File: test_umap_nn.py

package info (click to toggle)
umap-learn 0.4.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,668 kB
  • sloc: python: 7,504; sh: 77; makefile: 17
file content (327 lines) | stat: -rw-r--r-- 10,017 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import numpy as np
from nose import SkipTest
from nose.tools import assert_greater_equal, assert_raises
from numpy.testing import assert_array_almost_equal
from scipy import sparse
from sklearn.neighbors import KDTree
from sklearn.preprocessing import normalize

from umap import distances as dist, sparse as spdist
from umap.nndescent import initialized_nnd_search, initialise_search
from umap.sparse_nndescent import (
    sparse_initialized_nnd_search,
    sparse_initialise_search,
)
from umap.umap_ import (
    INT32_MAX,
    INT32_MIN,
    nearest_neighbors,
    smooth_knn_dist,
)
from umap.utils import deheap_sort


# ===================================================
#  Nearest Neighbour Test cases
# ===================================================

# nearest_neighbours metric parameter validation
# -----------------------------------------------
def test_nn_bad_metric(nn_data):
    assert_raises(ValueError, nearest_neighbors, nn_data, 10, 42, {}, False, np.random)


def test_nn_bad_metric_sparse_data(sparse_nn_data):
    assert_raises(
        ValueError,
        nearest_neighbors,
        sparse_nn_data,
        10,
        "seuclidean",
        {},
        False,
        np.random,
    )


# -------------------------------------------------
#  Utility functions for Nearest Neighbour
# -------------------------------------------------


def knn(indices, nn_data):
    tree = KDTree(nn_data)
    true_indices = tree.query(nn_data, 10, return_distance=False)
    num_correct = 0.0
    for i in range(nn_data.shape[0]):
        num_correct += np.sum(np.in1d(true_indices[i], indices[i]))
    return num_correct / (nn_data.shape[0] * 10)


def smooth_knn(nn_data, local_connectivity=1.0):
    knn_indices, knn_dists, _ = nearest_neighbors(
        nn_data, 10, "euclidean", {}, False, np.random
    )
    sigmas, rhos = smooth_knn_dist(
        knn_dists, 10.0, local_connectivity=local_connectivity
    )
    shifted_dists = knn_dists - rhos[:, np.newaxis]
    shifted_dists[shifted_dists < 0.0] = 0.0
    vals = np.exp(-(shifted_dists / sigmas[:, np.newaxis]))
    norms = np.sum(vals, axis=1)
    return norms


def test_nn_descent_neighbor_accuracy(nn_data):
    knn_indices, knn_dists, _ = nearest_neighbors(
        nn_data, 10, "euclidean", {}, False, np.random
    )
    percent_correct = knn(knn_indices, nn_data)
    assert_greater_equal(
        percent_correct,
        0.89,
        "NN-descent did not get 89% accuracy on nearest neighbors",
    )


def test_nn_descent_neighbor_accuracy_low_memory(nn_data):
    knn_indices, knn_dists, _ = nearest_neighbors(
        nn_data, 10, "euclidean", {}, False, np.random, low_memory=True
    )
    percent_correct = knn(knn_indices, nn_data)
    assert_greater_equal(
        percent_correct,
        0.89,
        "NN-descent did not get 89% accuracy on nearest neighbors",
    )


def test_angular_nn_descent_neighbor_accuracy(nn_data):
    knn_indices, knn_dists, _ = nearest_neighbors(
        nn_data, 10, "cosine", {}, True, np.random
    )
    angular_data = normalize(nn_data, norm="l2")
    percent_correct = knn(knn_indices, angular_data)
    assert_greater_equal(
        percent_correct,
        0.89,
        "NN-descent did not get 89% accuracy on nearest neighbors",
    )


def test_sparse_nn_descent_neighbor_accuracy(sparse_nn_data):
    knn_indices, knn_dists, _ = nearest_neighbors(
        sparse_nn_data, 20, "euclidean", {}, False, np.random
    )
    percent_correct = knn(knn_indices, sparse_nn_data.todense())
    assert_greater_equal(
        percent_correct,
        0.90,
        "Sparse NN-descent did not get 90% accuracy on nearest neighbors",
    )


def test_sparse_nn_descent_neighbor_accuracy_low_memory(sparse_nn_data):
    knn_indices, knn_dists, _ = nearest_neighbors(
        sparse_nn_data, 20, "euclidean", {}, False, np.random, low_memory=True
    )
    percent_correct = knn(knn_indices, sparse_nn_data.todense())
    assert_greater_equal(
        percent_correct,
        0.90,
        "Sparse NN-descent did not get 90% accuracy on nearest neighbors",
    )


def test_nn_descent_neighbor_accuracy_callable_metric(nn_data):
    knn_indices, knn_dists, _ = nearest_neighbors(
        nn_data, 10, dist.euclidean, {}, False, np.random
    )

    percent_correct = knn(knn_indices, nn_data)
    assert_greater_equal(
        percent_correct,
        0.95,
        "NN-descent did not get 95% "
        "accuracy on nearest neighbors with callable metric",
    )


@SkipTest
def test_sparse_angular_nn_descent_neighbor_accuracy(sparse_nn_data):
    knn_indices, knn_dists, _ = nearest_neighbors(
        sparse_nn_data, 20, "cosine", {}, True, np.random
    )
    angular_data = normalize(sparse_nn_data, norm="l2").toarray()
    percent_correct = knn(knn_indices, angular_data)
    assert_greater_equal(
        percent_correct,
        0.90,
        "Sparse NN-descent did not get 90% accuracy on nearest neighbors",
    )


def test_smooth_knn_dist_l1norms(nn_data):
    norms = smooth_knn(nn_data)
    assert_array_almost_equal(
        norms,
        1.0 + np.log2(10) * np.ones(norms.shape[0]),
        decimal=3,
        err_msg="Smooth knn-dists does not give expected" "norms",
    )


def test_smooth_knn_dist_l1norms_w_connectivity(nn_data):
    norms = smooth_knn(nn_data, local_connectivity=1.75)
    assert_array_almost_equal(
        norms,
        1.0 + np.log2(10) * np.ones(norms.shape[0]),
        decimal=3,
        err_msg="Smooth knn-dists does not give expected"
        "norms for local_connectivity=1.75",
    )

    # sigmas, rhos = smooth_knn_dist(knn_dists, 10, local_connectivity=0.75)
    # shifted_dists = knn_dists - rhos[:, np.newaxis]
    # shifted_dists[shifted_dists < 0.0] = 0.0
    # vals = np.exp(-(shifted_dists / sigmas[:, np.newaxis]))
    # norms = np.sum(vals, axis=1)
    # diff = np.mean(norms) - (1.0 + np.log2(10))
    #
    # assert_almost_equal(diff, 0.0, decimal=1,
    #                     err_msg='Smooth knn-dists does not give expected'
    #                             'norms for local_connectivity=0.75')


# ===================================================
#  Nearest Neighbour Search Test cases
# ===================================================

# ------------------------------
# Utility Function for NN-Search
# ------------------------------
def setup_search_graph(knn_dists, knn_indices, train):
    search_graph = sparse.lil_matrix((train.shape[0], train.shape[0]), dtype=np.int8)
    search_graph.rows[:] = [inds.tolist() for inds in knn_indices]
    search_graph.data[:] = [vals.tolist() for vals in (knn_dists != 0).astype(np.int8)]
    search_graph = search_graph.maximum(search_graph.transpose()).tocsr()
    return search_graph


def test_nn_search(nn_data):
    train = nn_data[100:]
    test = nn_data[:100]

    (knn_indices, knn_dists, rp_forest) = nearest_neighbors(
        train, 10, "euclidean", {}, False, np.random, use_pynndescent=False,
    )
    # Commented - NOT REALLY USED IN THE TEST
    # graph = fuzzy_simplicial_set(
    #     nn_data,
    #     10,
    #     np.random,
    #     "euclidean",
    #     {},
    #     knn_indices,
    #     knn_dists,
    #     False,
    #     1.0,
    #     1.0,
    #     False,
    # )

    search_graph = setup_search_graph(knn_dists, knn_indices, train)
    rng_state = np.random.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)
    init = initialise_search(
        rp_forest, train, test, int(10 * 3), rng_state, dist.euclidean
    )
    result = initialized_nnd_search(
        train, search_graph.indptr, search_graph.indices, init, test, dist.euclidean
    )

    indices, dists = deheap_sort(result)
    indices = indices[:, :10]

    tree = KDTree(train)
    true_indices = tree.query(test, 10, return_distance=False)

    num_correct = 0.0
    for i in range(test.shape[0]):
        num_correct += np.sum(np.in1d(true_indices[i], indices[i]))

    percent_correct = num_correct / (test.shape[0] * 10)
    assert_greater_equal(
        percent_correct,
        0.99,
        "Sparse NN-descent did not get " "99% accuracy on nearest " "neighbors",
    )


def test_sparse_nn_search(sparse_nn_data):
    train = sparse_nn_data[100:]
    test = sparse_nn_data[:100]
    (knn_indices, knn_dists, rp_forest) = nearest_neighbors(
        train, 15, "euclidean", {}, False, np.random, use_pynndescent=False,
    )

    # COMMENTED OUT as NOT REALLY INFLUENCING THE TEST
    # NOTE: there is a use of nn_data here rather than spatial_nn_data
    # looks like a copy&paste error, not very intended.
    # graph = fuzzy_simplicial_set(
    #     nn_data,
    #     15,
    #     np.random,
    #     "euclidean",
    #     {},
    #     knn_indices,
    #     knn_dists,
    #     False,
    #     1.0,
    #     1.0,
    #     False,
    # )

    search_graph = setup_search_graph(knn_dists, knn_indices, train)
    rng_state = np.random.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

    init = sparse_initialise_search(
        rp_forest,
        train.indices,
        train.indptr,
        train.data,
        test.indices,
        test.indptr,
        test.data,
        int(10 * 6),
        rng_state,
        spdist.sparse_euclidean,
    )

    result = sparse_initialized_nnd_search(
        train.indices,
        train.indptr,
        train.data,
        search_graph.indptr,
        search_graph.indices,
        init,
        test.indices,
        test.indptr,
        test.data,
        spdist.sparse_euclidean,
    )
    indices, dists = deheap_sort(result)
    indices = indices[:, :10]

    tree = KDTree(train.toarray())
    true_indices = tree.query(test.toarray(), 10, return_distance=False)

    num_correct = 0.0
    for i in range(test.shape[0]):
        num_correct += np.sum(np.in1d(true_indices[i], indices[i]))

    percent_correct = num_correct / (test.shape[0] * 10)
    assert_greater_equal(
        percent_correct,
        0.85,
        "Sparse NN-descent did not get " "85% accuracy on nearest " "neighbors",
    )