1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
# ===============================
# UMAP fit Parameters Validation
# ===============================
import warnings
import numpy as np
from nose.tools import assert_equal, assert_raises
from umap import UMAP
warnings.filterwarnings("ignore", category=UserWarning)
def test_umap_negative_op(nn_data):
u = UMAP(set_op_mix_ratio=-1.0)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_too_large_op(nn_data):
u = UMAP(set_op_mix_ratio=1.5)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_bad_too_large_min_dist(nn_data):
u = UMAP(min_dist=2.0)
# a RuntimeWarning about division by zero in a,b curve fitting is expected
# caught and ignored for this test
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_negative_min_dist(nn_data):
u = UMAP(min_dist=-1)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_negative_n_components(nn_data):
u = UMAP(n_components=-1)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_non_integer_n_components(nn_data):
u = UMAP(n_components=1.5)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_too_small_n_neighbours(nn_data):
u = UMAP(n_neighbors=0.5)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_negative_n_neighbours(nn_data):
u = UMAP(n_neighbors=-1)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_bad_metric(nn_data):
u = UMAP(metric=45)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_negative_learning_rate(nn_data):
u = UMAP(learning_rate=-1.5)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_negative_repulsion(nn_data):
u = UMAP(repulsion_strength=-0.5)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_negative_sample_rate(nn_data):
u = UMAP(negative_sample_rate=-1)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_bad_init(nn_data):
u = UMAP(init="foobar")
assert_raises(ValueError, u.fit, nn_data)
def test_umap_bad_numeric_init(nn_data):
u = UMAP(init=42)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_bad_matrix_init(nn_data):
u = UMAP(init=np.array([[0, 0, 0], [0, 0, 0]]))
assert_raises(ValueError, u.fit, nn_data)
def test_umap_negative_n_epochs(nn_data):
u = UMAP(n_epochs=-2)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_negative_target_n_neighbours(nn_data):
u = UMAP(target_n_neighbors=1)
assert_raises(ValueError, u.fit, nn_data)
def test_umap_bad_output_metric(nn_data):
u = UMAP(output_metric="foobar")
assert_raises(ValueError, u.fit, nn_data)
u = UMAP(output_metric="precomputed")
assert_raises(ValueError, u.fit, nn_data)
u = UMAP(output_metric="hamming")
assert_raises(ValueError, u.fit, nn_data)
def test_haversine_on_highd(nn_data):
u = UMAP(metric="haversine")
assert_raises(ValueError, u.fit, nn_data)
def test_umap_haversine_embed_to_highd(nn_data):
u = UMAP(n_components=3, output_metric="haversine")
assert_raises(ValueError, u.fit, nn_data)
def test_umap_too_many_neighbors_warns(nn_data):
u = UMAP(a=1.2, b=1.75, n_neighbors=2000, n_epochs=11, init="random")
u.fit(
nn_data[:100,]
)
assert_equal(u._a, 1.2)
assert_equal(u._b, 1.75)
def test_umap_fit_data_and_targets_compliant():
# x and y are required to be the same length
u = UMAP()
x = np.random.uniform(0, 1, (256, 10))
y = np.random.randint(10, size=(257,))
assert_raises(ValueError, u.fit, x, y)
u = UMAP()
x = np.random.uniform(0, 1, (256, 10))
y = np.random.randint(10, size=(255,))
assert_raises(ValueError, u.fit, x, y)
u = UMAP()
x = np.random.uniform(0, 1, (256, 10))
assert_raises(ValueError, u.fit, x, [])
def test_umap_fit_instance_returned():
# Test that fit returns a new UMAP instance
# Passing both data and targets
u = UMAP()
x = np.random.uniform(0, 1, (256, 10))
y = np.random.randint(10, size=(256,))
res = u.fit(x, y)
assert isinstance(res, UMAP)
# Passing only data
u = UMAP()
x = np.random.uniform(0, 1, (256, 10))
res = u.fit(x)
assert isinstance(res, UMAP)
|