1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
import numpy as np
from nose import SkipTest
from nose.tools import assert_greater_equal, assert_raises
from numpy.testing import assert_array_almost_equal
from scipy import sparse
from sklearn.neighbors import KDTree
from sklearn.preprocessing import normalize
from umap import distances as dist, sparse as spdist
from umap.nndescent import initialized_nnd_search, initialise_search
from umap.sparse_nndescent import (
sparse_initialized_nnd_search,
sparse_initialise_search,
)
from umap.umap_ import (
INT32_MAX,
INT32_MIN,
nearest_neighbors,
smooth_knn_dist,
)
from umap.utils import deheap_sort
# ===================================================
# Nearest Neighbour Test cases
# ===================================================
# nearest_neighbours metric parameter validation
# -----------------------------------------------
def test_nn_bad_metric(nn_data):
assert_raises(ValueError, nearest_neighbors, nn_data, 10, 42, {}, False, np.random)
def test_nn_bad_metric_sparse_data(sparse_nn_data):
assert_raises(
ValueError,
nearest_neighbors,
sparse_nn_data,
10,
"seuclidean",
{},
False,
np.random,
)
# -------------------------------------------------
# Utility functions for Nearest Neighbour
# -------------------------------------------------
def knn(indices, nn_data):
tree = KDTree(nn_data)
true_indices = tree.query(nn_data, 10, return_distance=False)
num_correct = 0.0
for i in range(nn_data.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], indices[i]))
return num_correct / (nn_data.shape[0] * 10)
def smooth_knn(nn_data, local_connectivity=1.0):
knn_indices, knn_dists, _ = nearest_neighbors(
nn_data, 10, "euclidean", {}, False, np.random
)
sigmas, rhos = smooth_knn_dist(
knn_dists, 10.0, local_connectivity=local_connectivity
)
shifted_dists = knn_dists - rhos[:, np.newaxis]
shifted_dists[shifted_dists < 0.0] = 0.0
vals = np.exp(-(shifted_dists / sigmas[:, np.newaxis]))
norms = np.sum(vals, axis=1)
return norms
def test_nn_descent_neighbor_accuracy(nn_data):
knn_indices, knn_dists, _ = nearest_neighbors(
nn_data, 10, "euclidean", {}, False, np.random
)
percent_correct = knn(knn_indices, nn_data)
assert_greater_equal(
percent_correct,
0.89,
"NN-descent did not get 89% accuracy on nearest neighbors",
)
def test_nn_descent_neighbor_accuracy_low_memory(nn_data):
knn_indices, knn_dists, _ = nearest_neighbors(
nn_data, 10, "euclidean", {}, False, np.random, low_memory=True
)
percent_correct = knn(knn_indices, nn_data)
assert_greater_equal(
percent_correct,
0.89,
"NN-descent did not get 89% accuracy on nearest neighbors",
)
def test_angular_nn_descent_neighbor_accuracy(nn_data):
knn_indices, knn_dists, _ = nearest_neighbors(
nn_data, 10, "cosine", {}, True, np.random
)
angular_data = normalize(nn_data, norm="l2")
percent_correct = knn(knn_indices, angular_data)
assert_greater_equal(
percent_correct,
0.89,
"NN-descent did not get 89% accuracy on nearest neighbors",
)
def test_sparse_nn_descent_neighbor_accuracy(sparse_nn_data):
knn_indices, knn_dists, _ = nearest_neighbors(
sparse_nn_data, 20, "euclidean", {}, False, np.random
)
percent_correct = knn(knn_indices, sparse_nn_data.todense())
assert_greater_equal(
percent_correct,
0.90,
"Sparse NN-descent did not get 90% accuracy on nearest neighbors",
)
def test_sparse_nn_descent_neighbor_accuracy_low_memory(sparse_nn_data):
knn_indices, knn_dists, _ = nearest_neighbors(
sparse_nn_data, 20, "euclidean", {}, False, np.random, low_memory=True
)
percent_correct = knn(knn_indices, sparse_nn_data.todense())
assert_greater_equal(
percent_correct,
0.90,
"Sparse NN-descent did not get 90% accuracy on nearest neighbors",
)
def test_nn_descent_neighbor_accuracy_callable_metric(nn_data):
knn_indices, knn_dists, _ = nearest_neighbors(
nn_data, 10, dist.euclidean, {}, False, np.random
)
percent_correct = knn(knn_indices, nn_data)
assert_greater_equal(
percent_correct,
0.95,
"NN-descent did not get 95% "
"accuracy on nearest neighbors with callable metric",
)
@SkipTest
def test_sparse_angular_nn_descent_neighbor_accuracy(sparse_nn_data):
knn_indices, knn_dists, _ = nearest_neighbors(
sparse_nn_data, 20, "cosine", {}, True, np.random
)
angular_data = normalize(sparse_nn_data, norm="l2").toarray()
percent_correct = knn(knn_indices, angular_data)
assert_greater_equal(
percent_correct,
0.90,
"Sparse NN-descent did not get 90% accuracy on nearest neighbors",
)
def test_smooth_knn_dist_l1norms(nn_data):
norms = smooth_knn(nn_data)
assert_array_almost_equal(
norms,
1.0 + np.log2(10) * np.ones(norms.shape[0]),
decimal=3,
err_msg="Smooth knn-dists does not give expected" "norms",
)
def test_smooth_knn_dist_l1norms_w_connectivity(nn_data):
norms = smooth_knn(nn_data, local_connectivity=1.75)
assert_array_almost_equal(
norms,
1.0 + np.log2(10) * np.ones(norms.shape[0]),
decimal=3,
err_msg="Smooth knn-dists does not give expected"
"norms for local_connectivity=1.75",
)
# sigmas, rhos = smooth_knn_dist(knn_dists, 10, local_connectivity=0.75)
# shifted_dists = knn_dists - rhos[:, np.newaxis]
# shifted_dists[shifted_dists < 0.0] = 0.0
# vals = np.exp(-(shifted_dists / sigmas[:, np.newaxis]))
# norms = np.sum(vals, axis=1)
# diff = np.mean(norms) - (1.0 + np.log2(10))
#
# assert_almost_equal(diff, 0.0, decimal=1,
# err_msg='Smooth knn-dists does not give expected'
# 'norms for local_connectivity=0.75')
# ===================================================
# Nearest Neighbour Search Test cases
# ===================================================
# ------------------------------
# Utility Function for NN-Search
# ------------------------------
def setup_search_graph(knn_dists, knn_indices, train):
search_graph = sparse.lil_matrix((train.shape[0], train.shape[0]), dtype=np.int8)
search_graph.rows[:] = [inds.tolist() for inds in knn_indices]
search_graph.data[:] = [vals.tolist() for vals in (knn_dists != 0).astype(np.int8)]
search_graph = search_graph.maximum(search_graph.transpose()).tocsr()
return search_graph
def test_nn_search(nn_data):
train = nn_data[100:]
test = nn_data[:100]
(knn_indices, knn_dists, rp_forest) = nearest_neighbors(
train, 10, "euclidean", {}, False, np.random, use_pynndescent=False,
)
# Commented - NOT REALLY USED IN THE TEST
# graph = fuzzy_simplicial_set(
# nn_data,
# 10,
# np.random,
# "euclidean",
# {},
# knn_indices,
# knn_dists,
# False,
# 1.0,
# 1.0,
# False,
# )
search_graph = setup_search_graph(knn_dists, knn_indices, train)
rng_state = np.random.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)
init = initialise_search(
rp_forest, train, test, int(10 * 3), rng_state, dist.euclidean
)
result = initialized_nnd_search(
train, search_graph.indptr, search_graph.indices, init, test, dist.euclidean
)
indices, dists = deheap_sort(result)
indices = indices[:, :10]
tree = KDTree(train)
true_indices = tree.query(test, 10, return_distance=False)
num_correct = 0.0
for i in range(test.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], indices[i]))
percent_correct = num_correct / (test.shape[0] * 10)
assert_greater_equal(
percent_correct,
0.99,
"Sparse NN-descent did not get " "99% accuracy on nearest " "neighbors",
)
def test_sparse_nn_search(sparse_nn_data):
train = sparse_nn_data[100:]
test = sparse_nn_data[:100]
(knn_indices, knn_dists, rp_forest) = nearest_neighbors(
train, 15, "euclidean", {}, False, np.random, use_pynndescent=False,
)
# COMMENTED OUT as NOT REALLY INFLUENCING THE TEST
# NOTE: there is a use of nn_data here rather than spatial_nn_data
# looks like a copy&paste error, not very intended.
# graph = fuzzy_simplicial_set(
# nn_data,
# 15,
# np.random,
# "euclidean",
# {},
# knn_indices,
# knn_dists,
# False,
# 1.0,
# 1.0,
# False,
# )
search_graph = setup_search_graph(knn_dists, knn_indices, train)
rng_state = np.random.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)
init = sparse_initialise_search(
rp_forest,
train.indices,
train.indptr,
train.data,
test.indices,
test.indptr,
test.data,
int(10 * 6),
rng_state,
spdist.sparse_euclidean,
)
result = sparse_initialized_nnd_search(
train.indices,
train.indptr,
train.data,
search_graph.indptr,
search_graph.indices,
init,
test.indices,
test.indptr,
test.data,
spdist.sparse_euclidean,
)
indices, dists = deheap_sort(result)
indices = indices[:, :10]
tree = KDTree(train.toarray())
true_indices = tree.query(test.toarray(), 10, return_distance=False)
num_correct = 0.0
for i in range(test.shape[0]):
num_correct += np.sum(np.in1d(true_indices[i], indices[i]))
percent_correct = num_correct / (test.shape[0] * 10)
assert_greater_equal(
percent_correct,
0.85,
"Sparse NN-descent did not get " "85% accuracy on nearest " "neighbors",
)
|