1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
#
# Copyright 2018 Ettus Research, a National Instruments Company
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
E320 dboard (RF and control) implementation module
"""
import threading
from usrp_mpm import lib # Pulls in everything from C++-land
from usrp_mpm.bfrfs import BufferFS
from usrp_mpm.chips import ADF400x
from usrp_mpm.dboard_manager import DboardManagerBase, AD936xDboard
from usrp_mpm.mpmlog import get_logger
from usrp_mpm.sys_utils.udev import get_eeprom_paths
from usrp_mpm.periph_manager.e320_periphs import MboardRegsControl
DEFAULT_MASTER_CLOCK_RATE = 16e6
###############################################################################
# Main dboard control class
###############################################################################
class Neon(AD936xDboard, DboardManagerBase):
"""
Holds all dboard specific information and methods of the neon dboard
"""
#########################################################################
# Overridables
#
# See DboardManagerBase for documentation on these fields
#########################################################################
pids = [0xe320]
rx_sensor_callback_map = {
'ad9361_temperature': 'get_catalina_temp_sensor',
'rssi' : 'get_rssi_sensor',
# For backward compatibility reasons we have the same sensor with two
# different names
'lo_lock' : 'get_rx_lo_lock_sensor',
'lo_locked' : 'get_rx_lo_lock_sensor',
}
tx_sensor_callback_map = {
'ad9361_temperature': 'get_catalina_temp_sensor',
# For backward compatibility reasons we have the same sensor with two
# different names
'lo_lock' : 'get_tx_lo_lock_sensor',
'lo_locked' : 'get_tx_lo_lock_sensor',
}
# Maps the chipselects to the corresponding devices:
spi_chipselect = {"catalina": 0,
"adf4002": 1}
### End of overridables #################################################
# MB regs label: Needed to access the lock bit
mboard_regs_label = "mboard-regs"
# This map describes how the user data is stored in EEPROM. If a dboard rev
# changes the way the EEPROM is used, we add a new entry. If a dboard rev
# is not found in the map, then we go backward until we find a suitable rev
user_eeprom = {
0: {
'label': "e0004000.i2c",
'offset': 1024,
'max_size': 32786 - 1024,
'alignment': 1024,
},
}
def __init__(self, slot_idx, **kwargs):
DboardManagerBase.__init__(self, slot_idx, **kwargs)
AD936xDboard.__init__(
self, lambda: MboardRegsControl(self.mboard_regs_label, self.log))
self.log = get_logger("Neon-{}".format(slot_idx))
self.log.trace("Initializing Neon daughterboard, slot index %d",
self.slot_idx)
self.rev = int(self.device_info['rev'])
self.log.trace("This is a rev: {}".format(chr(65 + self.rev)))
# These will get updated during init()
self.master_clock_rate = None
# Predeclare some attributes to make linter happy:
self.eeprom_fs = None
self.eeprom_path = None
# Now initialize all peripherals. If that doesn't work, put this class
# into a non-functional state (but don't crash, or we can't talk to it
# any more):
try:
self._init_periphs()
self._periphs_initialized = True
except Exception as ex:
self.log.error("Failed to initialize peripherals: %s", str(ex))
self._periphs_initialized = False
def _init_periphs(self):
"""
Initialize power and peripherals that don't need user-settings
"""
self.log.debug("Loading C++ drivers...")
# Setup the ADF4002
adf4002_spi = lib.spi.make_spidev(
str(self._spi_nodes['adf4002']),
1000000, # Speed (Hz)
0 # SPI mode
)
self.log.trace("Initializing ADF4002.")
from usrp_mpm.periph_manager.e320 import E320_DEFAULT_INT_CLOCK_FREQ
self.adf4002 = ADF400x(adf4002_spi,
freq=E320_DEFAULT_INT_CLOCK_FREQ,
parent_log=self.log)
# Set up AD9361 / the Neon Manager
self._device = lib.dboards.neon_manager(self._spi_nodes['catalina'])
ad936x_rfic = self._device.get_radio_ctrl()
self.log.trace("Loaded C++ drivers.")
self._init_cat_api(ad936x_rfic)
self.eeprom_fs, self.eeprom_path = self._init_user_eeprom(
self._get_user_eeprom_info(self.rev)
)
def init(self, args):
"""
Initialize the RFIC portion of the E320 (rest happens in e320.init())
"""
if not self._periphs_initialized:
error_msg = "Cannot run init(), peripherals are not initialized!"
self.log.error(error_msg)
raise RuntimeError(error_msg)
master_clock_rate = \
float(args.get('master_clock_rate', DEFAULT_MASTER_CLOCK_RATE))
self.init_rfic(master_clock_rate)
return True
###########################################################################
# Clocking
###########################################################################
def update_ref_clock_freq(self, freq):
"""Update the reference clock frequency"""
self.adf4002.set_ref_freq(freq)
###########################################################################
# EEPROM Control
###########################################################################
def _get_user_eeprom_info(self, rev):
"""
Return an EEPROM access map (from self.user_eeprom) based on the rev.
"""
rev_for_lookup = rev
while rev_for_lookup not in self.user_eeprom:
if rev_for_lookup < 0:
raise RuntimeError(
f"Could not find a user EEPROM map for revision {rev}!")
rev_for_lookup -= 1
assert rev_for_lookup in self.user_eeprom, \
"Invalid EEPROM lookup rev!"
return self.user_eeprom[rev_for_lookup]
def _init_user_eeprom(self, eeprom_info):
"""
Reads out user-data EEPROM, and intializes a BufferFS object from that.
"""
self.log.trace("Initializing EEPROM user data...")
eeprom_paths = get_eeprom_paths(eeprom_info.get('label'))
self.log.trace("Found the following EEPROM paths: `{}'".format(
eeprom_paths))
eeprom_path = eeprom_paths[self.slot_idx]
self.log.trace("Selected EEPROM path: `{}'".format(eeprom_path))
user_eeprom_offset = eeprom_info.get('offset', 0)
self.log.trace("Selected EEPROM offset: %d", user_eeprom_offset)
user_eeprom_data = open(eeprom_path, 'rb').read()[user_eeprom_offset:]
self.log.trace("Total EEPROM size is: %d bytes", len(user_eeprom_data))
return BufferFS(
user_eeprom_data,
max_size=eeprom_info.get('max_size'),
alignment=eeprom_info.get('alignment', 1024),
log=self.log
), eeprom_path
def get_user_eeprom_data(self):
"""
Return a dict of blobs stored in the user data section of the EEPROM.
"""
return {
blob_id: self.eeprom_fs.get_blob(blob_id)
for blob_id in self.eeprom_fs.entries.keys()
}
def set_user_eeprom_data(self, eeprom_data):
"""
Update the local EEPROM with the data from eeprom_data.
The actual writing to EEPROM can take some time, and is thus kicked
into a background task. Don't call set_user_eeprom_data() quickly in
succession. Also, while the background task is running, reading the
EEPROM is unavailable and MPM won't be able to reboot until it's
completed.
However, get_user_eeprom_data() will immediately return the correct
data after this method returns.
"""
for blob_id, blob in eeprom_data.items():
self.eeprom_fs.set_blob(blob_id, blob)
self.log.trace("Writing EEPROM info to `{}'".format(self.eeprom_path))
eeprom_offset = self.user_eeprom[self.rev]['offset']
def _write_to_eeprom_task(path, offset, data, log):
" Writer task: Actually write to file "
# Note: This can be sped up by only writing sectors that actually
# changed. To do so, this function would need to read out the
# current state of the file, do some kind of diff, and then seek()
# to the different sectors. When very large blobs are being
# written, it doesn't actually help all that much, of course,
# because in that case, we'd anyway be changing most of the EEPROM.
with open(path, 'r+b') as eeprom_file:
log.trace("Seeking forward to `{}'".format(offset))
eeprom_file.seek(eeprom_offset)
log.trace("Writing a total of {} bytes.".format(
len(self.eeprom_fs.buffer)))
eeprom_file.write(data)
log.trace("EEPROM write complete.")
thread_id = "eeprom_writer_task_{}".format(self.slot_idx)
if any([x.name == thread_id for x in threading.enumerate()]):
# Should this be fatal?
self.log.warn("Another EEPROM writer thread is already active!")
writer_task = threading.Thread(
target=_write_to_eeprom_task,
args=(
self.eeprom_path,
eeprom_offset,
self.eeprom_fs.buffer,
self.log
),
name=thread_id,
)
writer_task.start()
# Now return and let the copy finish on its own. The thread will detach
# and MPM won't terminate this process until the thread is complete.
# This does not stop anyone from killing this process (and the thread)
# while the EEPROM write is happening, though.
|