File: x4xx_rfdc_regs.py

package info (click to toggle)
uhd 4.9.0.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 184,180 kB
  • sloc: cpp: 262,887; python: 112,011; ansic: 102,670; vhdl: 57,031; tcl: 19,924; xml: 8,581; makefile: 3,028; sh: 2,812; pascal: 230; javascript: 120; csh: 94; asm: 20; perl: 11
file content (633 lines) | stat: -rw-r--r-- 26,329 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
#
# Copyright 2021 Ettus Research, a National Instruments Brand
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
X4xx RFDC register control
"""

import time

from usrp_mpm.chips.ic_reg_maps.x4xx_rfdc_regmap import x4xx_rfdc_regmap_t
from usrp_mpm.mpmutils import poll_with_timeout
from usrp_mpm.periph_manager.x4xx_clock_lookup import (
    MMCM_FILTERGROUP_LOOKUP,
    MMCM_LOCKGROUP_LOOKUP,
)
from usrp_mpm.sys_utils.uio import UIO

# Number of ADCs and DACs in the RFDC.
NUM_CONVERTERS = 16


class RfdcRegsControl:
    """
    Control the FPGA RFDC registers external to the XRFdc API
    """

    mmcm_clock_map = {
        "prc": 0,
        "data_clk": 1,
        "data_clk_2x": 3,
        "rfdc_clk": 2,
        "rfdc_clk_x2": 4,
        # These are synonymous to rfdc_clk
        "r0_clk": 2,
        "r0_clk_2x": 4,
        "r1_clk": 5,
        "r1_clk_2x": 6,
    }

    def __init__(self, label, log):
        self.log = log.getChild("RfdcRegs")
        self.regs = UIO(label=label, read_only=False)
        self._regs = x4xx_rfdc_regmap_t()
        # All registers that we need to know the value of from the beginning we
        # need to read out here. Note that we can't yet read all registers when
        # this class is instantiated, as the RFDC itself is still being held in
        # reset. See also reset().
        self._update_reg("CAL_ENABLE_DB0_CHAN0")
        self._update_reg("FABRIC_DSP_INFO_BW")
        self._update_reg("RFDC_INFO_DB0_XTRA_RESAMP")
        for conv in range(NUM_CONVERTERS):
            self._update_reg("RFDC_INFO_BLOCK_MODE", conv)
        self._regs.save_state()
        # From now on, we can use _commit() to write registers instead of going
        # through peek/poke.
        self._converter_chains_in_reset = True

    def reset(self):
        """
        Resets the state of the register object. Call this after pulling the
        RFDC out of reset.
        """
        self._update_reg("CAL_ENABLE_DB0_CHAN0")
        self._update_reg("IQ_SWAP_DAC_DB0_CHAN0")
        self._update_reg("IQ_SWAP_DAC_DB1_CHAN0")
        self._regs.save_state()

    def get_num_rx_channels(self):
        """
        Returns the number of RX channels as defined in the RFDC register.
        """
        return [
            getattr(self._regs, f"FABRIC_DSP_INFO_DB0_RX_CNT"),
            getattr(self._regs, f"FABRIC_DSP_INFO_DB1_RX_CNT"),
        ]

    def get_num_tx_channels(self, board=0):
        """
        Returns the number of TX channels as defined in the RFDC register.
        """
        return [
            getattr(self._regs, f"FABRIC_DSP_INFO_DB0_TX_CNT"),
            getattr(self._regs, f"FABRIC_DSP_INFO_DB1_TX_CNT"),
        ]

    def get_converter_mapping(self):
        """
        Returns two tuples: (adc_mapping, dac_mapping).

        Every tuple consists of two sub-tuples: (db0_map, db1_map).

        Every map contains yet another tuple per channel: (tile, block).

        For example, adc_mapping might be of value:
        (
            (
                (0, 1), (0, 0)
            ), (
                (2, 1), (2, 0)
            )
        )

        This means there are 2 dboards. On the first dboard, we have 2 channels,
        and channel 0 uses tile 0, block 1.
        """

        # define helper function to extract content from device memory
        def get_tuple(db, channel, is_adc):
            for i in range(NUM_CONVERTERS):
                if (
                    (
                        self._regs.RFDC_INFO_BLOCK_MODE[i]
                        == self._regs.RFDC_INFO_BLOCK_MODE_t.RFDC_INFO_BLOCK_MODE_ENABLED
                    )
                    and (self._regs.RFDC_INFO_DB[i] == db)
                    and (self._regs.RFDC_INFO_CHANNEL[i] == channel)
                    and (self._regs.RFDC_INFO_IS_ADC[i] == is_adc)
                ):
                    return tuple((self._regs.RFDC_INFO_TILE[i], self._regs.RFDC_INFO_BLOCK[i]))
            else:
                raise ValueError(f"Could not find mapping for {db}, {channel}, {is_adc}")

        adc_mapping = tuple(
            tuple(get_tuple(db, chan, True) for chan in range(num_channels))
            for db, num_channels in enumerate(self.get_num_rx_channels())
        )
        dac_mapping = tuple(
            tuple(get_tuple(db, chan, False) for chan in range(num_channels))
            for db, num_channels in enumerate(self.get_num_tx_channels())
        )
        return adc_mapping, dac_mapping

    def get_rfdc_info(self, db_idx):
        """
        Return a dictionary with information about the RFDC configuration.
        """
        assert db_idx in (0, 1)
        return {
            "num_rx_chans": getattr(self._regs, f"FABRIC_DSP_INFO_DB{db_idx}_RX_CNT"),
            "num_tx_chans": getattr(self._regs, f"FABRIC_DSP_INFO_DB{db_idx}_TX_CNT"),
            "bw": self._regs.FABRIC_DSP_INFO_BW,
            "extra_resampling": getattr(self._regs, f"RFDC_INFO_DB{db_idx}_XTRA_RESAMP"),
            "spc_rx": 2 ** getattr(self._regs, f"RFDC_INFO_DB{db_idx}_SPC_RX"),
            "spc_tx": 2 ** getattr(self._regs, f"RFDC_INFO_DB{db_idx}_SPC_TX"),
        }

    def get_threshold_status(self, db_idx, channel, threshold_idx):
        """
        Retrieves the status bit for the given threshold block
        """
        adc_mapping, _ = self.get_converter_mapping()
        assert len(adc_mapping) > 0
        assert 0 <= db_idx < len(adc_mapping)
        assert 0 <= channel < len(adc_mapping[0])
        assert threshold_idx in [0, 1]

        adc, block = adc_mapping[db_idx][channel]
        reg_name = f"THRESHOLD_ADC{adc}_BLOCK{block}_IDX{threshold_idx}"
        self._update_reg(reg_name)
        status = getattr(self._regs, reg_name)
        return bool(status)

    def set_cal_data(self, i, q):
        """
        Set I and Q data to be used for cal tones. I and Q are treated
        as signed values (2-complement).
        """
        assert 0 <= i < 2**16
        assert 0 <= q < 2**16
        self._regs.CAL_DATA_I = i
        self._regs.CAL_DATA_Q = q
        self._commit()

    def set_cal_enable(self, db_idx, channel, enable):
        """
        Enable the cal tone for the specified TX channel. The cal tone is
        muxed into the TX signal path.
        """
        info = self.get_rfdc_info(db_idx)
        assert 0 <= channel < info["num_tx_chans"]
        assert enable in [False, True]
        setattr(self._regs, f"CAL_ENABLE_DB{db_idx}_CHAN{channel}", int(enable))
        self._commit()

    def enable_iq_swap(self, enable, db_id, chan_idx, is_dac):
        assert db_id in (0, 1)
        num_channels = (
            self.get_num_tx_channels()[db_id] if is_dac else self.get_num_rx_channels()[db_id]
        )
        assert chan_idx in range(num_channels)
        assert int(is_dac) in (0, 1)
        addr_name = f'IQ_SWAP_{"DAC" if is_dac else "ADC"}_DB{db_id}_CHAN{chan_idx}'
        enum_name = addr_name + "_t"
        setattr(self._regs, addr_name, getattr(self._regs, enum_name)(enable))
        self._commit()

    ###########################################################################
    # MMCM control
    ###########################################################################
    def set_reset_mmcm(self, reset=True):
        """
        Put MMCM into reset, or take it out of reset
        """
        self._regs.MMCM_RESET = (
            self._regs.MMCM_RESET_t.MMCM_RESET_ENABLE
            if reset
            else self._regs.MMCM_RESET_t.MMCM_RESET_DISABLE
        )
        self._commit()

    def reconfigure_mmcm(self, use_regs=True):
        """
        Reconfigure the MMCM, either through the DRP registers, or from the
        hard-coded defaults.

        We assume we're using the MMCM through the clock configuration wizard,
        for documentation on this register and this procedure, cf. pg065, Table
        2-2, "Clock Configuration Register".
        """
        # Commit pending configuration changes
        self._commit()
        self._regs.MMCM_LOAD_SEN = 1
        self._regs.MMCM_SADDR = int(use_regs)
        self.log.trace("MMCM DRP initiated.")
        # There seems to be issues when committing this cached value, so we
        # poke directly instead.
        self._poke(
            self._regs.get_addr("MMCM_LOAD_SEN"),
            self._regs.get_reg(self._regs.get_addr("MMCM_LOAD_SEN")),
        )

        self.log.trace("MMCM Configuration applied, now waiting for MMCM to lock...")
        self.wait_for_mmcm_drp_done()
        self.clear_data_clk_unlocked()
        self._commit()

    def clear_data_clk_unlocked(self):
        """
        Currently required when checking the MMCM lock.
        FIXME: Quick & dirty workaround for CLEAR_DATA_CLK_UNLOCKED bit. Needs to be
        removed when this is resolved in digital.
        """
        time.sleep(1)
        self._regs.CLEAR_DATA_CLK_UNLOCKED = self._regs.CLEAR_DATA_CLK_UNLOCKED_t(1)
        self._commit()
        self._regs.CLEAR_DATA_CLK_UNLOCKED = self._regs.CLEAR_DATA_CLK_UNLOCKED_t(0)
        self._commit()

    def wait_for_mmcm_locked(self, timeout=0.001):
        """
        Wait for MMCM to come to a stable locked state.
        The datasheet specifies a 100us max lock time
        """
        self.wait_for_mmcm_drp_done()

        def check_lock():
            self._update_reg("MMCM_LOCKED")
            if self._regs.MMCM_LOCKED:
                self.log.trace("RF MMCM lock detected.")
                return True
            return False

        poll_sleep_ms = 0.2
        if not poll_with_timeout(check_lock, timeout * 1000, poll_sleep_ms):
            self.log.error("MMCM failed to lock in the expected time.")
            raise RuntimeError("MMCM failed to lock within the expected time.")
        self.clear_data_clk_unlocked()

    def wait_for_mmcm_drp_done(self, timeout=0.001):
        """
        Poll the MMCM_LOAD_SEN bit. If we reconfigured the MMCM, it could be
        high and we need to wait for it to be low for the reconfig to be
        successful.
        If we didn't reconfigure the MMCM, this will always be low.
        """
        if self._regs.MMCM_LOAD_SEN:
            # If this ^^^ is true, then we previously requested a dynamic reconfig
            # of the MMCM, so we'll check this bit is also de-asserted, which it
            # should be according to pg065.
            poll_sleep_ms = 0.2

            def check_reconfig_done():
                self._update_reg("MMCM_LOAD_SEN")
                return not self._regs.MMCM_LOAD_SEN

            if not poll_with_timeout(check_reconfig_done, timeout * 1000, poll_sleep_ms):
                self.log.error("MMCM failed to confirm DRP in the expected time.")
                raise RuntimeError("MMCM failed to confirm DRP in the expected time.")
            # We need to tell the reg cache that the value changed back:
            self._regs.save_state()
            self.log.trace("MMCM DRP successfully completed.")

    def update_mmcm_regs(self):
        """
        Update the saved state of the MMCM registers from the hardware
        """
        self.log.debug("Resetting mmcm registers")
        # MMCM register range from 0x300 up to 0x35C
        mmcm_regs = range(0x300, 0x35D, 0x4)

        for reg in mmcm_regs:
            reg_val = self._peek(reg)
            self._regs.set_reg(reg, reg_val)
        self._regs.save_state()

    def set_mmcm_div(self, div_val):
        """
        Set MMCM input divider.

        Does not commit register values!
        """
        assert isinstance(div_val, int) and 1 <= div_val < 127
        div_val_by_2 = div_val // 2
        if div_val == 1:
            self._regs.MMCM_DIV_LO_TIME = 0
            self._regs.MMCM_DIV_HI_TIME = 0
            self._regs.MMCM_DIV_NO_COUNT = 1
            self._regs.MMCM_DIV_EDGE = 0
        elif div_val % 2:  # Odd divisions
            self._regs.MMCM_DIV_LO_TIME = div_val_by_2 + 1
            self._regs.MMCM_DIV_HI_TIME = div_val_by_2
            self._regs.MMCM_DIV_NO_COUNT = 0
            self._regs.MMCM_DIV_EDGE = 1
        else:  # Even divisions
            self._regs.MMCM_DIV_LO_TIME = div_val_by_2
            self._regs.MMCM_DIV_HI_TIME = div_val_by_2
            self._regs.MMCM_DIV_NO_COUNT = 0
            self._regs.MMCM_DIV_EDGE = 0

    def set_mmcm_output_div(self, div_val, clock_name):
        """
        Set the output divider of a given clock

        clock_name is either a string name of a clock ('rfdc_clk', 'data_clk'
        and so on) or an integer, in which case it's the *zero-based* index of
        the clock (0, 1, 2, etc.). Note that the Clock Wizard GUI uses a 1-based
        index, but pg065 uses a 0-based index to describe the registers. Between
        these two, we choose the sane option.

        Does not commit register values!
        """
        assert clock_name in self.mmcm_clock_map or (
            isinstance(clock_name, int) and 0 <= clock_name <= 6
        )
        clock_idx = (
            clock_name if isinstance(clock_name, int) else self.mmcm_clock_map.get(clock_name)
        )
        div_val_int = int(div_val)
        assert 1 <= div_val_int <= 128
        div_val_int_by2 = div_val_int // 2
        div_val_frac = div_val - div_val_int
        assert div_val_frac == 0.0 or (clock_idx == 0 and ((div_val_frac / 0.125) % 1 == 0))
        if div_val_int == 1:
            setattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME", 0)
            setattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME", 0)
            setattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT", 1)
            setattr(self._regs, f"CLKOUT{clock_idx}_EDGE", 0)
        elif div_val_int == 128:
            # The 128 case is undocumented in pg065 and xapp888, but the MMCM
            # does have a documented max division of 128, and a division value
            # of 0 is invalid so it can be used for this case. This was confirmed
            # by setting the division to 128 in the clock wizard GUI and reading
            # out the resulting register value.
            setattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME", 0)
            setattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME", 0)
            setattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT", 0)
            setattr(self._regs, f"CLKOUT{clock_idx}_EDGE", 0)
        elif div_val_int % 2:  # Odd divisions
            setattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME", div_val_int_by2 + 1)
            setattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME", div_val_int_by2)
            setattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT", 0)
            setattr(self._regs, f"CLKOUT{clock_idx}_EDGE", 1)
        else:  # Even divisions
            setattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME", div_val_int_by2)
            setattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME", div_val_int_by2)
            setattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT", 0)
            setattr(self._regs, f"CLKOUT{clock_idx}_EDGE", 0)
        setattr(self._regs, f"CLKOUT{clock_idx}_MX", 0)
        if clock_idx == 0:
            div_val_frac_code = int(div_val_frac / 0.125)
            self._regs.CLKOUT0_FRAC_EN = int(div_val_frac != 0)
            self._regs.CLKOUT0_FRAC = div_val_frac_code
            # No idea what these need to be
            self._regs.CLKOUT0_PHASE_MUX_F = 0
            self._regs.CLKOUT0_FRAC_WF_R = 0
            self._regs.CLKOUT0_FRAC_WF_F = 0

        self._commit()

    def get_mmcm_output_div(self, clock_name):
        """
        Get the output divider of a given clock

        For clock_name, see set_mmcm_output_div().
        """
        assert clock_name in self.mmcm_clock_map or (
            isinstance(clock_name, int) and 0 <= clock_name <= 6
        )
        clock_idx = (
            clock_name if isinstance(clock_name, int) else self.mmcm_clock_map.get(clock_name)
        )
        self._update_reg(f"CLKOUT{clock_idx}_LO_TIME")
        self._update_reg(f"CLKOUT{clock_idx}_NO_COUNT")
        lo_time = getattr(self._regs, f"CLKOUT{clock_idx}_LO_TIME")
        hi_time = getattr(self._regs, f"CLKOUT{clock_idx}_HI_TIME")
        no_count = getattr(self._regs, f"CLKOUT{clock_idx}_NO_COUNT")
        div_val = 1 if no_count else lo_time + hi_time
        if div_val == 0:
            div_val = 128
        if clock_idx == 0 and self._regs.CLKOUT0_FRAC_EN:
            div_val += 0.125 * self._regs.CLKOUT0_FRAC
        return div_val

    def set_mmcm_fb_div(self, div_val):
        """
        Set the feedback divider of a given clock

        Does not commit register values!
        """
        div_val_int = int(div_val)
        div_val_int_by2 = div_val_int // 2
        div_val_frac = div_val - div_val_int
        assert 1 <= div_val_int <= 128
        assert (div_val_frac / 0.125) % 1 == 0
        if div_val_int == 1:
            self._regs.CLKFBOUT_LO_TIME = 0
            self._regs.CLKFBOUT_HI_TIME = 0
            self._regs.CLKFBOUT_NO_COUNT = 1
            self._regs.CLKFBOUT_EDGE = 0
        elif div_val_int % 2:  # Odd divisions
            self._regs.CLKFBOUT_LO_TIME = div_val_int_by2 + 1
            self._regs.CLKFBOUT_HI_TIME = div_val_int_by2
            self._regs.CLKFBOUT_NO_COUNT = 0
            self._regs.CLKFBOUT_EDGE = 1
        else:  # Even divisions
            self._regs.CLKFBOUT_LO_TIME = div_val_int_by2
            self._regs.CLKFBOUT_HI_TIME = div_val_int_by2
            self._regs.CLKFBOUT_NO_COUNT = 0
            self._regs.CLKFBOUT_EDGE = 0
        self._regs.CLKFBOUT_MX = 0
        div_val_frac_code = int(div_val_frac / 0.125)
        self._regs.CLKFBOUT_FRAC_EN = int(div_val_frac != 0)
        self._regs.CLKFBOUT_FRAC = div_val_frac_code
        # No idea what these need to be
        self._regs.CLKFBOUT_PHASE_MUX_F = 0
        self._regs.CLKFBOUT_FRAC_WF_R = 0
        self._regs.CLKFBOUT_FRAC_WF_F = 0
        self._commit()

        # Fetch the register values from LUTs.
        # LUTs' first index corresponds to FB_DIV = 1
        lock_lookup = MMCM_LOCKGROUP_LOOKUP[div_val - 1]
        filt_lookup = MMCM_FILTERGROUP_LOOKUP[div_val - 1]

        # Lock lookup distribution (from XAPP888):
        # LOCKREG1[9:0]   = lock_lookup[29:20]
        # LOCKREG2[14:10] = lock_lookup[34:30]
        # LOCKREG2[9:0]   = lock_lookup[9:0]
        # LOCKREG3[14:10] = lock_lookup[39:35]
        # LOCKREG3[9:0]   = lock_lookup[19:10]
        self._regs.MMCM_LOCKREG1 = (lock_lookup & 0x003FF00000) >> 20

        self._regs.MMCM_LOCKREG2 = (lock_lookup & 0x00000003FF) >> 0 | (
            lock_lookup & 0x07C0000000
        ) >> (30 - 10)

        self._regs.MMCM_LOCKREG3 = (lock_lookup & 0x00000FFC00) >> 10 | (
            lock_lookup & 0xF800000000
        ) >> (35 - 10)

        # Filter lookup distribution (from XAPP888):
        # FILTREG1[15]    = filt_lookup[9]
        # FILTREG1[12:11] = filt_lookup[8:7]
        # FILTREG1[8]     = filt_lookup[6]
        # FILTREG2[15]    = filt_lookup[5]
        # FILTREG2[12:11] = filt_lookup[4:3]
        # FILTREG2[8:7]   = filt_lookup[2:1]
        # FILTREG2[4]     = filt_lookup[4]
        self._regs.MMCM_FILTREG1 = (
            (filt_lookup & 0x200) << (15 - 9)
            | (filt_lookup & 0x180) << (11 - 7)
            | (filt_lookup & 0x4) << (8 - 6)
        )

        self._regs.MMCM_FILTREG2 = (
            (filt_lookup & 0x20) << (15 - 5)
            | (filt_lookup & 0x18) << (11 - 3)
            | (filt_lookup & 0x6) << (7 - 1)
            | (filt_lookup & 0x1) << (4 - 0)
        )
        self._commit()

    def set_gated_clock_enables(self, value=True):
        """
        Controls the clock enable for data_clk, data_clk_2x and RFDC clocks

        This disables/enables the clock buffers on the MMCM.
        """
        self._regs.RF_PLL_ENABLE_DATA_CLK = self._regs.RF_PLL_ENABLE_DATA_CLK_t(int(value))
        self._regs.RF_PLL_ENABLE_DATA_CLK_x2 = self._regs.RF_PLL_ENABLE_DATA_CLK_x2_t(int(value))
        self._regs.RF_PLL_ENABLE_RF0_CLK = self._regs.RF_PLL_ENABLE_RF0_CLK_t(int(value))
        self._regs.RF_PLL_ENABLE_RF0_CLK_x2 = self._regs.RF_PLL_ENABLE_RF0_CLK_x2_t(int(value))
        self._regs.RF_PLL_ENABLE_RF1_CLK = self._regs.RF_PLL_ENABLE_RF1_CLK_t(int(value))
        self._regs.RF_PLL_ENABLE_RF1_CLK_x2 = self._regs.RF_PLL_ENABLE_RF1_CLK_x2_t(int(value))
        self._commit()

    def set_reset_adc_dac_chains(self, reset=True):
        """Resets or enables the ADC and DAC chain for the given dboard"""
        if not reset:
            # We actually don't keep the converters in reset, so this is a no-op.
            self._converter_chains_in_reset = False
            return
        if self._converter_chains_in_reset:
            self.log.debug("Converters are already in reset. " "The reset bit will NOT be toggled.")
            return

        # The actual reset procedure
        def _check_for_done(db_idx, xdc):
            """Query a specified done bit.  'xdc' must  be either 'ADC' or 'DAC."""
            assert xdc in ("ADC", "DAC")
            assert db_idx in (0, 1)
            reg_name = f"RFDC_DB{db_idx}_{xdc}_RESET_DONE"
            self._update_reg(reg_name)
            return getattr(self._regs, reg_name)

        reset_timeout = 5000  # ms
        poll_sleep = 1  # ms

        def poll_for_done(db_idx, xdc):
            """Shorthand for poll_with_timeout on the DONE bits"""
            return poll_with_timeout(
                lambda: _check_for_done(db_idx, xdc), reset_timeout, poll_sleep
            )

        # Reset the ADC chains
        self.log.trace("Resetting ADC chain")
        self._regs.RFDC_DB0_ADC_RESET = self._regs.RFDC_DB0_ADC_RESET_t.RFDC_DB0_ADC_RESET_ENABLE
        self._regs.RFDC_DB1_ADC_RESET = self._regs.RFDC_DB1_ADC_RESET_t.RFDC_DB1_ADC_RESET_ENABLE
        self._commit()
        for db_idx in (0, 1):
            if not poll_for_done(db_idx, "ADC"):
                self.log.error("Timeout while resetting ADC chains.")
                raise RuntimeError("Timeout while resetting ADC chains.")
        self._regs.RFDC_DB0_ADC_RESET = self._regs.RFDC_DB0_ADC_RESET_t.RFDC_DB0_ADC_RESET_DISABLE
        self._regs.RFDC_DB1_ADC_RESET = self._regs.RFDC_DB1_ADC_RESET_t.RFDC_DB1_ADC_RESET_DISABLE
        self._commit()
        # Reset the DAC chains
        self.log.trace("Resetting DAC chain")
        self._regs.RFDC_DB0_DAC_RESET = self._regs.RFDC_DB0_DAC_RESET_t.RFDC_DB0_DAC_RESET_ENABLE
        self._regs.RFDC_DB1_DAC_RESET = self._regs.RFDC_DB1_DAC_RESET_t.RFDC_DB1_DAC_RESET_ENABLE
        self._commit()
        for db_idx in (0, 1):
            if not poll_for_done(db_idx, "DAC"):
                self.log.error("Timeout while resetting DAC chains.")
                raise RuntimeError("Timeout while resetting DAC chains.")
        self._regs.RFDC_DB0_DAC_RESET = self._regs.RFDC_DB0_DAC_RESET_t.RFDC_DB0_DAC_RESET_DISABLE
        self._regs.RFDC_DB1_DAC_RESET = self._regs.RFDC_DB1_DAC_RESET_t.RFDC_DB1_DAC_RESET_DISABLE
        self._commit()
        self._converter_chains_in_reset = True

    def log_status(self):
        """
        Debugging API to dump the RFDC interface status.
        """
        self._update_reg("STATUS_RFDC_DB0_DAC_TREADY")
        # pylint: disable=f-string-without-interpolation
        # pylint: disable=invalid-name
        r = self._regs
        self.log.debug(f"Daughterboard 0")
        self.log.debug(f"  @RFDC")
        self.log.debug(f"    DAC(1:0) TREADY    : {r.STATUS_RFDC_DB0_DAC_TREADY:02b}")
        self.log.debug(f"    DAC(1:0) TVALID    : {r.STATUS_RFDC_DB0_DAC_TVALID:02b}")
        self.log.debug(f"    ADC(1:0) I TREADY  : {r.STATUS_RFDC_DB0_ADC_I_TREADY:02b}")
        self.log.debug(f"    ADC(1:0) I TVALID  : {r.STATUS_RFDC_DB0_ADC_I_TVALID:02b}")
        self.log.debug(f"    ADC(1:0) Q TREADY  : {r.STATUS_RFDC_DB0_ADC_I_TREADY:02b}")
        self.log.debug(f"    ADC(1:0) Q TVALID  : {r.STATUS_RFDC_DB0_ADC_I_TVALID:02b}")
        self.log.debug(f"  @USER")
        self.log.debug(f"    ADC(1:0) OUT TVALID: {r.STATUS_USER_DB0_ADC_OUT_TREADY:02b}")
        self.log.debug(f"    ADC(1:0) OUT TREADY: {r.STATUS_USER_DB0_ADC_OUT_TVALID:02b}")
        self.log.debug(f"Daughterboard 1")
        self.log.debug(f"  @RFDC")
        self.log.debug(f"    DAC(1:0) TREADY    : {r.STATUS_RFDC_DB1_DAC_TREADY:02b}")
        self.log.debug(f"    DAC(1:0) TVALID    : {r.STATUS_RFDC_DB1_DAC_TVALID:02b}")
        self.log.debug(f"    ADC(1:0) I TREADY  : {r.STATUS_RFDC_DB1_ADC_I_TREADY:02b}")
        self.log.debug(f"    ADC(1:0) I TVALID  : {r.STATUS_RFDC_DB1_ADC_I_TVALID:02b}")
        self.log.debug(f"    ADC(1:0) Q TREADY  : {r.STATUS_RFDC_DB1_ADC_I_TREADY:02b}")
        self.log.debug(f"    ADC(1:0) Q TVALID  : {r.STATUS_RFDC_DB1_ADC_I_TVALID:02b}")
        self.log.debug(f"  @USER")
        self.log.debug(f"    ADC(1:0) OUT TVALID: {r.STATUS_USER_DB1_ADC_OUT_TREADY:02b}")
        self.log.debug(f"    ADC(1:0) OUT TREADY: {r.STATUS_USER_DB1_ADC_OUT_TVALID:02b}")
        # pylint: enable=f-string-without-interpolation
        # pylint: enable=invalid-name

    def reset_gearboxes(self):
        """ Resets the ADC and DAC gearboxes. """
        self._regs.RFDC_ADC_GEARBOX_RESET = 1
        self._regs.RFDC_DAC_GEARBOX_RESET = 1
        self._commit()
        self._regs.RFDC_ADC_GEARBOX_RESET = 0
        self._regs.RFDC_DAC_GEARBOX_RESET = 0
        self._commit()

    ###########################################################################
    # Internal helpers
    ###########################################################################
    def _poke(self, addr, val):
        """Shorthand for self.regs.poke32"""
        with self.regs:
            self.regs.poke32(addr, val)

    def _peek(self, addr):
        """Shorthand for self.regs.peek32"""
        with self.regs:
            result = self.regs.peek32(addr)
            return result

    def _commit(self):
        """
        Write all registers that have a changed state.
        """
        for addr in self._regs.get_changed_addrs():
            self._poke(addr, self._regs.get_reg(addr))
        self._regs.save_state()

    def _update_reg(self, reg_name, idx=0):
        """
        Update the saved state of a register from the hardware
        """
        addr = self._regs.get_addr(reg_name)
        reg_val = self._peek(addr + 4 * idx)
        self._regs.set_reg(addr + 4 * idx, reg_val)