1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
|
#
# Copyright 2017-2018 Ettus Research, a National Instruments Company
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
TDC clock synchronization
"""
import time
import math
import sys
if sys.version_info >= (3,9,0):
from math import gcd
else:
from fractions import gcd
from functools import reduce
from builtins import object
from usrp_mpm.mpmutils import poll_with_timeout
from usrp_mpm.mpmlog import get_logger
def mean(vals):
" Calculate arithmetic mean of vals "
return float(sum(vals)) / max(len(vals), 1)
class ClockSynchronizer(object):
"""
Runs the clock synchronization routine for the daughterboard. Sets up and then
retrieves the measurement from the TDC in the FPGA and adjusts the LMK clocks
as needed to compensate.
The actual synchronization is run in run_sync().
"""
# TDC Control Register address constants
TDC_CONTROL = 0x000
TDC_STATUS = 0x008
RP_OFFSET_0 = 0x00C
RP_OFFSET_1 = 0x010
SP_OFFSET_0 = 0x014
SP_OFFSET_1 = 0x018
RP_PERIOD_CONTROL = 0x020
SP_PERIOD_CONTROL = 0x024
RPT_PERIOD_CONTROL = 0x028
SPT_PERIOD_CONTROL = 0x02C
TDC_MASTER_RESET = 0x030
REPULSE_PERIOD_CONTROL_1 = 0x040
REPULSE_PERIOD_CONTROL_2 = 0x044
SYNC_SIGNATURE = 0x100
SYNC_REVISION = 0x104
SYNC_OLDESTCOMPAT = 0x108
SYNC_SCRATCH = 0x10C
def __init__(
self,
regs_iface,
lmk,
phase_dac,
offset,
radio_clk_freq,
ref_clk_freq,
fine_delay_step,
init_pdac_word,
dac_spi_addr_val,
pps_in_pipe_ext_delay,
pps_in_pipe_dynamic_delay,
slot_idx
):
self._iface = regs_iface
self.log = get_logger("Sync-{}".format(slot_idx))
self.slot_idx = slot_idx
self.peek32 = lambda addr: self._iface.peek32(addr + offset)
self.poke32 = lambda addr, data: self._iface.poke32(addr + offset, data)
self.lmk = lmk
self.phase_dac = phase_dac
self.radio_clk_freq = radio_clk_freq
self.ref_clk_freq = ref_clk_freq
self.fine_delay_step = fine_delay_step
self.current_phase_dac_word = init_pdac_word
self.lmk_vco_freq = self.lmk.get_vco_freq()
self.dac_spi_addr_val = dac_spi_addr_val
self.meas_clk_freq = None
self.target_values = []
# Output PPS static delay is the minimum number of radio_clk cycles from the SP-t
# rising edge to when PPS appears on the output of the trigger passing module in
# the radio_clk domain. 2 cycles are from the trigger crossing structure and
# 2 are from the double-synchronizer that crosses the PPS output into the
# no-reset domain from the async reset domain of the TDC.
self.PPS_OUT_PIPE_STATIC_DELAY = 2+2
# Output PPS variable delay is programmable by this module to between 0 and 15
# radio_clk cycles. The combination of static and variable delays make up the
# total delay from SP-t rising edge to the PPS in the radio_clk domain.
self.pps_out_pipe_var_delay = 0
# Input PPS delay (in ref_clk cycles) is recorded here and only changes when
# the TDC structure changes. This represents the number of ref_clk cycles from
# PPS arriving at the input of the TDC to when the RP/-t pulse occurs. There are
# static delays and dynamic delays. Dynamic delay is 0-15 additional cycles.
# Default for older drivers was a total of 5 cycles. Increase the dynamic delay
# to delay the RP/SP pulsers start with respect to the Reset Pulser.
self.PPS_IN_PIPE_STATIC_DELAY = 4
self.pps_in_pipe_dynamic_delay = pps_in_pipe_dynamic_delay # 0-15
# External input PPS delay is a target-specific value, typically 3 ref_clk cycles.
# This represents the number of ref_clk cycles from when PPS is first captured
# by the ref_clk to when PPS arrives at the input of the TDC.
self.pps_in_pipe_ext_delay = pps_in_pipe_ext_delay
self.tdc_rev = 1
# update theses lists whenever more rates are supported
self.SUPPORTED_PULSE_RATES = [1e6, 1.25e6, 1.2288e6] # order matters here!
self.SUPPORTED_REF_CLK_FREQS = [10e6, 20e6, 25e6, 62.5e6]
if self.ref_clk_freq not in self.SUPPORTED_REF_CLK_FREQS:
self.log.error("Clock synchronizer does not support the selected reference "
"clock frequency. Selected rate: {:.2f} MHz".format(
self.ref_clk_freq*1e-6))
raise RuntimeError("TDC does not support the selected reference clock rate!")
self.supported_radio_clk_freqs = [104e6, 122.88e6, 125e6, 153.6e6, 156.25e6, \
200e6, 245.76e6, 250e6]
if self.radio_clk_freq not in self.supported_radio_clk_freqs:
self.log.error("Clock synchronizer does not support the selected radio clock"
" frequency. Selected rate: {:.2f} MHz".format(
self.radio_clk_freq*1e-6))
raise RuntimeError("TDC does not support the selected radio clock rate!")
# Bump this whenever we stop supporting older FPGA images or boards.
# YYMMDDHH
self.oldest_compat_version = 0x17060111
# Bump this whenever changes are made to this MPM host code.
self.current_version = 0x18032916
self.check_core()
self.configured = False
def check_core(self):
"""
Verify TDC core returns correct ID and passes revision tests.
"""
self.log.trace("Checking TDC Core...")
if self.peek32(self.SYNC_SIGNATURE) != 0x73796e63: # SYNC in ASCII hex
raise RuntimeError('TDC Core signature mismatch! Check that core '
'is mapped correctly')
# Two revision checks are needed:
# FPGA Current Rev >= Host Oldest Compatible Rev
# Host Current Rev >= FPGA Oldest Compatible Rev
fpga_current_revision = self.peek32(self.SYNC_REVISION) & 0xFFFFFFFF
fpga_old_compat_revision = self.peek32(self.SYNC_OLDESTCOMPAT) & 0xFFFFFFFF
if fpga_current_revision < self.oldest_compat_version:
self.log.error("Revision check failed! MPM oldest supported revision "
"(0x{:08X}) is too new for this FPGA revision (0x{:08X})."
.format(self.oldest_compat_version, fpga_current_revision))
raise RuntimeError('This MPM version does not support the loaded FPGA image.'
' Please update images!')
if self.current_version < fpga_old_compat_revision:
self.log.error("Revision check failed! FPGA oldest compatible revision "
"(0x{:08X}) is too new for this MPM version (0x{:08X})."
.format(fpga_current_revision, self.current_version))
raise RuntimeError('The loaded FPGA version is too new for MPM. '
'Please update MPM!')
self.log.trace("TDC Core current revision: 0x{:08X}" \
.format(fpga_current_revision))
self.log.trace("TDC Core oldest compatible revision: 0x{:08X}" \
.format(fpga_old_compat_revision))
# Versioning notes:
# TDC 1.0 = [0, 0x18021614)
# TDC 2.0 = [0x18021614, today]
if fpga_current_revision >= 0x18021614:
self.tdc_rev = 2
return True
def master_reset(self):
"""
Toggles the master reset for the registers as well as all other portions of
the TDC. Confirms registers are cleared by writing and reading from the
scratch register. Typically there is no need for this master reset to be
toggled, but is presented here as a back-door.
"""
# Write the scratch register with known data. This will be used to tell if the
# register data is cleared.
self.poke32(self.SYNC_SCRATCH, 0xDEADBEEF)
assert self.peek32(self.SYNC_SCRATCH) == 0xDEADBEEF
# Reset the register space first, then check to confirm it has been cleared.
self.poke32(self.TDC_MASTER_RESET, 0x01) # self-clearing bit
if self.peek32(self.SYNC_SCRATCH) != 0:
self.log.error("TDC Failed to Clear Registers!")
raise RuntimeError("TDC Master Reset Failed")
# Toggle the master reset for the TDC module. This is not self-clearing.
self.poke32(self.TDC_MASTER_RESET, 0x10)
time.sleep(0.001)
self.poke32(self.TDC_MASTER_RESET, 0x00)
self.configured = False
def run(self, num_meas, target_offset=0.0e-9):
"""
Perform a basic synchronization routine by calling configure(), measure(), and
align(). The last two calls are repeated for the length of num_meas, and the last
call only reports the offset value without shifting the clocks.
"""
self.log.debug("Starting clock synchronization...")
# Configure the TDC once, then run as many measurements as desired. Force
# configuration since we have no way of determining if the clock rates changed
# since the last time it was configured.
self.configure(force=True)
# First measurement run to determine how far we need to adjust.
for x in range(len(num_meas)):
# On the last alignment run, only report the final offset value. If there is
# only one run requested, then run the full alignment sequence.
report_only = (len(num_meas) > 1) & (x == (len(num_meas)-1))
meas = self.measure(num_meas[x])
offset = self.align(
target_offset=target_offset,
current_value=meas,
report_only=report_only)
return offset
def configure(self, force=False):
"""
Perform a soft reset on the TDC, then configure the TDC registers in the FPGA
based on the reference and master clock rates. Enable the TDC and wait for the
next PPS to arrive. Will throw on error. Otherwise returns nothing.
"""
if self.configured:
if not force:
self.log.debug("TDC is already configured. " \
"Skipping configuration sequence!")
return None
else:
# Apparently force is specified... this could lead to some strange
# TDC behavior, but we do it anyway.
self.log.debug("TDC is already configured, but Force is specified..." \
"reconfiguring the TDC anyway!")
self.log.debug("Configuring the TDC...")
self.log.trace("Using reference clock frequency: {:.3f} MHz" \
.format(self.ref_clk_freq/1e6))
self.log.trace("Using master clock frequency: {:.3f} MHz" \
.format(self.radio_clk_freq/1e6))
meas_clk_ref_freq = 166.666666666667e6
if self.tdc_rev == 1:
self.meas_clk_freq = meas_clk_ref_freq*5.5/1/5.375
else:
self.meas_clk_freq = meas_clk_ref_freq*21.875/3/6.125
self.log.trace("Using measurement clock frequency: {:.10f} MHz" \
.format(self.meas_clk_freq/1e6))
self.configured = False
# Reset and disable TDC, clear PPS crossing, and enable re-runs. Confirm the
# core is in reset and PPS is cleared.
self.poke32(self.TDC_CONTROL, 0x2121)
reset_status = self.peek32(self.TDC_STATUS) & 0xFF
if reset_status != 0x01:
self.log.error("TDC Failed to Reset! Check your clocks! Status: 0x{:x}" \
.format(reset_status))
raise RuntimeError("TDC Failed to reset.")
def find_rate(clk_freq, rates):
"""
Go through the rates list in sequential order, checking each rate for
even division into our clk_freq. Return the first one we find.
"""
for rate in rates:
if math.modf(clk_freq/rate)[0] == 0:
return rate
self.log.error("TDC Setup Failure: Pulse rate setup failed for {:.4f} MHz!" \
.format(clk_freq/1e6))
raise RuntimeError("TDC Failed to Initialize. No pulse rate found!")
def get_pulse_setup(clk_freq, pulser, compat_mode=False):
"""
Set the pulser divide values based on the given clock rates.
Returns register value required to create the desired pulses.
"""
# Compatibility mode runs at 40 kHz. This only supports these clock rates:
# 10, 20, 25, 125, 122.88, and 153.6 MHz. Any other rates are expected
# to use the TDC 2.0 and later.
if compat_mode:
pulse_rate = find_rate(clk_freq, [40e3])
elif (pulser == "rp") or (pulser == "sp"):
pulse_rate = find_rate(clk_freq, self.SUPPORTED_PULSE_RATES)
# The RP-t and SP-t pulsers always run at 10 kHz, which is the GCD of all
# supported clock rates.
elif (pulser == "rpt") or (pulser == "spt"):
pulse_rate = find_rate(clk_freq, [10e3])
else:
self.log.error("TDC Setup Failure: Unrecognized pulse name given: {}" \
.format(pulser))
raise RuntimeError("TDC Failed to Initialize. "
"Unrecognized pulse name given!")
period = int(clk_freq/pulse_rate)
hi_time = int(math.floor(period/2))
# All registers are packed [30:16] = high time, [15:0] = period.
# hi_time is period/2 so we only use 15 bits.
assert hi_time <= 0x7FFF and period <= 0xFFFF
ctrl_word = (hi_time << 16) | period
return pulse_rate, ctrl_word
def get_restart_pulse_setup(rp_rate, sp_rate):
"""
Set the restart pulser divide values based on the repeating pulse rates.
Returns register value required to create the desired pulses.
"""
# The Restart-pulser must run at the GCD of the RP and SP rates, not the
# Reference Clock and Radio Clock rates!
pulse_rate = find_rate(self.ref_clk_freq, [gcd(int(rp_rate), int(sp_rate))])
period = int(self.ref_clk_freq/pulse_rate)
hi_time = int(math.floor(period/2))
# The re-pulse is broken into two registers:
# -1 is the period and -2 is the high time
assert period <= 0xFFFFFF # 24 bits
assert hi_time <= 0x7FFFFF # 23 bits
return pulse_rate, (period & 0xFFFFFF), (hi_time & 0x7FFFFF)
compat_mode = self.tdc_rev < 2
if compat_mode:
self.log.warning("Running TDC in Compatibility Mode for v1.0!")
rp_rate, rp_ctrl_word = get_pulse_setup(self.ref_clk_freq, "rp", compat_mode)
sp_rate, sp_ctrl_word = get_pulse_setup(self.radio_clk_freq,"sp", compat_mode)
rpt_rate,rpt_ctrl_word = get_pulse_setup(self.ref_clk_freq, "rpt")
spt_rate,spt_ctrl_word = get_pulse_setup(self.radio_clk_freq,"spt")
rep_rate, repulse_ctrl_word1, repulse_ctrl_word2 = \
get_restart_pulse_setup(rp_rate, sp_rate)
self.log.trace("Using RP pulse rate: {} MHz".format(rp_rate/1e6))
self.log.trace("Using SP pulse rate: {} MHz".format(sp_rate/1e6))
self.log.trace("Using RPT pulse rate: {} MHz".format(rpt_rate/1e6))
self.log.trace("Using SPT pulse rate: {} MHz".format(spt_rate/1e6))
self.log.trace("Using Restart pulse rate: {} MHz".format(rep_rate/1e6))
self.log.trace("Setting RP control word to: 0x{:08X}".format(rp_ctrl_word))
self.log.trace("Setting SP control word to: 0x{:08X}".format(sp_ctrl_word))
self.log.trace("Setting RPT control word to: 0x{:08X}".format(rpt_ctrl_word))
self.log.trace("Setting SPT control word to: 0x{:08X}".format(spt_ctrl_word))
self.log.trace("Setting RePulse-1 control word to: 0x{:08X}" \
.format(repulse_ctrl_word1))
self.log.trace("Setting RePulse-2 control word to: 0x{:08X}" \
.format(repulse_ctrl_word2))
self.poke32(self.REPULSE_PERIOD_CONTROL_1, repulse_ctrl_word1)
self.poke32(self.REPULSE_PERIOD_CONTROL_2, repulse_ctrl_word2)
self.poke32(self.RP_PERIOD_CONTROL, rp_ctrl_word)
self.poke32(self.SP_PERIOD_CONTROL, sp_ctrl_word)
self.poke32(self.RPT_PERIOD_CONTROL, rpt_ctrl_word)
self.poke32(self.SPT_PERIOD_CONTROL, spt_ctrl_word)
# Take the core out of reset, then check the reset done bit cleared.
self.poke32(self.TDC_CONTROL, 0x2)
reset_status = self.peek32(self.TDC_STATUS) & 0xFF
if reset_status != 0x00:
self.log.error(
"TDC Reset Failed to Clear! " \
"Check that your clocks are toggling. Status: 0x{:x}"
.format(reset_status)
)
raise RuntimeError("TDC Reset Failed.")
# Set the PPS crossing delay from the SP-t rising edge to the PPS pulse
# in the Radio Clock domain.
# delay = [19..16], update = 20
reg_val = (self.pps_out_pipe_var_delay & 0xF) << 16 | 0b1 << 20
self.poke32(self.TDC_CONTROL, reg_val)
# Set the pulser enable delay from the RePulse enable to the RP enable.
# Actual delay is +1 whatever is written here. Default is 1.
# delay = [27..24], update = 28
reg_val = (self.pps_in_pipe_dynamic_delay & 0xF) << 24 | 0b1 << 28
self.poke32(self.TDC_CONTROL, reg_val)
# Enable the TDC to capture the PPS. As long as PPS is actually a PPS, this
# doesn't have to happen "synchronously" across all devices. Each device can
# choose a different PPS and still be aligned.
self.log.trace("Enabling the TDC...")
self.poke32(self.TDC_CONTROL, 0x10)
# Since a PPS rising edge comes once per second, we only need to wait
# slightly longer than a second (worst-case) to confirm the TDC
# received a PPS.
if not poll_with_timeout(
lambda: bool(self.peek32(self.TDC_STATUS) == 0x10),
1100, # Try for 1.1 seconds
100, # Poll every 100 ms
):
# Try one last time, just in case there is weirdness with the polling loop.
if self.peek32(self.TDC_STATUS) != 0x10:
self.log.error("Failed to capture PPS within 1.1 seconds. " \
"TDC_STATUS: 0x{:X}".format(self.peek32(self.TDC_STATUS)))
raise RuntimeError("Failed to capture PPS.")
self.log.trace("PPS Captured!")
self.configured = True
def measure(self, num_meas=512):
"""
Read num_meas measurements from the device. Average them and return the final
offset value.
"""
# Make sure the TDC is configured before attempting to read measurements.
if not self.configured:
self.log.error("TDC is not configured prior to requesting measurements!")
raise RuntimeError("TDC is not configured prior to requesting measurements!")
measure_offset = lambda: self._read_tdc_meas(
self.meas_clk_freq, self.ref_clk_freq, self.radio_clk_freq
)
# Retrieve the measurements.
tdc_start_time = time.time()
self.log.trace("Reading {} TDC measurements from device...".format(num_meas))
measurements = [measure_offset() for _ in range(num_meas)]
# All the measurements taken in a single run should be nearly identical. The
# expected max delta between all measurements (from accuracy calculations)
# is 1 ns. Take the average of the measurements and then compare each value mean
# to see if it fits this criteria.
current_value = mean(measurements)
max_skew = 0.5e-9 # 500 ps of tolerated skew either direction
meas_err = bool(sum([x < current_value-max_skew for x in measurements])) or \
bool(sum([x > current_value+max_skew for x in measurements]))
meas_range = max(measurements) - min(measurements)
self.log.trace("TDC Measurements Collected! Average = {:.3f} ns. "
"Range: {:.3f} ns".format(current_value*1e9, meas_range*1e9))
self.log.trace("TDC Measurement Duration: {:.3f} s" \
.format(time.time()-tdc_start_time))
if meas_err:
self.log.error("TDC measurements show a wide range of values! "
"Check your clock rates for incompatibilities.")
raise RuntimeError("TDC measurement out of expected range!")
return current_value
def align(self, target_offset=0.0e-12, current_value=0.0e-9, report_only=False):
"""
Takes the current value and aligns the clock to the target. Optionally returns
before performing any shifting if report_only is set to True.
"""
# Make sure the TDC is configured before attempting to align.
if not self.configured:
self.log.error("TDC is not configured prior to requesting alignment!")
raise RuntimeError("TDC is not configured prior to requesting alignment!")
# The TDC 1.0 only supports homogeneous rate synchronization due to the re-run
# architecture requiring the SP to occur after the RP. Set the target value to
# any reasonable value that still accomplishes this purpose.
if self.tdc_rev < 2:
self.target_values = [1.0/self.ref_clk_freq + 3.5/self.radio_clk_freq]
self.target_values = [x + target_offset for x in self.target_values]
else:
# Heterogeneous rate synchronization is only valid when using the same
# reference clock source and period value. Compensate for the PPS output
# pipeline delay by removing the integer number of Radio Clock cycles from
# the target value.
self.target_values = [0.0]
pps_xing_delay = self.pps_out_pipe_var_delay + self.PPS_OUT_PIPE_STATIC_DELAY
self.target_values = [x - pps_xing_delay/self.radio_clk_freq + target_offset \
for x in self.target_values]
# Run the current value through the oracle to determine the adjustments to make.
coarse_steps_required, dac_word_delta, distance_to_target = self._oracle(
self.target_values,
current_value,
self.lmk_vco_freq,
self.fine_delay_step
)
if not report_only:
self.log.trace("Applying calculated shifts...")
# Coarse shift with the LMK.
self.lmk.lmk_shift(coarse_steps_required)
self.log.trace("LMK Shift Complete!")
# Fine shift with the DAC, then give it time to take effect.
self.write_dac_word(self.current_phase_dac_word + dac_word_delta, 0.5)
if not self.lmk.check_plls_locked():
raise RuntimeError("LMK PLLs lost lock during clock synchronization!")
# After shifting the clocks, we enable the PPS crossing from the
# RefClk into the SampleClk domain. We never explicitly turn off the
# crossing from this point forward, even if we re-run this routine,
# until we reconfigure the core again with configure().
self.poke32(self.TDC_CONTROL, 0x1000)
return distance_to_target
def _read_tdc_meas(
self,
meas_clk_freq=170.542641116e6,
ref_clk_freq=10e6,
radio_clk_freq=125e6,
):
"""
Return the offset (in seconds) from the SP to the RP.
"""
# Current worst-case time given a 40kHz pulse rate and 2^17 measurements for
# the period average operation is ~3.28 s... Round up to 5.0 s. This value is
# only for the first measurement to appear... subsequent repeat runs should be
# only a few us long.
timeout = time.time() + 5.0
while True:
sp_offset_msb = self.peek32(self.SP_OFFSET_1)
if sp_offset_msb & 0x100 == 0x100:
break
if time.time() > timeout:
error_msg = "Offsets failed to update within timeout."
self.log.error(error_msg)
raise RuntimeError(error_msg)
# CRITICAL: These register values are locked when SP_OFFSET_1 is read and
# reloaded when SP_OFFSET_1 is read again, to keep one value from updating before
# the other. The SP and RP measurements are only meaningful when compared to one
# another from the same TDC run.
sp_offset_lsb = self.peek32(self.SP_OFFSET_0)
rp_offset_msb = self.peek32(self.RP_OFFSET_1)
rp_offset_lsb = self.peek32(self.RP_OFFSET_0)
sp_offset = (sp_offset_msb & 0xFF) << 32
sp_offset = (sp_offset | sp_offset_lsb)
rp_offset = (rp_offset_msb & 0xFF) << 32
rp_offset = (rp_offset | rp_offset_lsb)
# Do the subtraction before converting to floating point.
sp_rp = float(sp_offset - rp_offset) / (1<<27)
# Some Math...
# Convert the reading from meas_clk ticks to picoseconds
sp_rp_samp = sp_rp/meas_clk_freq
# True difference between the SP and RP pulses, due to sampling locations
offset = sp_rp_samp + 1.0/ref_clk_freq - 1.0/radio_clk_freq
return offset
def _oracle(self, target_values, current_value, lmk_vco_freq, fine_delay_step):
"""
target_values -- The desired offset (seconds). Can be a list of values,
in which case the target value that is closest to the
current value is chosen.
current_value -- Current offset (seconds)
current_dac_word -- Current DAC word
lmk_vco_freq -- LMK VCO frequency. We can shift using the LMK in steps
of 1/lmk_vco_freq
Returns a tuple with the number of LMK coarse delay steps and the delta
that needs to be applied to the DAC output word.
Description of algorithm:
1) Out of the given target values, find the one that's closest to the
current value.
2) Figure out the number how many steps the LMK needs to shift by for
a coarse correction
3) Calculate DAC word for shifting the rest
"""
target_value = reduce(
lambda a, x: a if (abs(a-current_value) < abs(x-current_value)) else x,
target_values
)
distance_to_target = target_value - current_value
self.log.trace("Target value = {:.3f} ns. Current value = {:.3f} ns. Distance to target = {:.3f} ns.".format(
target_value*1e9,
current_value*1e9,
distance_to_target*1e9,
))
# Determine the sign.
sign = 1 if distance_to_target >= 0 else -1
coarse_step_size = 1.0/lmk_vco_freq
# For negative input values, divmod occasionally returns coarse steps -1 from
# the correct value. To combat this blatant crime, I just give it a positive value
# and then sign-correct afterwards.
coarse_steps_required, remainder = divmod(abs(distance_to_target), coarse_step_size)
coarse_steps_required = int(coarse_steps_required * sign)
self.log.trace("Coarse Steps (LMK): {}".format(coarse_steps_required))
dac_word_delta = int(remainder // fine_delay_step) * sign
self.log.trace("Fine Steps (DAC): {}".format(dac_word_delta))
return coarse_steps_required, dac_word_delta, distance_to_target
def write_dac_word(self, word, settling_time=1.0):
"""
Write the word and wait for settling time.
TODO: hard-coded to support 16 bit DACs. do we need to modify to support smaller?
"""
self.current_phase_dac_word = word & 0xFFFF
self.log.trace("Writing Phase DAC Word: {}".format(self.current_phase_dac_word))
self.phase_dac.poke16(self.dac_spi_addr_val, self.current_phase_dac_word)
time.sleep(settling_time) # settling time.
return self.current_phase_dac_word
def test_dac_flatness(self, low_bound, high_bound, middle_samples):
"""
Take several TDC measurements using DAC settings from [low_bound, high_bound].
Minimum number of measurements is 2, for the low and high bounds, and
middle_samples defines the number of measurements taken between the bounds.
Writes these samples along with their corresponding DAC values to a file for
post-processing.
"""
results = []
# Higher this number, higher the duration but also higher the TDC accuracy...
test_duration = 512 # low duration = 64, middle = 512, high = 1024
self.log.trace("Starting DAC Flatness Test...")
self.log.trace("DAC Low Bound: {}. DAC High Bound: {}".format(low_bound, high_bound))
# open file for writing
meas_file = open("dac_flatness_results.txt", "w")
meas_file.write("DAC Word, Distance to Target (ps)\n")
inc = math.floor((high_bound - low_bound)/(middle_samples + 1.0))
# Set the PDAC at the low bound value and allow it to settle for longer than
# usual since this jump could be bigger than most.
self.write_dac_word(low_bound, 0.750)
# Start up the machine.
self.configure(force=True)
for x in range(middle_samples + 2):
self.log.debug("Test Progress: {:.2f}%".format(x*100/(middle_samples+2)))
self.write_dac_word(x*inc + low_bound, 0.1)
meas_value = self.measure(test_duration)
meas_file.write("{}, {:.4f}\n".format(x*inc + low_bound, meas_value*1e12))
results.append(meas_value*1e12)
meas_file.close()
self.log.info("Results:")
for y in range(middle_samples + 2):
self.log.info("Word: {} Measurement: {:.6f}".format(y*inc + low_bound, results[y]))
return True
def dac_bist(self, taps_from_center=100):
"""
A quick BIST of the DAC, proving it is (a) alive and (b) can shift the clock.
Instructions:
- Replace the <_sync_db_clock(self.clock_synchronizer)> call in the dboard
manager with <self.clock_synchronizer.dac_bist(100)>, replacing 100 with
the desired taps_from_center value.
- Run MPM with: # usrp_hwd.py --init-only
The test performs 3 TDC measurements with three DAC settings:
1) at the initial DAC setting
2) below the initial setting
3) above the initial setting
The following checks are performed on the resulting measurements:
1) they are monotonically increasing in this order: 2, 1, 3
2) the distance from 2 -> 1 and 2 -> 3 is within some range based on calculated
expected values
"""
test1_result = False
test2_result = False
# Higher this number, higher the duration but also higher the TDC accuracy...
test_duration = 512 # low duration = 64, middle = 512, high = 1024
self.log.info("PDAC BIST: Starting Phase DAC BIST Test...")
# Take a first measurement without altering the PDAC.
self.log.trace("PDAC BIST: Taking center measurement.")
self.configure(force=True)
center_meas = self.measure(test_duration)
# Modify the DAC word to below the default value, then above, repeating the
# measurements each time.
self.write_dac_word(self.current_phase_dac_word + taps_from_center, 0.5)
high_meas = self.measure(test_duration)
self.write_dac_word(self.current_phase_dac_word - 2*taps_from_center, 0.5)
low_meas = self.measure(test_duration)
self.log.info("PDAC BIST: Phase DAC BIST Raw Results:")
self.log.info("PDAC BIST: Low Measurement: {:.6f} ns".format(low_meas*1e9))
self.log.info("PDAC BIST: Center Measurement: {:.6f} ns".format(center_meas*1e9))
self.log.info("PDAC BIST: High Measurement: {:.6f} ns".format(high_meas*1e9))
# Test #1: Are all the measurements increasing: low -> center -> high?
if (high_meas > center_meas) and (center_meas > low_meas):
test1_result = True
else:
self.log.warning("PDAC BIST: Measured values are not monotonically "
"increasing!")
# Test #2: Are the measurements spaced appropriately?
expected_meas = taps_from_center*self.fine_delay_step
actual_high_meas = high_meas - center_meas
actual_low_meas = center_meas - low_meas
# TDC measurement error is typically 40 ps. We should expected that the variation
# between measurements is significantly less than this, but still prepare for the
# worst... therefore we check to ensure our expected measurement spread is
# higher than our expected error.
allowable_error = 40e-12
if expected_meas < allowable_error:
self.log.warning("PDAC BIST: Expected measurement offset is less than the " \
"allowable error of {:.2f} ps. Consider increasing the " \
"taps_from_center parameter." \
.format(allowable_error*1e12))
if abs(actual_high_meas - expected_meas) < allowable_error and \
abs(actual_low_meas - expected_meas) < allowable_error:
test2_result = True
else:
self.log.warning("PDAC BIST: Measured values are not spaced correctly!")
if not(test1_result and test2_result):
raise RuntimeError("Phase DAC BIST Failed!")
self.log.info("PDAC BIST: Test Passed!")
return True
|