | 250e6 | 2.5e6 | 60 | One test each for both channels |
| 1x TX | 245.76e6 | 2.4576e6 | 60 | One test each for both channels |
| 1x TX | 200e6 | 2e6 | 60 | One test each for both channels |
| 2x RX | 250e6 | 2.5e6 | 60 | |
| 2x RX | 245.76e6 | 2.4576e6 | 60 | |
| 2x RX | 200e6 | 2e6 | 60 | |
| 2x TX | 250e6 | 2.5e6 | 60 | |
| 2x TX | 245.76e6 | 2.4576e6 | 60 | |
| 2x TX | 200e6 | 2e6 | 60 | |
| 2x RX & 2x TX | 250e6 | 2.5e6 | 60 | |
| 2x RX & 2x TX | 245.76e6 | 2.4576e6 | 60 | |
| 2x RX & 2x TX | 200e6 | 2e6 | 60 | |
#### USRP N320/N321: 10 GigE Interface
- Required images to test: N320 HG + XG
- Note: On TX tests, initial Us within the first 5 seconds can be ignored and do not fail the test
- Note: The following tests need to be completed only on either N320 OR N321
<!--Note: If you change this table, also change tools/usrptest/usrp_fpga_funcverif.py!-->
| Channels | Master Clock Rate | Sample Rates | Duration | Notes |
|---------------|-------------------|-------------------------|----------|-----------------------------------|
| 1x RX | 250e6 | 2.5e6 , 125e6 | 60 | One test each for both channels |
| 1x RX | 245.76e6 | 2.4576e6, 122.88e6 | 60 | One test each for both channels |
| 1x RX | 200e6 | 2e6 , 200e6 | 60 | One test each for both channels |
| 1x TX | 250e6 | 2.5e6 , 125e6 | 60 | One test each for both channels |
| 1x TX | 245.76e6 | 2.4576e6 , 122.88e6 | 60 | One test each for both channels |
| 1x TX | 200e6 | 2e6 , 100e6 | 60 | One test each for both channels |
| 2x RX | 250e6 | 2.5e6 , 125e6 | 60 | |
| 2x RX | 245.76e6 | 2.4576e6, 122.88e6 | 60 | |
| 2x RX | 200e6 | 2e6 , 100e6 | 60 | |
| 2x TX | 250e6 | 62.5e6 | 60 | |
| 2x TX | 245.76e6 | 61.44e6 | 60 | |
| 2x TX | 200e6 | 100e6 | 60 | |
| 2x RX & 2x TX | 250e6 | 2.5e6 | 60 | |
| 2x RX & 2x TX | 245.76e6 | 2.4576e6 | 60 | |
| 2x RX & 2x TX | 200e6 | 2e6 | 60 | |
| 2x RX & 2x TX | 250e6 | 125e6 RX, 62.5e6 TX | 600 | |
| 2x RX & 2x TX | 245.76e6 | 122.88e6 RX, 61.44e6 TX | 600 | |
| 2x RX & 2x TX | 200e6 | 100e6 RX, 66.67e6 TX | 600 | |
| 2x RX & 2x TX | 250e6 | 125e6 RX, 83.33e6 TX | 600 | Use dual 10GigE, N320/1 XG only |
| 2x RX & 2x TX | 245.76e6 | 122.88e6 RX, 81.92e6 TX | 600 | Use dual 10GigE, N320/1 XG only |
| 2x RX & 2x TX | 200e6 | 200e6 RX, 100e6 TX | 600 | Use dual 10GigE, N320/1 XG only |
| 2x RX & 2x TX | 250e6 | 250e6 | 600 | Dual 10GigE, N320/1 XG, DPDK only |
| 2x RX & 2x TX | 245.76e6 | 245.76e6 | 600 | Dual 10GigE, N320/1 XG, DPDK only |
| 2x RX & 2x TX | 200e6 | 200e6 | 600 | Dual 10GigE, N320/1 XG, DPDK only |
\subsection rdtesting_fpgafuncverif_auto FPGA Functional Verification: Automatic Test Procedure
In all cases, make sure UHD is compiled in 'Release' mode (highest
optimization), and that all NIC and kernel are set to optimal (CPU governor,
ring buffer settings, ...).
### X310/X300
The X310/X300 tests depend on the FPGA image to be tested.
#### HG
-Connect a 1GigE cable into port 0 and a 10GigE cable into port 1.
-The following command must pass:
$ usrp_fpga_funcverif x3x0hg -a 192.168.40.2 -2 192.168.10.2 -p /path/to/examples
#### XG
-Connect 10GigE cables to both ethernet ports.
-The following command must pass:
$ usrp_fpga_funcverif x3x0xg -a 192.168.40.2 -2 192.168.30.2 -p /path/to/examples
### N310/N300
The N310/N300 tests depend slightly on the type of FPGA image to be tested.
All calls to usrp_fpga_funcverif.py need to be adapted to ensure the correct
IP addresses and paths to the examples. Also, replace n310 with n300 where
appropriate.
#### HG
- Connect a 1GigE cable on SFP0, and a 10 GigE cable on SFP1.
- The following command must pass:
$ usrp_fpga_funcverif n310hg -a 192.168.20.2 -2 192.168.10.2 -p /path/to/examples
#### XG
- Connect a 10GigE cable on both SFP0 and SFP1.
- The following command must pass:
$ usrp_fpga_funcverif n310xg -a 192.168.10.2 -2 192.168.20.2 -p /path/to/examples
#### HA
- Connect a 1GigE cable on SFP0
- The following command must pass:
$ usrp_fpga_funcverif n310ha -2 192.168.10.2 -p /path/to/examples
#### XA
- Connect a 10GigE cable on SFP0
- The following command must pass:
$ usrp_fpga_funcverif n310xa -a 192.168.10.2 -p /path/to/examples
#### WX
- Connect a 10GigE cable on SFP1
- The following command must pass:
$ usrp_fpga_funcverif n310wx -a 192.168.20.2 -p /path/to/examples
### N320/N321
The N320/N321 tests depend slightly on the type of FPGA image to be tested. All
calls to usrp_fpga_funcverif.py need to be adapted to ensure the correct IP
addresses and paths to the examples. Also, the following test need to be run only
on either N320 OR N321.
#### HG
- Connect a 1GigE cable on SFP0, and a 10 GigE cable on SFP1.
- The following command must pass:
$ usrp_fpga_funcverif n320hg -a 192.168.20.2 -2 192.168.10.2 -p /path/to/examples
#### XG
- Connect a 10GigE cable on both SFP0 and SFP1.
- The following command must pass:
$ usrp_fpga_funcverif n320xg -a 192.168.10.2 -2 192.168.20.2 -p /path/to/examples
#### XQ
- Connect a QSFP+ cable, carrying 2x10GigE, to the QSFP+ port
- The following command must pass:
$ usrp_fpga_funcverif n320xq -a 192.168.10.2 -2 192.168.20.2 -p /path/to/examples
#### AQ
- Connect a 10GigE cable on both SFP0 and SFP1.
- The following command must pass:
$ usrp_fpga_funcverif n320aq -a 192.168.10.2 -2 192.168.20.2 -p /path/to/examples
#### WX
- Connect a 10GigE cable on SFP1.
- The following command must pass:
$ usrp_fpga_funcverif n320wx -a 192.168.20.2 -p /path/to/examples
### E310
The E310 tests need to be run on the device in the embedded mode.
#### Embedded mode
- Login into the device.
- The following command must pass:
$ usrp_fpga_funcverif e3xxdev -a 127.0.0.1 -p /path/to/examples
### E320
The E320 tests depend on the FPGA image to be tested.
#### 1G
- Connect a 1GigE cable on the SFP port.
- The following command must pass:
$ usrp_fpga_funcverif e3201g -a 192.168.10.2 -p /path/to/examples
#### XG
- Connect a 10GigE cable on the SFP port.
- The following command must pass:
$ usrp_fpga_funcverif e320xg -a 192.168.10.2 -p /path/to/examples
#### Embedded mode
- Login into the device.
- The following command must pass:
$ usrp_fpga_funcverif e3xxdev -a 127.0.0.1 -p /path/to/examples
\section rdtesting_phasealignment Phase alignment tests
| Test Code | Device | Peripherals | Manual Test Procedure | Automatic Test Procedure |
|---------------------|-----------|--------------------|--------------------------------------|-----------------------------|
| PHASE-Twin-RX-v1 | 2xTwinRX | 1xX3x0 + LOSharing cables | \ref rdtesting_phase_rx_X3x0_twinrx | \ref rdtesting_phase_rx_auto |
| PHASE-UBX-40-RX-v1 | 2xUBX-40 | 2xX3x0 | \ref rdtesting_phase_rx_X3x0_sbx_ubx | \ref rdtesting_phase_rx_auto |
| PHASE-UBX-160-RX-v1 | 2xUBX-160 | 2xX3x0 | \ref rdtesting_phase_rx_X3x0_sbx_ubx | \ref rdtesting_phase_rx_auto |
| PHASE-SBX-40-RX-v1 | 2xSBX-40 | 2xX3x0 | \ref rdtesting_phase_rx_X3x0_sbx_ubx | \ref rdtesting_phase_rx_auto |
| PHASE-SBX-120-RX-v1 | 2xSBX-120 | 2xX3x0 | \ref rdtesting_phase_rx_X3x0_sbx_ubx | \ref rdtesting_phase_rx_auto |
| PHASE-N2x0-MIMO-v1 | 2x N2x0 + MIMO cable | 2x SBX | \ref rdtesting_phase_rx_N2x0_MIMO | \ref rdtesting_phase_rx_auto |
| Device \anchor phase_band_table | Frequency Range | Number of bands |
|---------------|-------------------------|-----------------|
| TwinRX | 10 - 6000 MHz | 12 |
| UBX-{160, 40} | 10 - 6000 MHz | 12 |
| SBX-{120, 40} | 400 - 4400 MHz | 7 |
Phase alignment testing is necessary to verify device synchronization across multiple daughter- and motherboards is working as expected for CBX, SBX and UBX daughterboards. To enable efficient Phase alignment testing a python based test script exists tools/usrptest. It is required for testing RX testcases and later may be required to perform TX testcases.
To test phase alignment we measure phase offset between DUTs at an offset of 2 MHz offset from the selected center frequency. The phase difference for a given center frequency has to stay the same across retunes and power cycles of the DUT.
Correct synchronization with PPS and 10 MHz references is required for these tests.
\subsection rdtesting_phase_rx_manual Manual phase alignment testing (Receiver)
Equipment Required
- Octoclock-G
- Signal Generator
- 2-way splitter that covers frequency range for daughterboard (4-way for TwinRX)
- 5+ SMA Cables
Software Required
- UHD
\subsection rdtesting_phase_rx_X3x0_twinrx X3x0 with TwinRX
1. Make sure correct FPGA image is loaded on X3x0.
2. Place first daughterboard in slot A and second daughterboard in slot B.
3. Connect LO sharing cables between boards.
4. Connect host to device via 1 GbE, 10 GbE, or PCIe.
5. Connect 10 MHz and PPS from Octoclock-G to X3x0.
6. Connect Signal Generator to input of 4-way splitter and outputs of the splitter to the 2 RX ports on each daughterboard.
7. Set Signal Generator output power at -30 dBm.
8. From the top of the UHD source, run the command:
- `./tools/usrptest/uhd_phase_alignment.py --spec "A:0 A:1 B:0 B:1" --channels 0,1,2,3 --sync pps --time-source external --clock-source external -s 5e6 -g 75 -f 10e6 --freq-bands 12 --start-freq 10e6 --stop-freq 6e9 --duration 2.0 --auto --lo-export True,False,False,False --lo-source internal,companion,external,external`
9. At each frequency step, tune Signal Generator to the displayed frequency + 1 MHz and increase output power by 3 dB.
10. Analyze terminal output. The "run avg" across all runs should not deviate more than 1 degree and the "stddev" for any run should not deviate more than 1 degree.
\subsection rdtesting_phase_rx_X3x0_sbx_ubx X3x0 with SBX or UBX
1. Set different IP addresses on each X3x0 and make sure correct FPGA image is loaded on each.
2. Place first daughterboard in slot A of first X3x0 and second daughterboard in slot A of second X3x0.
3. Connect host to both X3x0s.
4. Connect 10 MHz and PPS from Octoclock-G to both X3x0s.
5. Connect Signal Generator to input of splitter and outputs of the splitter to the RX2 port on each daughterboard.
6. Set Signal Generator output power at -35 dBm for UBX and -29 dBm for SBX.
7. From the top of the UHD source, run the command:
- `./tools/usrptest/uhd_phase_alignment.py --args "addr0=<first X3x0 IP addr>,addr1=<second X3x0 IP addr>,dboard_clock_rate=20e6" --clock-source external --time-source external --sync pps --spec "A:0" --channels 0,1 -s 10e6 -g \<33 if UBX 37.5 if SBX\> -f \<lowest DB freq\> --freq-bands \<# frequency bands\> --start-freq \<lowest freq\> --stop-freq \<highest freq\> --duration 2.0 --auto`
8. At each frequency step, tune Signal Generator to the displayed frequency + 1 MHz and increase output power by 1dB.
9. Analyze terminal output. The "run avg" across all runs should not deviate more than 2 degrees and the "stddev" for any run should not deviate more than 2 degrees.
\subsection rdtesting_phase_rx_N2x0_MIMO N2x0 MIMO with SBX
1. Set different IP addresses on each N2x0 and make sure correct FPGA image and firmware are loaded.
2. Connect MIMO cable between devices.
3. Connect host to master device via 1 GbE.
4. Connect 10 MHz and PPS from Octoclock-G to master device only.
5. Connect Signal Generator to input of splitter and outputs of the splitter to the RX2 port on each daughterboard.
6. Set Signal Generator output power at -36 dBm.
7. From the top of the UHD source, run the command:
- `./tools/usrptest/usrp_phase_alignment.py --args "addr0=<IP address of master>,addr1=<IP address of slave>" --clock-source external,mimo --time-source external,mimo --sync default --channels 0,1 -s 10e6 -f 400e6 -g 31.5 --freq-bands 7 --start-freq 400e6 --stop-freq 4400e6 --duration 2.0 --auto`
8. At each frequency step, tune Signal Generator to the displayed frequency + 1 MHz and increase output power by 2 dB.
9. Analyze terminal output. The "run avg" across all runs should not deviate more than 2 degrees and the "stddev" for any run should not deviate more than 5 degrees.
\subsection rdtesting_phase_rx_auto Automatic phase alignment testing (Receiver)
tbd
\section rdtesting_bist BISTs
| Test Code | Device | Peripherals | Manual Test Procedure | Automatic Test Procedure |
|---------------------|-----------|-------------------------------------------------------|---------------------------------|-------------------------------|
| BIST-N310-v1 | 1xN310 | DB-15 GPIO Loopback | \ref rdtesting_bist_n3x0_manual | \ref rdtesting_bist_n3x0_auto |
| BIST-N300-v1 | 1xN300 | DB-15 GPIO Loopback | \ref rdtesting_bist_n3x0_manual | \ref rdtesting_bist_n3x0_auto |
| BIST-E320-v1 | 1xE320 | Type C HDMI Cable + Breakout board with GPIO Loopback | \ref rdtesting_bist_e320_manual | \ref rdtesting_bist_e320_auto |
Some of our devices have built-in self-tests (BISTs).
\subsection rdtesting_bist_n3x0_manual N300/N310 Manual Procedure
Note: The N300 and N310 have identical BISTs.
1. Connect the front-panel GPIO loopback to the front panel
(see \ref rdtesting_n3xx_peripherals_gpiolb)
2. Execute the following commands:
$ n3xx_bist standard # Note: This will run multiple tests
$ n3xx_bist gpio
3. Load the AA image from a host computer. Adapt the following command to your
system:
$ uhd_image_loader --args type=n3xx,addr=ni-n3xx-$SERIAL --fpga-path=/path/to/usrp_n310_fpga_AA.bit
4. The final BIST is the SFP test, and there are three valid ways of executing
them. For the purpose of running the test, only one of these needs to be
run, and can be chosen based on the available peripherals.
a. Connect an SFP loopback module to both SFP0 and SFP1. Run the command
`n3xx_bist sfp0_loopback sfp1_loopback`.
b. If only one SFP loopback module is available, connect the loopback module
to SFP0 and run `n3xx_bist sfp0_loopback`. Then, connect the loopback
module to SFP1 and run the command `n3xx_bist sfp1_loopback`.
c. If no SFP loopback module is available, connect an SFP cable to both SFP0
and SFP1, and run the command `n3xx_bist sfp_loopback`. Note while this
option is a legitimate substitute to the previous two options, it is of
limited use when trying to debug actual SFP issues.
Every test will produce a JSON-serialized dictionary. All tests have passed if
the "status" key is "true", or the return code for `n3xx_bist` is 0.
Note: Keep in mind that after the test, an Aurora image is loaded. If this is
not desired, re-run `uhd_image_loader` to load whatever image is requested.
\subsection rdtesting_bist_n3x0_auto N300/N310 Automatic Procedure
Note: The N300 and N310 have identical BISTs.
Assuming the peripherals described in \ref rdtesting_bist_n3x0_manual are all
plugged in, the test can trivially be executed automatically by running
$ n3xx_bist standard
$ n3xx_bist gpio
$ n3xx_bist sfp_loopback # Or sfp0_loopback and sfp1_loopback
and making sure that all return values are 0.
\section rdtesting_n3xx_peripherals Required Peripherals
\section rdtesting_n3xx_peripherals_gpiolb DB15 GPIO Loopback
This is a cable or breakout board which connects to the DB15 connector and loops
back the following pins:
- 0<->6
- 1<->7
- 2<->8
- 3<->9
- 4<->10
- 5<->11
\subsection rdtesting_bist_e320_manual E320 Manual Procedure
1. Connect the front-panel GPIO loopback to the front panel
(see \ref rdtesting_e320_peripherals_gpiolb)
2. Execute the following commands:
$ e320_bist standard # Note: This will run multiple tests
$ e320_bist gpio
3. The final BIST is the SFP test. Connect an SFP loopback module
to the SFP port. Run the command:
$ e320_bist sfp_loopback
Every test will produce a JSON-serialized dictionary. All tests have passed if
the "status" key is "true", or the return code for `e320_bist` is 0.
\subsection rdtesting_bist_e320_auto E320 Automatic Procedure
Assuming the peripherals described in \ref rdtesting_bist_e320_manual are all
plugged in, the test can trivially be executed automatically by running
$ e320_bist standard
$ e320_bist gpio
$ e320_bist sfp_loopback
and making sure that all return values are 0.
\section rdtesting_e320_peripherals Required Peripherals
\section rdtesting_e320_peripherals_gpiolb GPIO Loopback
1. Type C to Type A HDMI Cable
2. Breakout Board which connects to the connector and loops
back the following pins:
- 0<->4
- 1<->5
- 2<->6
- 3<->7
\section rdtesting_defining Defining R&D Tests
Tests can be added any time to define procedures for pass/fail validation. Any
test must include the following:
- An unambiguous test code. This code consists of three characters that
identify the test, a short description of the devices required, and a version
suffix. Example: `GPS-X310-OCXO-v1` is a GPS-related test, requires an X310
and an OCXO to run, and is version 1 of this test.
- A manual testing procedure. This must unambiguously define a set of tasks,
and clearly identify whether or not a test has failed or passed. Tests do not
require any other defined outcome other than 'pass' and 'fail'.
- Optional, but highly recommended: An automatic test procedure. This must
consist of a command, or a script, or a set of commands that can be
automatically executed, and that will report a failure condition by means of
returning a non-zero return value.
Basic understanding of the operation of USRPs by the test operator should be
assumed when authoring test procedures. The descriptions should be as short as
possible to fully describe, unambiguously, how to reach a pass/fail conclusion.
Test procedures may be updated at any time. If this happens, a new test code
must be generated, with the version number increased. Old test codes are
considered deprecated (if there exists a version 2 of a test, version 1 should
not be run any more).
*/
// vim:ft=doxygen:
|