1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
#
# Copyright 2021 Ettus Research, a National Instruments Brand
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
X4xx RFDC register control
"""
import time
from usrp_mpm.chips.ic_reg_maps.x4xx_rfdc_regmap import x4xx_rfdc_regmap_t
from usrp_mpm.mpmutils import poll_with_timeout
from usrp_mpm.periph_manager.x4xx_clock_lookup import (
MMCM_FILTERGROUP_LOOKUP,
MMCM_LOCKGROUP_LOOKUP,
)
from usrp_mpm.sys_utils.uio import UIO
# Number of ADCs and DACs in the RFDC.
NUM_CONVERTERS = 16
class RfdcRegsControl:
"""
Control the FPGA RFDC registers external to the XRFdc API
"""
mmcm_clock_map = {
"prc": 0,
"data_clk": 1,
"data_clk_2x": 3,
"rfdc_clk": 2,
"rfdc_clk_x2": 4,
# These are synonymous to rfdc_clk
"r0_clk": 2,
"r0_clk_2x": 4,
"r1_clk": 5,
"r1_clk_2x": 6,
}
def __init__(self, label, log):
self.log = log.getChild("RfdcRegs")
self.regs = UIO(label=label, read_only=False)
self._regs = x4xx_rfdc_regmap_t()
# All registers that we need to know the value of from the beginning we
# need to read out here. Note that we can't yet read all registers when
# this class is instantiated, as the RFDC itself is still being held in
# reset. See also reset().
self._update_reg("CAL_ENABLE_DB0_CHAN0")
self._update_reg("FABRIC_DSP_INFO_BW")
self._update_reg("RFDC_INFO_DB0_XTRA_RESAMP")
for conv in range(NUM_CONVERTERS):
self._update_reg("RFDC_INFO_BLOCK_MODE", conv)
self._regs.save_state()
# From now on, we can use _commit() to write registers instead of going
# through peek/poke.
self._converter_chains_in_reset = True
def reset(self):
"""
Resets the state of the register object. Call this after pulling the
RFDC out of reset.
"""
self._update_reg("CAL_ENABLE_DB0_CHAN0")
self._update_reg("IQ_SWAP_DAC_DB0_CHAN0")
self._update_reg("IQ_SWAP_DAC_DB1_CHAN0")
self._regs.save_state()
def get_num_rx_channels(self):
"""
Returns the number of RX channels as defined in the RFDC register.
"""
return [
getattr(self._regs, f"FABRIC_DSP_INFO_DB0_RX_CNT"),
getattr(self._regs, f"FABRIC_DSP_INFO_DB1_RX_CNT"),
]
def get_num_tx_channels(self, board=0):
"""
Returns the number of TX channels as defined in the RFDC register.
"""
return [
getattr(self._regs, f"FABRIC_DSP_INFO_DB0_TX_CNT"),
getattr(self._regs, f"FABRIC_DSP_INFO_DB1_TX_CNT"),
]
def get_converter_mapping(self):
"""
Returns two tuples: (adc_mapping, dac_mapping).
Every tuple consists of two sub-tuples: (db0_map, db1_map).
Every map contains yet another tuple per channel: (tile, block).
For example, adc_mapping might be of value:
(
(
(0, 1), (0, 0)
), (
(2, 1), (2, 0)
)
)
This means there are 2 dboards. On the first dboard, we have 2 channels,
and channel 0 uses tile 0, block 1.
"""
# define helper function to extract content from device memory
def get_tuple(db, channel, is_adc):
for i in range(NUM_CONVERTERS):
if (
(
self._regs.RFDC_INFO_BLOCK_MODE[i]
== self._regs.RFDC_INFO_BLOCK_MODE_t.RFDC_INFO_BLOCK_MODE_ENABLED
)
and (self._regs.RFDC_INFO_DB[i] == db)
and (self._regs.RFDC_INFO_CHANNEL[i] == channel)
and (self._regs.RFDC_INFO_IS_ADC[i] == is_adc)
):
return tuple((self._regs.RFDC_INFO_TILE[i], self._regs.RFDC_INFO_BLOCK[i]))
else:
raise ValueError(f"Could not find mapping for {db}, {channel}, {is_adc}")
adc_mapping = tuple(
tuple(get_tuple(db, chan, True) for chan in range(num_channels))
for db, num_channels in enumerate(self.get_num_rx_channels())
)
dac_mapping = tuple(
tuple(get_tuple(db, chan, False) for chan in range(num_channels))
for db, num_channels in enumerate(self.get_num_tx_channels())
)
return adc_mapping, dac_mapping
def get_rfdc_info(self, db_idx):
"""
Return a dictionary with information about the RFDC configuration.
"""
assert db_idx in (0, 1)
return {
"num_rx_chans": getattr(self._regs, f"FABRIC_DSP_INFO_DB{db_idx}_RX_CNT"),
"num_tx_chans": getattr(self._regs, f"FABRIC_DSP_INFO_DB{db_idx}_TX_CNT"),
"bw": self._regs.FABRIC_DSP_INFO_BW,
"extra_resampling": getattr(self._regs, f"RFDC_INFO_DB{db_idx}_XTRA_RESAMP"),
"spc_rx": 2 ** getattr(self._regs, f"RFDC_INFO_DB{db_idx}_SPC_RX"),
"spc_tx": 2 ** getattr(self._regs, f"RFDC_INFO_DB{db_idx}_SPC_TX"),
}
def get_threshold_status(self, db_idx, channel, threshold_idx):
"""
Retrieves the status bit for the given threshold block
"""
adc_mapping, _ = self.get_converter_mapping()
assert len(adc_mapping) > 0
assert 0 <= db_idx < len(adc_mapping)
assert 0 <= channel < len(adc_mapping[0])
assert threshold_idx in [0, 1]
adc, block = adc_mapping[db_idx][channel]
reg_name = f"THRESHOLD_ADC{adc}_BLOCK{block}_IDX{threshold_idx}"
self._update_reg(reg_name)
status = getattr(self._regs, reg_name)
return bool(status)
def set_cal_data(self, i, q):
"""
Set I and Q data to be used for cal tones. I and Q are treated
as signed values (2-complement).
"""
assert 0 <= i < 2**16
assert 0 <= q < 2**16
self._regs.CAL_DATA_I = i
self._regs.CAL_DATA_Q = q
self._commit()
def set_cal_enable(self, db_idx, channel, enable):
"""
Enable the cal tone for the specified TX channel. The cal tone is
muxed into the TX signal path.
"""
info = self.get_rfdc_info(db_idx)
assert 0 <= channel < info["num_tx_chans"]
assert enable in [False, True]
setattr(self._regs, f"CAL_ENABLE_DB{db_idx}_CHAN{channel}", int(enable))
self._commit()
def enable_iq_swap(self, enable, db_id, chan_idx, is_dac):
assert db_id in (0, 1)
num_channels = (
self.get_num_tx_channels()[db_id] if is_dac else self.get_num_rx_channels()[db_id]
)
assert chan_idx in range(num_channels)
assert int(is_dac) in (0, 1)
addr_name = f'IQ_SWAP_{"DAC" if is_dac else "ADC"}_DB{db_id}_CHAN{chan_idx}'
enum_name = addr_name + "_t"
setattr(self._regs, addr_name, getattr(self._regs, enum_name)(enable))
self._commit()
###########################################################################
# MMCM control
###########################################################################
def set_reset_mmcm(self, reset=True):
"""
Put MMCM into reset, or take it out of reset
"""
self._regs.MMCM_RESET = (
self._regs.MMCM_RESET_t.MMCM_RESET_ENABLE
if reset
else self._regs.MMCM_RESET_t.MMCM_RESET_DISABLE
)
self._commit()
def reconfigure_mmcm(self, use_regs=True):
"""
Reconfigure the MMCM, either through the DRP registers, or from the
hard-coded defaults.
We assume we're using the MMCM through the clock configuration wizard,
for documentation on this register and this procedure, cf. pg065, Table
2-2, "Clock Configuration Register".
"""
# Commit pending configuration changes
self._commit()
self._regs.MMCM_LOAD_SEN = 1
self._regs.MMCM_SADDR = int(use_regs)
self.log.trace("MMCM DRP initiated.")
# There seems to be issues when committing this cached value, so we
# poke directly instead.
self._poke(
self._regs.get_addr("MMCM_LOAD_SEN"),
self._regs.get_reg(self._regs.get_addr("MMCM_LOAD_SEN")),
)
self.log.trace("MMCM Configuration applied, now waiting for MMCM to lock...")
self.wait_for_mmcm_drp_done()
self.clear_data_clk_unlocked()
self._commit()
def clear_data_clk_unlocked(self):
"""
Currently required when checking the MMCM lock.
FIXME: Quick & dirty workaround for CLEAR_DATA_CLK_UNLOCKED bit. Needs to be
removed when this is resolved in digital.
"""
time.sleep(1)
self._regs.CLEAR_DATA_CLK_UNLOCKED = self._regs.CLEAR_DATA_CLK_UNLOCKED_t(1)
self._commit()
self._regs.CLEAR_DATA_CLK_UNLOCKED = self._regs.CLEAR_DATA_CLK_UNLOCKED_t(0)
self._commit()
def wait_for_mmcm_locked(self, timeout=0.001):
"""
Wait for MMCM to come to a stable locked state.
The datasheet specifies a 100us max lock time
"""
self.wait_for_mmcm_drp_done()
def check_lock():
self._update_reg("MMCM_LOCKED")
if self._regs.MMCM_LOCKED:
self.log.trace("RF MMCM lock detected.")
return True
return False
poll_sleep_ms = 0.2
if not poll_with_timeout(check_lock, timeout * 1000, poll_sleep_ms):
self.log.error("MMCM failed to lock in the expected time.")
raise RuntimeError("MMCM failed to lock within the expected time.")
self.clear_data_clk_unlocked()
def wait_for_mmcm_drp_done(self, timeout=0.001):
"""
Poll the MMCM_LOAD_SEN bit. If we reconfigured the MMCM, it could be
high and we need to wait for it to be low for the reconfig to be
successful.
If we didn't reconfigure the MMCM, this will always be low.
"""
if self._regs.MMCM_LOAD_SEN:
# If this ^^^ is true, then we previously requested a dynamic reconfig
# of the MMCM, so we'll check this bit is also de-asserted, which it
# should be according to pg065.
poll_sleep_ms = 0.2
def check_reconfig_done():
self._update_reg("MMCM_LOAD_SEN")
return not self._regs.MMCM_LOAD_SEN
if not poll_with_timeout(check_reconfig_done, timeout * 1000, poll_sleep_ms):
self.log.error("MMCM failed to confirm DRP in the expected time.")
raise RuntimeError("MMCM failed to confirm DRP in the expected time.")
# We need to tell the reg cache that the value changed back:
self._regs.save_state()
self.log.trace("MMCM DRP successfully completed.")
def update_mmcm_regs(self):
"""
Update the saved state of the MMCM registers from the hardware
"""
self.log.debug("Resetting mmcm registers")
# MMCM register range from 0x300 up to 0x35C
mmcm_regs = range(0x300, 0x35D, 0x4)
for reg in mmcm_regs:
reg_val = self._peek(reg)
self._regs.set_reg(reg, reg_val)
self._regs.save_state()
def set_mmcm_div(self, div_val):
"""
Set MMCM input divider.
Does not commit register values!
"""
assert isinstance(div_val, int) and 1 <= div_val < 127
div_val_by_2 = div_val // 2
if div_val == 1:
self._regs.MMCM_DIV_LO_TIME = 0
self._regs.MMCM_DIV_HI_TIME = 0
self._regs.MMCM_DIV_NO_COUNT = 1
self._regs.MMCM_DIV_EDGE = 0
elif div_val % 2: # Odd divisions
self._regs.MMCM_DIV_LO_TIME = div_val_by_2 + 1
self._regs.MMCM_DIV_HI_TIME = div_val_by_2
self._regs.MMCM_DIV_NO_COUNT = 0
self._regs.MMCM_DIV_EDGE = 1
else: # Even divisions
self._regs.MMCM_DIV_LO_TIME = div_val_by_2
self._regs.MMCM_DIV_HI_TIME = div_val_by_2
self._regs.MMCM_DIV_NO_COUNT = 0
self._regs.MMCM_DIV_EDGE = 0
def set_mmcm_output_div(self, div_val, clock_name):
"""
Set the output divider of a given clock
clock_name is either a string name of a clock ('rfdc_clk', 'data_clk'
and so on) or an integer, in which case it's the *zero-based* index of
the clock (0, 1, 2, etc.). Note that the Clock Wizard GUI uses a 1-based
index, but pg065 uses a 0-based index to describe the registers. Between
these two, we choose the sane option.
Does not commit register values!
"""
assert clock_name in self.mmcm_clock_map or (
isinstance(clock_name, int) and 0 <= clock_name <= 6
)
clock_idx = (
clock_name if isinstance(clock_name, int) else self.mmcm_clock_map.get(clock_name)
)
div_val_int = int(div_val)
assert 1 <= div_val_int <= 128
div_val_int_by2 = div_val_int // 2
div_val_frac = div_val - div_val_int
assert div_val_frac == 0.0 or (clock_idx == 0 and ((div_val_frac / 0.125) % 1 == 0))
if div_val_int == 1:
setattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME", 0)
setattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME", 0)
setattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT", 1)
setattr(self._regs, f"CLKOUT{clock_idx}_EDGE", 0)
elif div_val_int == 128:
# The 128 case is undocumented in pg065 and xapp888, but the MMCM
# does have a documented max division of 128, and a division value
# of 0 is invalid so it can be used for this case. This was confirmed
# by setting the division to 128 in the clock wizard GUI and reading
# out the resulting register value.
setattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME", 0)
setattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME", 0)
setattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT", 0)
setattr(self._regs, f"CLKOUT{clock_idx}_EDGE", 0)
elif div_val_int % 2: # Odd divisions
setattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME", div_val_int_by2 + 1)
setattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME", div_val_int_by2)
setattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT", 0)
setattr(self._regs, f"CLKOUT{clock_idx}_EDGE", 1)
else: # Even divisions
setattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME", div_val_int_by2)
setattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME", div_val_int_by2)
setattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT", 0)
setattr(self._regs, f"CLKOUT{clock_idx}_EDGE", 0)
setattr(self._regs, f"CLKOUT{clock_idx}_MX", 0)
if clock_idx == 0:
div_val_frac_code = int(div_val_frac / 0.125)
self._regs.CLKOUT0_FRAC_EN = int(div_val_frac != 0)
self._regs.CLKOUT0_FRAC = div_val_frac_code
# No idea what these need to be
self._regs.CLKOUT0_PHASE_MUX_F = 0
self._regs.CLKOUT0_FRAC_WF_R = 0
self._regs.CLKOUT0_FRAC_WF_F = 0
self._commit()
def get_mmcm_output_div(self, clock_name):
"""
Get the output divider of a given clock
For clock_name, see set_mmcm_output_div().
"""
assert clock_name in self.mmcm_clock_map or (
isinstance(clock_name, int) and 0 <= clock_name <= 6
)
clock_idx = (
clock_name if isinstance(clock_name, int) else self.mmcm_clock_map.get(clock_name)
)
self._update_reg(f"CLKOUT{clock_idx}_LO_TIME")
self._update_reg(f"CLKOUT{clock_idx}_NO_COUNT")
lo_time = getattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME")
hi_time = getattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME")
no_count = getattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT")
div_val = 1 if no_count else lo_time + hi_time
if div_val == 0:
div_val = 128
if clock_idx == 0 and self._regs.CLKOUT0_FRAC_EN:
div_val += 0.125 * self._regs.CLKOUT0_FRAC
return div_val
def set_mmcm_fb_div(self, div_val):
"""
Set the feedback divider of a given clock
Does not commit register values!
"""
div_val_int = int(div_val)
div_val_int_by2 = div_val_int // 2
div_val_frac = div_val - div_val_int
assert 1 <= div_val_int <= 128
assert (div_val_frac / 0.125) % 1 == 0
if div_val_int == 1:
self._regs.CLKFBOUT_LO_TIME = 0
self._regs.CLKFBOUT_HI_TIME = 0
self._regs.CLKFBOUT_NO_COUNT = 1
self._regs.CLKFBOUT_EDGE = 0
elif div_val_int % 2: # Odd divisions
self._regs.CLKFBOUT_LO_TIME = div_val_int_by2 + 1
self._regs.CLKFBOUT_HI_TIME = div_val_int_by2
self._regs.CLKFBOUT_NO_COUNT = 0
self._regs.CLKFBOUT_EDGE = 1
else: # Even divisions
self._regs.CLKFBOUT_LO_TIME = div_val_int_by2
self._regs.CLKFBOUT_HI_TIME = div_val_int_by2
self._regs.CLKFBOUT_NO_COUNT = 0
self._regs.CLKFBOUT_EDGE = 0
self._regs.CLKFBOUT_MX = 0
div_val_frac_code = int(div_val_frac / 0.125)
self._regs.CLKFBOUT_FRAC_EN = int(div_val_frac != 0)
self._regs.CLKFBOUT_FRAC = div_val_frac_code
# No idea what these need to be
self._regs.CLKFBOUT_PHASE_MUX_F = 0
self._regs.CLKFBOUT_FRAC_WF_R = 0
self._regs.CLKFBOUT_FRAC_WF_F = 0
self._commit()
# Fetch the register values from LUTs.
# LUTs' first index corresponds to FB_DIV = 1
lock_lookup = MMCM_LOCKGROUP_LOOKUP[div_val - 1]
filt_lookup = MMCM_FILTERGROUP_LOOKUP[div_val - 1]
# Lock lookup distribution (from XAPP888):
# LOCKREG1[9:0] = lock_lookup[29:20]
# LOCKREG2[14:10] = lock_lookup[34:30]
# LOCKREG2[9:0] = lock_lookup[9:0]
# LOCKREG3[14:10] = lock_lookup[39:35]
# LOCKREG3[9:0] = lock_lookup[19:10]
self._regs.MMCM_LOCKREG1 = (lock_lookup & 0x003FF00000) >> 20
self._regs.MMCM_LOCKREG2 = (lock_lookup & 0x00000003FF) >> 0 | (
lock_lookup & 0x07C0000000
) >> (30 - 10)
self._regs.MMCM_LOCKREG3 = (lock_lookup & 0x00000FFC00) >> 10 | (
lock_lookup & 0xF800000000
) >> (35 - 10)
# Filter lookup distribution (from XAPP888):
# FILTREG1[15] = filt_lookup[9]
# FILTREG1[12:11] = filt_lookup[8:7]
# FILTREG1[8] = filt_lookup[6]
# FILTREG2[15] = filt_lookup[5]
# FILTREG2[12:11] = filt_lookup[4:3]
# FILTREG2[8:7] = filt_lookup[2:1]
# FILTREG2[4] = filt_lookup[4]
self._regs.MMCM_FILTREG1 = (
(filt_lookup & 0x200) << (15 - 9)
| (filt_lookup & 0x180) << (11 - 7)
| (filt_lookup & 0x4) << (8 - 6)
)
self._regs.MMCM_FILTREG2 = (
(filt_lookup & 0x20) << (15 - 5)
| (filt_lookup & 0x18) << (11 - 3)
| (filt_lookup & 0x6) << (7 - 1)
| (filt_lookup & 0x1) << (4 - 0)
)
self._commit()
def set_gated_clock_enables(self, value=True):
"""
Controls the clock enable for data_clk, data_clk_2x and RFDC clocks
This disables/enables the clock buffers on the MMCM.
"""
self._regs.RF_PLL_ENABLE_DATA_CLK = self._regs.RF_PLL_ENABLE_DATA_CLK_t(int(value))
self._regs.RF_PLL_ENABLE_DATA_CLK_x2 = self._regs.RF_PLL_ENABLE_DATA_CLK_x2_t(int(value))
self._regs.RF_PLL_ENABLE_RF0_CLK = self._regs.RF_PLL_ENABLE_RF0_CLK_t(int(value))
self._regs.RF_PLL_ENABLE_RF0_CLK_x2 = self._regs.RF_PLL_ENABLE_RF0_CLK_x2_t(int(value))
self._regs.RF_PLL_ENABLE_RF1_CLK = self._regs.RF_PLL_ENABLE_RF1_CLK_t(int(value))
self._regs.RF_PLL_ENABLE_RF1_CLK_x2 = self._regs.RF_PLL_ENABLE_RF1_CLK_x2_t(int(value))
self._commit()
def set_reset_adc_dac_chains(self, reset=True):
"""Resets or enables the ADC and DAC chain for the given dboard"""
if not reset:
# We actually don't keep the converters in reset, so this is a no-op.
self._converter_chains_in_reset = False
return
if self._converter_chains_in_reset:
self.log.debug("Converters are already in reset. " "The reset bit will NOT be toggled.")
return
# The actual reset procedure
def _check_for_done(db_idx, xdc):
"""Query a specified done bit. 'xdc' must be either 'ADC' or 'DAC."""
assert xdc in ("ADC", "DAC")
assert db_idx in (0, 1)
reg_name = f"RFDC_DB{db_idx}_{xdc}_RESET_DONE"
self._update_reg(reg_name)
return getattr(self._regs, reg_name)
reset_timeout = 5000 # ms
poll_sleep = 1 # ms
def poll_for_done(db_idx, xdc):
"""Shorthand for poll_with_timeout on the DONE bits"""
return poll_with_timeout(
lambda: _check_for_done(db_idx, xdc), reset_timeout, poll_sleep
)
# Reset the ADC chains
self.log.trace("Resetting ADC chain")
self._regs.RFDC_DB0_ADC_RESET = self._regs.RFDC_DB0_ADC_RESET_t.RFDC_DB0_ADC_RESET_ENABLE
self._regs.RFDC_DB1_ADC_RESET = self._regs.RFDC_DB1_ADC_RESET_t.RFDC_DB1_ADC_RESET_ENABLE
self._commit()
for db_idx in (0, 1):
if not poll_for_done(db_idx, "ADC"):
self.log.error("Timeout while resetting ADC chains.")
raise RuntimeError("Timeout while resetting ADC chains.")
self._regs.RFDC_DB0_ADC_RESET = self._regs.RFDC_DB0_ADC_RESET_t.RFDC_DB0_ADC_RESET_DISABLE
self._regs.RFDC_DB1_ADC_RESET = self._regs.RFDC_DB1_ADC_RESET_t.RFDC_DB1_ADC_RESET_DISABLE
self._commit()
# Reset the DAC chains
self.log.trace("Resetting DAC chain")
self._regs.RFDC_DB0_DAC_RESET = self._regs.RFDC_DB0_DAC_RESET_t.RFDC_DB0_DAC_RESET_ENABLE
self._regs.RFDC_DB1_DAC_RESET = self._regs.RFDC_DB1_DAC_RESET_t.RFDC_DB1_DAC_RESET_ENABLE
self._commit()
for db_idx in (0, 1):
if not poll_for_done(db_idx, "DAC"):
self.log.error("Timeout while resetting DAC chains.")
raise RuntimeError("Timeout while resetting DAC chains.")
self._regs.RFDC_DB0_DAC_RESET = self._regs.RFDC_DB0_DAC_RESET_t.RFDC_DB0_DAC_RESET_DISABLE
self._regs.RFDC_DB1_DAC_RESET = self._regs.RFDC_DB1_DAC_RESET_t.RFDC_DB1_DAC_RESET_DISABLE
self._commit()
self._converter_chains_in_reset = True
def log_status(self):
"""
Debugging API to dump the RFDC interface status.
"""
self._update_reg("STATUS_RFDC_DB0_DAC_TREADY")
# pylint: disable=f-string-without-interpolation
# pylint: disable=invalid-name
r = self._regs
self.log.debug(f"Daughterboard 0")
self.log.debug(f" @RFDC")
self.log.debug(f" DAC(1:0) TREADY : {r.STATUS_RFDC_DB0_DAC_TREADY:02b}")
self.log.debug(f" DAC(1:0) TVALID : {r.STATUS_RFDC_DB0_DAC_TVALID:02b}")
self.log.debug(f" ADC(1:0) I TREADY : {r.STATUS_RFDC_DB0_ADC_I_TREADY:02b}")
self.log.debug(f" ADC(1:0) I TVALID : {r.STATUS_RFDC_DB0_ADC_I_TVALID:02b}")
self.log.debug(f" ADC(1:0) Q TREADY : {r.STATUS_RFDC_DB0_ADC_I_TREADY:02b}")
self.log.debug(f" ADC(1:0) Q TVALID : {r.STATUS_RFDC_DB0_ADC_I_TVALID:02b}")
self.log.debug(f" @USER")
self.log.debug(f" ADC(1:0) OUT TVALID: {r.STATUS_USER_DB0_ADC_OUT_TREADY:02b}")
self.log.debug(f" ADC(1:0) OUT TREADY: {r.STATUS_USER_DB0_ADC_OUT_TVALID:02b}")
self.log.debug(f"Daughterboard 1")
self.log.debug(f" @RFDC")
self.log.debug(f" DAC(1:0) TREADY : {r.STATUS_RFDC_DB1_DAC_TREADY:02b}")
self.log.debug(f" DAC(1:0) TVALID : {r.STATUS_RFDC_DB1_DAC_TVALID:02b}")
self.log.debug(f" ADC(1:0) I TREADY : {r.STATUS_RFDC_DB1_ADC_I_TREADY:02b}")
self.log.debug(f" ADC(1:0) I TVALID : {r.STATUS_RFDC_DB1_ADC_I_TVALID:02b}")
self.log.debug(f" ADC(1:0) Q TREADY : {r.STATUS_RFDC_DB1_ADC_I_TREADY:02b}")
self.log.debug(f" ADC(1:0) Q TVALID : {r.STATUS_RFDC_DB1_ADC_I_TVALID:02b}")
self.log.debug(f" @USER")
self.log.debug(f" ADC(1:0) OUT TVALID: {r.STATUS_USER_DB1_ADC_OUT_TREADY:02b}")
self.log.debug(f" ADC(1:0) OUT TREADY: {r.STATUS_USER_DB1_ADC_OUT_TVALID:02b}")
# pylint: enable=f-string-without-interpolation
# pylint: enable=invalid-name
def reset_gearboxes(self):
""" Resets the ADC and DAC gearboxes. """
self._regs.RFDC_ADC_GEARBOX_RESET = 1
self._regs.RFDC_DAC_GEARBOX_RESET = 1
self._commit()
self._regs.RFDC_ADC_GEARBOX_RESET = 0
self._regs.RFDC_DAC_GEARBOX_RESET = 0
self._commit()
###########################################################################
# Internal helpers
###########################################################################
def _poke(self, addr, val):
"""Shorthand for self.regs.poke32"""
with self.regs:
self.regs.poke32(addr, val)
def _peek(self, addr):
"""Shorthand for self.regs.peek32"""
with self.regs:
result = self.regs.peek32(addr)
return result
def _commit(self):
"""
Write all registers that have a changed state.
"""
for addr in self._regs.get_changed_addrs():
self._poke(addr, self._regs.get_reg(addr))
self._regs.save_state()
def _update_reg(self, reg_name, idx=0):
"""
Update the saved state of a register from the hardware
"""
addr = self._regs.get_addr(reg_name)
reg_val = self._peek(addr + 4 * idx)
self._regs.set_reg(addr + 4 * idx, reg_val)
|