1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
#
# Copyright 2020 Ettus Research, a National Instruments Brand
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
usrp simulation module
This module is used to emulate simulated devices. You can build mpm in this
configuration by using the cmake flag -DMPM_DEVICE=sim
"""
from pyroute2 import IPRoute
from usrp_mpm.xports import XportMgrUDP
from usrp_mpm.mpmlog import get_logger
from usrp_mpm.rpc_utils import no_claim
from usrp_mpm.periph_manager import PeriphManagerBase
from usrp_mpm.simulator.sim_dboard import registry as dboards
from usrp_mpm.simulator.chdr_endpoint import ChdrEndpoint
from usrp_mpm.simulator.config import Config
CLOCK_SOURCE_INTERNAL = "internal"
E320_DBOARD_SLOT_IDX = 0
class SimXportMgrUDP(XportMgrUDP):
"""This is an adaptor class for the normal XportMgrUDP
In radios, the interface names are hardcoded. Since we are on a
desktop computer, we generate the names at runtime.
"""
def __init__(self, log, args, eth_dispatcher_cls):
with IPRoute() as ipr:
self.iface_config = {
link.get_attr('IFLA_IFNAME'): {
'label': link.get_attr('IFLA_IFNAME'),
'type': 'forward'
} for link in ipr.get_links()
}
super().__init__(log, args, eth_dispatcher_cls)
class SimEthDispatcher:
"""This is the hardware specific part of the normal XportMgrUDP
that we have to simulate. We get the ipv4 addr with IPRoute
instead of registers
"""
DEFAULT_VITA_PORT = (49153, 49154)
LOG = None
def __init__(self, if_name):
self.log = get_logger(if_name)
self.if_name = if_name
def set_ipv4_addr(self, addr):
"""This doesn't actually change the ipv4 address, it just
checks to make sure the requested address is already our
address, and complains otherwise.
"""
with IPRoute() as ipr:
valid_iface_idx = ipr.link_lookup(ifname=self.if_name)[0]
link_info = ipr.get_links(valid_iface_idx)[0]
real_addr = link_info.get_attr('IFLA_ADDRESS')
if addr != real_addr:
self.log.warning("Cannot change ip address on simulator! Requested: {}, Actual: {}"
.format(addr, real_addr))
class sim(PeriphManagerBase):
"""This is a periph manager that is designed to run on a regular
computer rather than the arm core on an SDR
"""
#########################################################################
# Overridables
#########################################################################
mboard_sensor_callback_map = {}
###########################################################################
# Ctor and device initialization tasks
###########################################################################
def __init__(self, args):
# Logger is initialized in super().__init__ but we need config values
# before we call that
config_log = get_logger("PeriphConfig")
if 'config' in args:
config_path = args['config']
config_log.info("Loading config from {}".format(config_path))
self.config = Config.from_path(config_log, config_path)
else:
config_log.warn("No config specified, using default")
self.config = Config.default()
self.device_id = 1
self.description = self.config.hardware.description
self.mboard_info = {"type": self.config.hardware.uhd_device_type,
"product": self.config.hardware.product,
"simulated": "True"}
self.pids = {int(self.config.hardware.pid): self.config.hardware.product}
# This uses the description, mboard_info, and pids
super().__init__()
self.chdr_endpoint = ChdrEndpoint(self.log, self.config)
# Unlike the real hardware drivers, if there is an exception here,
# we just crash. No use missing an error when testing.
self._init_peripherals(args)
self.init_dboards(args)
if not args.get('skip_boot_init', False):
self.init(args)
def _simulator_sample_rate(self, freq):
self.log.debug("Setting Simulator Sample Rate to {}".format(freq))
self.chdr_endpoint.set_sample_rate(freq)
def generate_device_info(self, eeprom_md, mboard_info, dboard_infos):
"""
Hard-code our product map
"""
# Add the default PeriphManagerBase information first
device_info = super().generate_device_info(
eeprom_md, mboard_info, dboard_infos)
# Then add device-specific information
mb_pid = eeprom_md.get('pid')
device_info['product'] = self.pids.get(mb_pid, 'unknown')
return device_info
def _read_mboard_eeprom(self):
"""
Read out a simulated mboard eeprom and saves it to the appropriate member variable
"""
self._eeprom_head = self._generate_eeprom_head()
self.log.trace("Found EEPROM metadata: '{}'"
.format(str(self._eeprom_head)))
return (self._eeprom_head, None)
def _generate_eeprom_head(self):
return {'pid': self.config.hardware.pid,
'rev': 0,
'serial': self.config.hardware.serial_num}
def _init_peripherals(self, args):
"""
Turn on all peripherals. This may throw an error on failure, so make
sure to catch it.
Peripherals are initialized in the order of least likely to fail, to most
likely.
"""
# Sanity checks
assert self.mboard_info.get('product') in self.pids.values(), \
"Device product could not be determined!"
# Init peripherals
# Init CHDR transports
self._xport_mgrs = {
'udp': SimXportMgrUDP(self.log, args, SimEthDispatcher)
}
# Init complete.
self.log.debug("Device info: {}".format(self.device_info))
def _init_dboards(self, dboard_infos, override_dboard_pids, default_args):
# TODO: Support more than one Daughter Board
# Needs changes here and in config.py
dboard_name = self.config.hardware.dboard_class
dboard_class = dboards[dboard_name]
self.dboards.append(dboard_class(E320_DBOARD_SLOT_IDX, self._simulator_sample_rate))
self.log.info("Found %d daughterboard(s).", len(self.dboards))
###########################################################################
# Device info
###########################################################################
def get_device_info_dyn(self):
"""
Append the device info with current IP addresses.
"""
if not self._device_initialized:
return {}
device_info = self._xport_mgrs['udp'].get_xport_info()
self.log.warn("get_device_info_dyn() - FPGA functionality not implemented yet")
return device_info
def set_device_id(self, device_id):
"""
Sets the device ID for this motherboard.
The device ID is used to identify the RFNoC components associated with
this motherboard.
"""
self.device_id = device_id
self.chdr_endpoint.set_device_id(device_id)
def get_device_id(self):
"""
Gets the device ID for this motherboard.
The device ID is used to identify the RFNoC components associated with
this motherboard.
"""
return self.device_id
@no_claim
def get_proto_ver(self):
"""
Return RFNoC protocol version
"""
return 0x100
@no_claim
def get_chdr_width(self):
"""
Return RFNoC CHDR width
"""
return 64
###########################################################################
# Transport API
###########################################################################
def get_chdr_link_types(self):
"""
This will only ever return a single item (udp).
"""
return ["udp"]
def get_chdr_link_options(self, xport_type):
"""
Returns a list of dictionaries. Every dictionary contains information
about one way to connect to this device in order to initiate CHDR
traffic.
The interpretation of the return value is very highly dependant on the
transport type (xport_type).
For UDP, the every entry of the list has the following keys:
- ipv4 (IP Address)
- port (UDP port)
- link_rate (bps of the link, e.g. 10e9 for 10GigE)
"""
if xport_type not in self._xport_mgrs:
self.log.warning("Can't get link options for unknown link type: '{}'."
.format(xport_type))
return []
return self._xport_mgrs[xport_type].get_chdr_link_options()
#######################################################################
# Timekeeper API
#######################################################################
def get_num_timekeepers(self):
"""
Return the number of timekeepers
"""
return 1
def set_timekeeper_time(self, tk_idx, ticks, next_pps):
"""
Set the time in ticks
Arguments:
tk_idx: Index of timekeeper
ticks: Time in ticks
next_pps: If True, set time at next PPS. Otherwise, set time now.
"""
self.log.debug("Setting timekeeper time (tx_idx:{}, ticks: {}, next_pps: {})"
.format(tk_idx, ticks, next_pps))
def get_timekeeper_time(self, tk_idx, last_pps):
"""
Get the time in ticks
Arguments:
tk_idx: Index of timekeeper
next_pps: If True, get time at last PPS. Otherwise, get time now.
"""
return 0
def set_tick_period(self, tk_idx, period_ns):
"""
Set the time per tick in nanoseconds (tick period)
Arguments:
tk_idx: Index of timekeeper
period_ns: Period in nanoseconds
"""
self.log.debug("Setting tick period (tk_idx: {}, period_ns: {})"
.format(tk_idx, period_ns))
def get_clocks(self):
"""
Gets the RFNoC-related clocks present in the FPGA design
"""
return [
{
'name': 'radio_clk',
'freq': str(122.88e6),
'mutable': 'true'
},
{
'name': 'bus_clk',
'freq': str(200e6),
},
{
'name': 'ctrl_clk',
'freq': str(40e6),
}
]
def get_time_sources(self):
" Returns list of valid time sources "
return (CLOCK_SOURCE_INTERNAL,)
def get_clock_sources(self):
" Lists all available clock sources. "
return (CLOCK_SOURCE_INTERNAL,)
def get_clock_source(self):
" Returns the current Clock Source "
return CLOCK_SOURCE_INTERNAL
def set_clock_source(self, source):
" No-op which sets the clock source on a real radio "
self.log.debug("Setting clock source to {}".format(source))
def set_channel_mode(self, channel_mode):
" No-op which sets the channel mode on a real radio "
self.log.debug("Using channel mode {}".format(channel_mode))
|