File: umap_.py

package info (click to toggle)
umap-learn 0.4.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,668 kB
  • sloc: python: 7,504; sh: 77; makefile: 17
file content (2697 lines) | stat: -rw-r--r-- 100,353 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
# Author: Leland McInnes <leland.mcinnes@gmail.com>
#
# License: BSD 3 clause
from __future__ import print_function

import locale
from warnings import warn
import time

from scipy.optimize import curve_fit
from sklearn.base import BaseEstimator
from sklearn.utils import check_random_state, check_array
from sklearn.metrics import pairwise_distances
from sklearn.preprocessing import normalize
from sklearn.neighbors import KDTree

try:
    import joblib
except ImportError:
    # sklearn.externals.joblib is deprecated in 0.21, will be removed in 0.23
    from sklearn.externals import joblib

import numpy as np
import scipy.sparse
from scipy.sparse import tril as sparse_tril, triu as sparse_triu
import scipy.sparse.csgraph
import numba

import umap.distances as dist

import umap.sparse as sparse
import umap.sparse_nndescent as sparse_nn

from umap.utils import (
    tau_rand_int,
    deheap_sort,
    submatrix,
    ts,
    csr_unique,
    fast_knn_indices,
)
from umap.rp_tree import rptree_leaf_array, make_forest
from umap.nndescent import (
    # make_nn_descent,
    # make_initialisations,
    # make_initialized_nnd_search,
    nn_descent,
    initialized_nnd_search,
    initialise_search,
)
from umap.rp_tree import rptree_leaf_array, make_forest
from umap.spectral import spectral_layout
from umap.utils import deheap_sort, submatrix
from umap.layouts import (
    optimize_layout_euclidean,
    optimize_layout_generic,
    optimize_layout_inverse,
)

try:
    # Use pynndescent, if installed (python 3 only)
    from pynndescent import NNDescent
    from pynndescent.distances import named_distances as pynn_named_distances
    from pynndescent.sparse import sparse_named_distances as pynn_sparse_named_distances

    _HAVE_PYNNDESCENT = True
except ImportError:
    _HAVE_PYNNDESCENT = False

locale.setlocale(locale.LC_NUMERIC, "C")

INT32_MIN = np.iinfo(np.int32).min + 1
INT32_MAX = np.iinfo(np.int32).max - 1

SMOOTH_K_TOLERANCE = 1e-5
MIN_K_DIST_SCALE = 1e-3
NPY_INFINITY = np.inf


def breadth_first_search(adjmat, start, min_vertices):
    explored = []
    queue = [start]
    levels = {}
    levels[start] = 0
    max_level = np.inf
    visited = [start]

    while queue:
        node = queue.pop(0)
        explored.append(node)
        if max_level == np.inf and len(explored) > min_vertices:
            max_level = max(levels.values())

        if levels[node] + 1 < max_level:
            neighbors = adjmat[node].indices
            for neighbour in neighbors:
                if neighbour not in visited:
                    queue.append(neighbour)
                    visited.append(neighbour)

                    levels[neighbour] = levels[node] + 1

    return np.array(explored)


@numba.njit(
    locals={
        "psum": numba.types.float32,
        "lo": numba.types.float32,
        "mid": numba.types.float32,
        "hi": numba.types.float32,
    },
    fastmath=True,
)  # benchmarking `parallel=True` shows it to *decrease* performance
def smooth_knn_dist(distances, k, n_iter=64, local_connectivity=1.0, bandwidth=1.0):
    """Compute a continuous version of the distance to the kth nearest
    neighbor. That is, this is similar to knn-distance but allows continuous
    k values rather than requiring an integral k. In essence we are simply
    computing the distance such that the cardinality of fuzzy set we generate
    is k.

    Parameters
    ----------
    distances: array of shape (n_samples, n_neighbors)
        Distances to nearest neighbors for each samples. Each row should be a
        sorted list of distances to a given samples nearest neighbors.

    k: float
        The number of nearest neighbors to approximate for.

    n_iter: int (optional, default 64)
        We need to binary search for the correct distance value. This is the
        max number of iterations to use in such a search.

    local_connectivity: int (optional, default 1)
        The local connectivity required -- i.e. the number of nearest
        neighbors that should be assumed to be connected at a local level.
        The higher this value the more connected the manifold becomes
        locally. In practice this should be not more than the local intrinsic
        dimension of the manifold.

    bandwidth: float (optional, default 1)
        The target bandwidth of the kernel, larger values will produce
        larger return values.

    Returns
    -------
    knn_dist: array of shape (n_samples,)
        The distance to kth nearest neighbor, as suitably approximated.

    nn_dist: array of shape (n_samples,)
        The distance to the 1st nearest neighbor for each point.
    """
    target = np.log2(k) * bandwidth
    rho = np.zeros(distances.shape[0], dtype=np.float32)
    result = np.zeros(distances.shape[0], dtype=np.float32)

    mean_distances = np.mean(distances)

    for i in range(distances.shape[0]):
        lo = 0.0
        hi = NPY_INFINITY
        mid = 1.0

        # TODO: This is very inefficient, but will do for now. FIXME
        ith_distances = distances[i]
        non_zero_dists = ith_distances[ith_distances > 0.0]
        if non_zero_dists.shape[0] >= local_connectivity:
            index = int(np.floor(local_connectivity))
            interpolation = local_connectivity - index
            if index > 0:
                rho[i] = non_zero_dists[index - 1]
                if interpolation > SMOOTH_K_TOLERANCE:
                    rho[i] += interpolation * (
                        non_zero_dists[index] - non_zero_dists[index - 1]
                    )
            else:
                rho[i] = interpolation * non_zero_dists[0]
        elif non_zero_dists.shape[0] > 0:
            rho[i] = np.max(non_zero_dists)

        for n in range(n_iter):

            psum = 0.0
            for j in range(1, distances.shape[1]):
                d = distances[i, j] - rho[i]
                if d > 0:
                    psum += np.exp(-(d / mid))
                else:
                    psum += 1.0

            if np.fabs(psum - target) < SMOOTH_K_TOLERANCE:
                break

            if psum > target:
                hi = mid
                mid = (lo + hi) / 2.0
            else:
                lo = mid
                if hi == NPY_INFINITY:
                    mid *= 2
                else:
                    mid = (lo + hi) / 2.0

        result[i] = mid

        # TODO: This is very inefficient, but will do for now. FIXME
        if rho[i] > 0.0:
            mean_ith_distances = np.mean(ith_distances)
            if result[i] < MIN_K_DIST_SCALE * mean_ith_distances:
                result[i] = MIN_K_DIST_SCALE * mean_ith_distances
        else:
            if result[i] < MIN_K_DIST_SCALE * mean_distances:
                result[i] = MIN_K_DIST_SCALE * mean_distances

    return result, rho


def nearest_neighbors(
    X,
    n_neighbors,
    metric,
    metric_kwds,
    angular,
    random_state,
    low_memory=False,
    use_pynndescent=True,
    verbose=False,
):
    """Compute the ``n_neighbors`` nearest points for each data point in ``X``
    under ``metric``. This may be exact, but more likely is approximated via
    nearest neighbor descent.

    Parameters
    ----------
    X: array of shape (n_samples, n_features)
        The input data to compute the k-neighbor graph of.

    n_neighbors: int
        The number of nearest neighbors to compute for each sample in ``X``.

    metric: string or callable
        The metric to use for the computation.

    metric_kwds: dict
        Any arguments to pass to the metric computation function.

    angular: bool
        Whether to use angular rp trees in NN approximation.

    random_state: np.random state
        The random state to use for approximate NN computations.

    low_memory: bool (optional, default False)
        Whether to pursue lower memory NNdescent.

    verbose: bool (optional, default False)
        Whether to print status data during the computation.

    Returns
    -------
    knn_indices: array of shape (n_samples, n_neighbors)
        The indices on the ``n_neighbors`` closest points in the dataset.

    knn_dists: array of shape (n_samples, n_neighbors)
        The distances to the ``n_neighbors`` closest points in the dataset.

    rp_forest: list of trees
        The random projection forest used for searching (if used, None otherwise)
    """
    if verbose:
        print(ts(), "Finding Nearest Neighbors")

    if metric == "precomputed":
        # Note that this does not support sparse distance matrices yet ...
        # Compute indices of n nearest neighbors
        knn_indices = fast_knn_indices(X, n_neighbors)
        # knn_indices = np.argsort(X)[:, :n_neighbors]
        # Compute the nearest neighbor distances
        #   (equivalent to np.sort(X)[:,:n_neighbors])
        knn_dists = X[np.arange(X.shape[0])[:, None], knn_indices].copy()

        rp_forest = []
    else:
        # TODO: Hacked values for now
        n_trees = 5 + int(round((X.shape[0]) ** 0.5 / 20.0))
        n_iters = max(5, int(round(np.log2(X.shape[0]))))

        if _HAVE_PYNNDESCENT and use_pynndescent:
            nnd = NNDescent(
                X,
                n_neighbors=n_neighbors,
                metric=metric,
                metric_kwds=metric_kwds,
                random_state=random_state,
                n_trees=n_trees,
                n_iters=n_iters,
                max_candidates=60,
                low_memory=low_memory,
                verbose=verbose,
            )
            knn_indices, knn_dists = nnd.neighbor_graph
            rp_forest = nnd
        else:
            # Otherwise fall back to nn descent in umap
            if callable(metric):
                _distance_func = metric
            elif metric in dist.named_distances:
                _distance_func = dist.named_distances[metric]
            else:
                raise ValueError("Metric is neither callable, nor a recognised string")

            rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

            if scipy.sparse.isspmatrix_csr(X):
                if callable(metric):
                    _distance_func = metric
                else:
                    try:
                        _distance_func = sparse.sparse_named_distances[metric]
                        if metric in sparse.sparse_need_n_features:
                            metric_kwds["n_features"] = X.shape[1]
                    except KeyError as e:
                        raise ValueError(
                            "Metric {} not supported for sparse data".format(metric)
                        ) from e

                # Create a partial function for distances with arguments
                if len(metric_kwds) > 0:
                    dist_args = tuple(metric_kwds.values())

                    @numba.njit()
                    def _partial_dist_func(ind1, data1, ind2, data2):
                        return _distance_func(ind1, data1, ind2, data2, *dist_args)

                    distance_func = _partial_dist_func
                else:
                    distance_func = _distance_func
                # metric_nn_descent = sparse.make_sparse_nn_descent(
                #     distance_func, tuple(metric_kwds.values())
                # )

                if verbose:
                    print(ts(), "Building RP forest with", str(n_trees), "trees")

                rp_forest = make_forest(X, n_neighbors, n_trees, rng_state, angular)
                leaf_array = rptree_leaf_array(rp_forest)

                if verbose:
                    print(ts(), "NN descent for", str(n_iters), "iterations")
                knn_indices, knn_dists = sparse_nn.sparse_nn_descent(
                    X.indices,
                    X.indptr,
                    X.data,
                    X.shape[0],
                    n_neighbors,
                    rng_state,
                    max_candidates=60,
                    sparse_dist=distance_func,
                    low_memory=low_memory,
                    rp_tree_init=True,
                    leaf_array=leaf_array,
                    n_iters=n_iters,
                    verbose=verbose,
                )
            else:
                # metric_nn_descent = make_nn_descent(
                #     distance_func, tuple(metric_kwds.values())
                # )
                if len(metric_kwds) > 0:
                    dist_args = tuple(metric_kwds.values())

                    @numba.njit()
                    def _partial_dist_func(x, y):
                        return _distance_func(x, y, *dist_args)

                    distance_func = _partial_dist_func
                else:
                    distance_func = _distance_func

                if verbose:
                    print(ts(), "Building RP forest with", str(n_trees), "trees")
                rp_forest = make_forest(X, n_neighbors, n_trees, rng_state, angular)
                leaf_array = rptree_leaf_array(rp_forest)
                if verbose:
                    print(ts(), "NN descent for", str(n_iters), "iterations")
                knn_indices, knn_dists = nn_descent(
                    X,
                    n_neighbors,
                    rng_state,
                    max_candidates=60,
                    dist=distance_func,
                    low_memory=low_memory,
                    rp_tree_init=True,
                    leaf_array=leaf_array,
                    n_iters=n_iters,
                    verbose=verbose,
                )

            if np.any(knn_indices < 0):
                warn(
                    "Failed to correctly find n_neighbors for some samples."
                    "Results may be less than ideal. Try re-running with"
                    "different parameters."
                )
    if verbose:
        print(ts(), "Finished Nearest Neighbor Search")
    return knn_indices, knn_dists, rp_forest


@numba.njit(
    locals={
        "knn_dists": numba.types.float32[:, ::1],
        "sigmas": numba.types.float32[::1],
        "rhos": numba.types.float32[::1],
        "val": numba.types.float32,
    },
    parallel=True,
    fastmath=True,
)
def compute_membership_strengths(knn_indices, knn_dists, sigmas, rhos):
    """Construct the membership strength data for the 1-skeleton of each local
    fuzzy simplicial set -- this is formed as a sparse matrix where each row is
    a local fuzzy simplicial set, with a membership strength for the
    1-simplex to each other data point.

    Parameters
    ----------
    knn_indices: array of shape (n_samples, n_neighbors)
        The indices on the ``n_neighbors`` closest points in the dataset.

    knn_dists: array of shape (n_samples, n_neighbors)
        The distances to the ``n_neighbors`` closest points in the dataset.

    sigmas: array of shape(n_samples)
        The normalization factor derived from the metric tensor approximation.

    rhos: array of shape(n_samples)
        The local connectivity adjustment.

    Returns
    -------
    rows: array of shape (n_samples * n_neighbors)
        Row data for the resulting sparse matrix (coo format)

    cols: array of shape (n_samples * n_neighbors)
        Column data for the resulting sparse matrix (coo format)

    vals: array of shape (n_samples * n_neighbors)
        Entries for the resulting sparse matrix (coo format)
    """
    n_samples = knn_indices.shape[0]
    n_neighbors = knn_indices.shape[1]

    rows = np.zeros(knn_indices.size, dtype=np.int32)
    cols = np.zeros(knn_indices.size, dtype=np.int32)
    vals = np.zeros(knn_indices.size, dtype=np.float32)

    for i in range(n_samples):
        for j in range(n_neighbors):
            if knn_indices[i, j] == -1:
                continue  # We didn't get the full knn for i
            if knn_indices[i, j] == i:
                val = 0.0
            elif knn_dists[i, j] - rhos[i] <= 0.0 or sigmas[i] == 0.0:
                val = 1.0
            else:
                val = np.exp(-((knn_dists[i, j] - rhos[i]) / (sigmas[i])))

            rows[i * n_neighbors + j] = i
            cols[i * n_neighbors + j] = knn_indices[i, j]
            vals[i * n_neighbors + j] = val

    return rows, cols, vals


def fuzzy_simplicial_set(
    X,
    n_neighbors,
    random_state,
    metric,
    metric_kwds={},
    knn_indices=None,
    knn_dists=None,
    angular=False,
    set_op_mix_ratio=1.0,
    local_connectivity=1.0,
    apply_set_operations=True,
    verbose=False,
):
    """Given a set of data X, a neighborhood size, and a measure of distance
    compute the fuzzy simplicial set (here represented as a fuzzy graph in
    the form of a sparse matrix) associated to the data. This is done by
    locally approximating geodesic distance at each point, creating a fuzzy
    simplicial set for each such point, and then combining all the local
    fuzzy simplicial sets into a global one via a fuzzy union.

    Parameters
    ----------
    X: array of shape (n_samples, n_features)
        The data to be modelled as a fuzzy simplicial set.

    n_neighbors: int
        The number of neighbors to use to approximate geodesic distance.
        Larger numbers induce more global estimates of the manifold that can
        miss finer detail, while smaller values will focus on fine manifold
        structure to the detriment of the larger picture.

    random_state: numpy RandomState or equivalent
        A state capable being used as a numpy random state.

    metric: string or function (optional, default 'euclidean')
        The metric to use to compute distances in high dimensional space.
        If a string is passed it must match a valid predefined metric. If
        a general metric is required a function that takes two 1d arrays and
        returns a float can be provided. For performance purposes it is
        required that this be a numba jit'd function. Valid string metrics
        include:
            * euclidean (or l2)
            * manhattan (or l1)
            * cityblock
            * braycurtis
            * canberra
            * chebyshev
            * correlation
            * cosine
            * dice
            * hamming
            * jaccard
            * kulsinski
            * ll_dirichlet
            * mahalanobis
            * matching
            * minkowski
            * rogerstanimoto
            * russellrao
            * seuclidean
            * sokalmichener
            * sokalsneath
            * sqeuclidean
            * yule
            * wminkowski

        Metrics that take arguments (such as minkowski, mahalanobis etc.)
        can have arguments passed via the metric_kwds dictionary. At this
        time care must be taken and dictionary elements must be ordered
        appropriately; this will hopefully be fixed in the future.

    metric_kwds: dict (optional, default {})
        Arguments to pass on to the metric, such as the ``p`` value for
        Minkowski distance.

    knn_indices: array of shape (n_samples, n_neighbors) (optional)
        If the k-nearest neighbors of each point has already been calculated
        you can pass them in here to save computation time. This should be
        an array with the indices of the k-nearest neighbors as a row for
        each data point.

    knn_dists: array of shape (n_samples, n_neighbors) (optional)
        If the k-nearest neighbors of each point has already been calculated
        you can pass them in here to save computation time. This should be
        an array with the distances of the k-nearest neighbors as a row for
        each data point.

    angular: bool (optional, default False)
        Whether to use angular/cosine distance for the random projection
        forest for seeding NN-descent to determine approximate nearest
        neighbors.

    set_op_mix_ratio: float (optional, default 1.0)
        Interpolate between (fuzzy) union and intersection as the set operation
        used to combine local fuzzy simplicial sets to obtain a global fuzzy
        simplicial sets. Both fuzzy set operations use the product t-norm.
        The value of this parameter should be between 0.0 and 1.0; a value of
        1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy
        intersection.

    local_connectivity: int (optional, default 1)
        The local connectivity required -- i.e. the number of nearest
        neighbors that should be assumed to be connected at a local level.
        The higher this value the more connected the manifold becomes
        locally. In practice this should be not more than the local intrinsic
        dimension of the manifold.

    verbose: bool (optional, default False)
        Whether to report information on the current progress of the algorithm.

    Returns
    -------
    fuzzy_simplicial_set: coo_matrix
        A fuzzy simplicial set represented as a sparse matrix. The (i,
        j) entry of the matrix represents the membership strength of the
        1-simplex between the ith and jth sample points.
    """
    if knn_indices is None or knn_dists is None:
        knn_indices, knn_dists, _ = nearest_neighbors(
            X, n_neighbors, metric, metric_kwds, angular, random_state, verbose=verbose
        )

    knn_dists = knn_dists.astype(np.float32)

    sigmas, rhos = smooth_knn_dist(
        knn_dists, float(n_neighbors), local_connectivity=float(local_connectivity),
    )

    rows, cols, vals = compute_membership_strengths(
        knn_indices, knn_dists, sigmas, rhos
    )

    result = scipy.sparse.coo_matrix(
        (vals, (rows, cols)), shape=(X.shape[0], X.shape[0])
    )
    result.eliminate_zeros()

    if apply_set_operations:
        transpose = result.transpose()

        prod_matrix = result.multiply(transpose)

        result = (
            set_op_mix_ratio * (result + transpose - prod_matrix)
            + (1.0 - set_op_mix_ratio) * prod_matrix
        )

    result.eliminate_zeros()

    return result, sigmas, rhos


@numba.njit()
def fast_intersection(rows, cols, values, target, unknown_dist=1.0, far_dist=5.0):
    """Under the assumption of categorical distance for the intersecting
    simplicial set perform a fast intersection.

    Parameters
    ----------
    rows: array
        An array of the row of each non-zero in the sparse matrix
        representation.

    cols: array
        An array of the column of each non-zero in the sparse matrix
        representation.

    values: array
        An array of the value of each non-zero in the sparse matrix
        representation.

    target: array of shape (n_samples)
        The categorical labels to use in the intersection.

    unknown_dist: float (optional, default 1.0)
        The distance an unknown label (-1) is assumed to be from any point.

    far_dist float (optional, default 5.0)
        The distance between unmatched labels.

    Returns
    -------
    None
    """
    for nz in range(rows.shape[0]):
        i = rows[nz]
        j = cols[nz]
        if (target[i] == -1) or (target[j] == -1):
            values[nz] *= np.exp(-unknown_dist)
        elif target[i] != target[j]:
            values[nz] *= np.exp(-far_dist)

    return


@numba.jit()
def fast_metric_intersection(
    rows, cols, values, discrete_space, metric, metric_args, scale
):
    """Under the assumption of categorical distance for the intersecting
    simplicial set perform a fast intersection.

    Parameters
    ----------
    rows: array
        An array of the row of each non-zero in the sparse matrix
        representation.

    cols: array
        An array of the column of each non-zero in the sparse matrix
        representation.

    values: array of shape
        An array of the values of each non-zero in the sparse matrix
        representation.

    discrete_space: array of shape (n_samples, n_features)
        The vectors of categorical labels to use in the intersection.

    metric: numba function
        The function used to calculate distance over the target array.

    scale: float
        A scaling to apply to the metric.

    Returns
    -------
    None
    """
    for nz in range(rows.shape[0]):
        i = rows[nz]
        j = cols[nz]
        dist = metric(discrete_space[i], discrete_space[j], *metric_args)
        values[nz] *= np.exp(-(scale * dist))

    return


@numba.njit()
def reprocess_row(probabilities, k=15, n_iters=32):
    target = np.log2(k)

    lo = 0.0
    hi = NPY_INFINITY
    mid = 1.0

    for n in range(n_iters):

        psum = 0.0
        for j in range(probabilities.shape[0]):
            psum += pow(probabilities[j], mid)

        if np.fabs(psum - target) < SMOOTH_K_TOLERANCE:
            break

        if psum < target:
            hi = mid
            mid = (lo + hi) / 2.0
        else:
            lo = mid
            if hi == NPY_INFINITY:
                mid *= 2
            else:
                mid = (lo + hi) / 2.0

    return np.power(probabilities, mid)


@numba.njit()
def reset_local_metrics(simplicial_set_indptr, simplicial_set_data):
    for i in range(simplicial_set_indptr.shape[0] - 1):
        simplicial_set_data[
            simplicial_set_indptr[i] : simplicial_set_indptr[i + 1]
        ] = reprocess_row(
            simplicial_set_data[simplicial_set_indptr[i] : simplicial_set_indptr[i + 1]]
        )
    return


def reset_local_connectivity(simplicial_set, reset_local_metric=False):
    """Reset the local connectivity requirement -- each data sample should
    have complete confidence in at least one 1-simplex in the simplicial set.
    We can enforce this by locally rescaling confidences, and then remerging the
    different local simplicial sets together.

    Parameters
    ----------
    simplicial_set: sparse matrix
        The simplicial set for which to recalculate with respect to local
        connectivity.

    Returns
    -------
    simplicial_set: sparse_matrix
        The recalculated simplicial set, now with the local connectivity
        assumption restored.
    """
    simplicial_set = normalize(simplicial_set, norm="max")
    if reset_local_metric:
        simplicial_set = simplicial_set.tocsr()
        reset_local_metrics(simplicial_set.indptr, simplicial_set.data)
        simplicial_set = simplicial_set.tocoo()
    transpose = simplicial_set.transpose()
    prod_matrix = simplicial_set.multiply(transpose)
    simplicial_set = simplicial_set + transpose - prod_matrix
    simplicial_set.eliminate_zeros()

    return simplicial_set


def discrete_metric_simplicial_set_intersection(
    simplicial_set,
    discrete_space,
    unknown_dist=1.0,
    far_dist=5.0,
    metric=None,
    metric_kws={},
    metric_scale=1.0,
):
    """Combine a fuzzy simplicial set with another fuzzy simplicial set
    generated from discrete metric data using discrete distances. The target
    data is assumed to be categorical label data (a vector of labels),
    and this will update the fuzzy simplicial set to respect that label data.

    TODO: optional category cardinality based weighting of distance

    Parameters
    ----------
    simplicial_set: sparse matrix
        The input fuzzy simplicial set.

    discrete_space: array of shape (n_samples)
        The categorical labels to use in the intersection.

    unknown_dist: float (optional, default 1.0)
        The distance an unknown label (-1) is assumed to be from any point.

    far_dist: float (optional, default 5.0)
        The distance between unmatched labels.

    metric: str (optional, default None)
        If not None, then use this metric to determine the
        distance between values.

    metric_scale: float (optional, default 1.0)
        If using a custom metric scale the distance values by
        this value -- this controls the weighting of the
        intersection. Larger values weight more toward target.

    Returns
    -------
    simplicial_set: sparse matrix
        The resulting intersected fuzzy simplicial set.
    """
    simplicial_set = simplicial_set.tocoo()

    if metric is not None:
        # We presume target is now a 2d array, with each row being a
        # vector of target info
        if metric in dist.named_distances:
            metric_func = dist.named_distances[metric]
        else:
            raise ValueError("Discrete intersection metric is not recognized")

        fast_metric_intersection(
            simplicial_set.row,
            simplicial_set.col,
            simplicial_set.data,
            discrete_space,
            metric_func,
            tuple(metric_kws.values()),
            metric_scale,
        )
    else:
        fast_intersection(
            simplicial_set.row,
            simplicial_set.col,
            simplicial_set.data,
            discrete_space,
            unknown_dist,
            far_dist,
        )

    simplicial_set.eliminate_zeros()

    return reset_local_connectivity(simplicial_set)


def general_simplicial_set_intersection(simplicial_set1, simplicial_set2, weight):

    result = (simplicial_set1 + simplicial_set2).tocoo()
    left = simplicial_set1.tocsr()
    right = simplicial_set2.tocsr()

    sparse.general_sset_intersection(
        left.indptr,
        left.indices,
        left.data,
        right.indptr,
        right.indices,
        right.data,
        result.row,
        result.col,
        result.data,
        weight,
    )

    return result


def make_epochs_per_sample(weights, n_epochs):
    """Given a set of weights and number of epochs generate the number of
    epochs per sample for each weight.

    Parameters
    ----------
    weights: array of shape (n_1_simplices)
        The weights ofhow much we wish to sample each 1-simplex.

    n_epochs: int
        The total number of epochs we want to train for.

    Returns
    -------
    An array of number of epochs per sample, one for each 1-simplex.
    """
    result = -1.0 * np.ones(weights.shape[0], dtype=np.float64)
    n_samples = n_epochs * (weights / weights.max())
    result[n_samples > 0] = float(n_epochs) / n_samples[n_samples > 0]
    return result


def simplicial_set_embedding(
    data,
    graph,
    n_components,
    initial_alpha,
    a,
    b,
    gamma,
    negative_sample_rate,
    n_epochs,
    init,
    random_state,
    metric,
    metric_kwds,
    output_metric=dist.named_distances_with_gradients["euclidean"],
    output_metric_kwds={},
    euclidean_output=True,
    parallel=False,
    verbose=False,
):
    """Perform a fuzzy simplicial set embedding, using a specified
    initialisation method and then minimizing the fuzzy set cross entropy
    between the 1-skeletons of the high and low dimensional fuzzy simplicial
    sets.

    Parameters
    ----------
    data: array of shape (n_samples, n_features)
        The source data to be embedded by UMAP.

    graph: sparse matrix
        The 1-skeleton of the high dimensional fuzzy simplicial set as
        represented by a graph for which we require a sparse matrix for the
        (weighted) adjacency matrix.

    n_components: int
        The dimensionality of the euclidean space into which to embed the data.

    initial_alpha: float
        Initial learning rate for the SGD.

    a: float
        Parameter of differentiable approximation of right adjoint functor

    b: float
        Parameter of differentiable approximation of right adjoint functor

    gamma: float
        Weight to apply to negative samples.

    negative_sample_rate: int (optional, default 5)
        The number of negative samples to select per positive sample
        in the optimization process. Increasing this value will result
        in greater repulsive force being applied, greater optimization
        cost, but slightly more accuracy.

    n_epochs: int (optional, default 0)
        The number of training epochs to be used in optimizing the
        low dimensional embedding. Larger values result in more accurate
        embeddings. If 0 is specified a value will be selected based on
        the size of the input dataset (200 for large datasets, 500 for small).

    init: string
        How to initialize the low dimensional embedding. Options are:
            * 'spectral': use a spectral embedding of the fuzzy 1-skeleton
            * 'random': assign initial embedding positions at random.
            * A numpy array of initial embedding positions.

    random_state: numpy RandomState or equivalent
        A state capable being used as a numpy random state.

    metric: string or callable
        The metric used to measure distance in high dimensional space; used if
        multiple connected components need to be layed out.

    metric_kwds: dict
        Key word arguments to be passed to the metric function; used if
        multiple connected components need to be layed out.

    output_metric: function
        Function returning the distance between two points in embedding space and
        the gradient of the distance wrt the first argument.

    output_metric_kwds: dict
        Key word arguments to be passed to the output_metric function.

    euclidean_output: bool
        Whether to use the faster code specialised for euclidean output metrics

    parallel: bool (optional, default False)
        Whether to run the computation using numba parallel.
        Running in parallel is non-deterministic, and is not used
        if a random seed has been set, to ensure reproducibility.

    verbose: bool (optional, default False)
        Whether to report information on the current progress of the algorithm.

    Returns
    -------
    embedding: array of shape (n_samples, n_components)
        The optimized of ``graph`` into an ``n_components`` dimensional
        euclidean space.
    """
    graph = graph.tocoo()
    graph.sum_duplicates()
    n_vertices = graph.shape[1]

    if n_epochs <= 0:
        # For smaller datasets we can use more epochs
        if graph.shape[0] <= 10000:
            n_epochs = 500
        else:
            n_epochs = 200

    graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0
    graph.eliminate_zeros()

    if isinstance(init, str) and init == "random":
        embedding = random_state.uniform(
            low=-10.0, high=10.0, size=(graph.shape[0], n_components)
        ).astype(np.float32)
    elif isinstance(init, str) and init == "spectral":
        # We add a little noise to avoid local minima for optimization to come
        initialisation = spectral_layout(
            data,
            graph,
            n_components,
            random_state,
            metric=metric,
            metric_kwds=metric_kwds,
        )
        expansion = 10.0 / np.abs(initialisation).max()
        embedding = (initialisation * expansion).astype(
            np.float32
        ) + random_state.normal(
            scale=0.0001, size=[graph.shape[0], n_components]
        ).astype(
            np.float32
        )
    else:
        init_data = np.array(init)
        if len(init_data.shape) == 2:
            if np.unique(init_data, axis=0).shape[0] < init_data.shape[0]:
                tree = KDTree(init_data)
                dist, ind = tree.query(init_data, k=2)
                nndist = np.mean(dist[:, 1])
                embedding = init_data + random_state.normal(
                    scale=0.001 * nndist, size=init_data.shape
                ).astype(np.float32)
            else:
                embedding = init_data

    epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs)

    head = graph.row
    tail = graph.col
    weight = graph.data

    rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

    embedding = (
        10.0
        * (embedding - np.min(embedding, 0))
        / (np.max(embedding, 0) - np.min(embedding, 0))
    ).astype(np.float32, order="C")

    if euclidean_output:
        embedding = optimize_layout_euclidean(
            embedding,
            embedding,
            head,
            tail,
            n_epochs,
            n_vertices,
            epochs_per_sample,
            a,
            b,
            rng_state,
            gamma,
            initial_alpha,
            negative_sample_rate,
            parallel=parallel,
            verbose=verbose,
        )
    else:
        embedding = optimize_layout_generic(
            embedding,
            embedding,
            head,
            tail,
            n_epochs,
            n_vertices,
            epochs_per_sample,
            a,
            b,
            rng_state,
            gamma,
            initial_alpha,
            negative_sample_rate,
            output_metric,
            tuple(output_metric_kwds.values()),
            verbose=verbose,
        )

    return embedding


@numba.njit()
def init_transform(indices, weights, embedding):
    """Given indices and weights and an original embeddings
    initialize the positions of new points relative to the
    indices and weights (of their neighbors in the source data).

    Parameters
    ----------
    indices: array of shape (n_new_samples, n_neighbors)
        The indices of the neighbors of each new sample

    weights: array of shape (n_new_samples, n_neighbors)
        The membership strengths of associated 1-simplices
        for each of the new samples.

    embedding: array of shape (n_samples, dim)
        The original embedding of the source data.

    Returns
    -------
    new_embedding: array of shape (n_new_samples, dim)
        An initial embedding of the new sample points.
    """
    result = np.zeros((indices.shape[0], embedding.shape[1]), dtype=np.float32)

    for i in range(indices.shape[0]):
        for j in range(indices.shape[1]):
            for d in range(embedding.shape[1]):
                result[i, d] += weights[i, j] * embedding[indices[i, j], d]

    return result


def find_ab_params(spread, min_dist):
    """Fit a, b params for the differentiable curve used in lower
    dimensional fuzzy simplicial complex construction. We want the
    smooth curve (from a pre-defined family with simple gradient) that
    best matches an offset exponential decay.
    """

    def curve(x, a, b):
        return 1.0 / (1.0 + a * x ** (2 * b))

    xv = np.linspace(0, spread * 3, 300)
    yv = np.zeros(xv.shape)
    yv[xv < min_dist] = 1.0
    yv[xv >= min_dist] = np.exp(-(xv[xv >= min_dist] - min_dist) / spread)
    params, covar = curve_fit(curve, xv, yv)
    return params[0], params[1]


class UMAP(BaseEstimator):
    """Uniform Manifold Approximation and Projection

    Finds a low dimensional embedding of the data that approximates
    an underlying manifold.

    Parameters
    ----------
    n_neighbors: float (optional, default 15)
        The size of local neighborhood (in terms of number of neighboring
        sample points) used for manifold approximation. Larger values
        result in more global views of the manifold, while smaller
        values result in more local data being preserved. In general
        values should be in the range 2 to 100.

    n_components: int (optional, default 2)
        The dimension of the space to embed into. This defaults to 2 to
        provide easy visualization, but can reasonably be set to any
        integer value in the range 2 to 100.

    metric: string or function (optional, default 'euclidean')
        The metric to use to compute distances in high dimensional space.
        If a string is passed it must match a valid predefined metric. If
        a general metric is required a function that takes two 1d arrays and
        returns a float can be provided. For performance purposes it is
        required that this be a numba jit'd function. Valid string metrics
        include:
            * euclidean
            * manhattan
            * chebyshev
            * minkowski
            * canberra
            * braycurtis
            * mahalanobis
            * wminkowski
            * seuclidean
            * cosine
            * correlation
            * haversine
            * hamming
            * jaccard
            * dice
            * russelrao
            * kulsinski
            * ll_dirichlet
            * hellinger
            * rogerstanimoto
            * sokalmichener
            * sokalsneath
            * yule
        Metrics that take arguments (such as minkowski, mahalanobis etc.)
        can have arguments passed via the metric_kwds dictionary. At this
        time care must be taken and dictionary elements must be ordered
        appropriately; this will hopefully be fixed in the future.

    n_epochs: int (optional, default None)
        The number of training epochs to be used in optimizing the
        low dimensional embedding. Larger values result in more accurate
        embeddings. If None is specified a value will be selected based on
        the size of the input dataset (200 for large datasets, 500 for small).

    learning_rate: float (optional, default 1.0)
        The initial learning rate for the embedding optimization.

    init: string (optional, default 'spectral')
        How to initialize the low dimensional embedding. Options are:
            * 'spectral': use a spectral embedding of the fuzzy 1-skeleton
            * 'random': assign initial embedding positions at random.
            * A numpy array of initial embedding positions.

    min_dist: float (optional, default 0.1)
        The effective minimum distance between embedded points. Smaller values
        will result in a more clustered/clumped embedding where nearby points
        on the manifold are drawn closer together, while larger values will
        result on a more even dispersal of points. The value should be set
        relative to the ``spread`` value, which determines the scale at which
        embedded points will be spread out.

    spread: float (optional, default 1.0)
        The effective scale of embedded points. In combination with ``min_dist``
        this determines how clustered/clumped the embedded points are.

    low_memory: bool (optional, default False)
        For some datasets the nearest neighbor computation can consume a lot of
        memory. If you find that UMAP is failing due to memory constraints
        consider setting this option to True. This approach is more
        computationally expensive, but avoids excessive memory use.

    set_op_mix_ratio: float (optional, default 1.0)
        Interpolate between (fuzzy) union and intersection as the set operation
        used to combine local fuzzy simplicial sets to obtain a global fuzzy
        simplicial sets. Both fuzzy set operations use the product t-norm.
        The value of this parameter should be between 0.0 and 1.0; a value of
        1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy
        intersection.

    local_connectivity: int (optional, default 1)
        The local connectivity required -- i.e. the number of nearest
        neighbors that should be assumed to be connected at a local level.
        The higher this value the more connected the manifold becomes
        locally. In practice this should be not more than the local intrinsic
        dimension of the manifold.

    repulsion_strength: float (optional, default 1.0)
        Weighting applied to negative samples in low dimensional embedding
        optimization. Values higher than one will result in greater weight
        being given to negative samples.

    negative_sample_rate: int (optional, default 5)
        The number of negative samples to select per positive sample
        in the optimization process. Increasing this value will result
        in greater repulsive force being applied, greater optimization
        cost, but slightly more accuracy.

    transform_queue_size: float (optional, default 4.0)
        For transform operations (embedding new points using a trained model_
        this will control how aggressively to search for nearest neighbors.
        Larger values will result in slower performance but more accurate
        nearest neighbor evaluation.

    a: float (optional, default None)
        More specific parameters controlling the embedding. If None these
        values are set automatically as determined by ``min_dist`` and
        ``spread``.
    b: float (optional, default None)
        More specific parameters controlling the embedding. If None these
        values are set automatically as determined by ``min_dist`` and
        ``spread``.

    random_state: int, RandomState instance or None, optional (default: None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    metric_kwds: dict (optional, default None)
        Arguments to pass on to the metric, such as the ``p`` value for
        Minkowski distance. If None then no arguments are passed on.

    angular_rp_forest: bool (optional, default False)
        Whether to use an angular random projection forest to initialise
        the approximate nearest neighbor search. This can be faster, but is
        mostly on useful for metric that use an angular style distance such
        as cosine, correlation etc. In the case of those metrics angular forests
        will be chosen automatically.

    target_n_neighbors: int (optional, default -1)
        The number of nearest neighbors to use to construct the target simplcial
        set. If set to -1 use the ``n_neighbors`` value.

    target_metric: string or callable (optional, default 'categorical')
        The metric used to measure distance for a target array is using supervised
        dimension reduction. By default this is 'categorical' which will measure
        distance in terms of whether categories match or are different. Furthermore,
        if semi-supervised is required target values of -1 will be trated as
        unlabelled under the 'categorical' metric. If the target array takes
        continuous values (e.g. for a regression problem) then metric of 'l1'
        or 'l2' is probably more appropriate.

    target_metric_kwds: dict (optional, default None)
        Keyword argument to pass to the target metric when performing
        supervised dimension reduction. If None then no arguments are passed on.

    target_weight: float (optional, default 0.5)
        weighting factor between data topology and target topology. A value of
        0.0 weights entirely on data, a value of 1.0 weights entirely on target.
        The default of 0.5 balances the weighting equally between data and target.

    transform_seed: int (optional, default 42)
        Random seed used for the stochastic aspects of the transform operation.
        This ensures consistency in transform operations.

    verbose: bool (optional, default False)
        Controls verbosity of logging.

    unique: bool (optional, default False)
        Controls if the rows of your data should be uniqued before being
        embedded.  If you have more duplicates than you have n_neighbour
        you can have the identical data points lying in different regions of
        your space.  It also violates the definition of a metric.
    """

    def __init__(
        self,
        n_neighbors=15,
        n_components=2,
        metric="euclidean",
        metric_kwds=None,
        output_metric="euclidean",
        output_metric_kwds=None,
        n_epochs=None,
        learning_rate=1.0,
        init="spectral",
        min_dist=0.1,
        spread=1.0,
        low_memory=False,
        set_op_mix_ratio=1.0,
        local_connectivity=1.0,
        repulsion_strength=1.0,
        negative_sample_rate=5,
        transform_queue_size=4.0,
        a=None,
        b=None,
        random_state=None,
        angular_rp_forest=False,
        target_n_neighbors=-1,
        target_metric="categorical",
        target_metric_kwds=None,
        target_weight=0.5,
        transform_seed=42,
        force_approximation_algorithm=False,
        verbose=False,
        unique=False,
    ):
        self.n_neighbors = n_neighbors
        self.metric = metric
        self.output_metric = output_metric
        self.target_metric = target_metric
        self.metric_kwds = metric_kwds
        self.output_metric_kwds = output_metric_kwds
        self.n_epochs = n_epochs
        self.init = init
        self.n_components = n_components
        self.repulsion_strength = repulsion_strength
        self.learning_rate = learning_rate

        self.spread = spread
        self.min_dist = min_dist
        self.low_memory = low_memory
        self.set_op_mix_ratio = set_op_mix_ratio
        self.local_connectivity = local_connectivity
        self.negative_sample_rate = negative_sample_rate
        self.random_state = random_state
        self.angular_rp_forest = angular_rp_forest
        self.transform_queue_size = transform_queue_size
        self.target_n_neighbors = target_n_neighbors
        self.target_metric = target_metric
        self.target_metric_kwds = target_metric_kwds
        self.target_weight = target_weight
        self.transform_seed = transform_seed
        self.force_approximation_algorithm = force_approximation_algorithm
        self.verbose = verbose
        self.unique = unique

        self.a = a
        self.b = b

    def _validate_parameters(self):
        if self.set_op_mix_ratio < 0.0 or self.set_op_mix_ratio > 1.0:
            raise ValueError("set_op_mix_ratio must be between 0.0 and 1.0")
        if self.repulsion_strength < 0.0:
            raise ValueError("repulsion_strength cannot be negative")
        if self.min_dist > self.spread:
            raise ValueError("min_dist must be less than or equal to spread")
        if self.min_dist < 0.0:
            raise ValueError("min_dist cannot be negative")
        if not isinstance(self.init, str) and not isinstance(self.init, np.ndarray):
            raise ValueError("init must be a string or ndarray")
        if isinstance(self.init, str) and self.init not in ("spectral", "random"):
            raise ValueError('string init values must be "spectral" or "random"')
        if (
            isinstance(self.init, np.ndarray)
            and self.init.shape[1] != self.n_components
        ):
            raise ValueError("init ndarray must match n_components value")
        if not isinstance(self.metric, str) and not callable(self.metric):
            raise ValueError("metric must be string or callable")
        if self.negative_sample_rate < 0:
            raise ValueError("negative sample rate must be positive")
        if self._initial_alpha < 0.0:
            raise ValueError("learning_rate must be positive")
        if self.n_neighbors < 2:
            raise ValueError("n_neighbors must be greater than 1")
        if self.target_n_neighbors < 2 and self.target_n_neighbors != -1:
            raise ValueError("target_n_neighbors must be greater than 1")
        if not isinstance(self.n_components, int):
            if isinstance(self.n_components, str):
                raise ValueError("n_components must be an int")
            if self.n_components % 1 != 0:
                raise ValueError("n_components must be a whole number")
            try:
                # this will convert other types of int (eg. numpy int64)
                # to Python int
                self.n_components = int(self.n_components)
            except ValueError:
                raise ValueError("n_components must be an int")
        if self.n_components < 1:
            raise ValueError("n_components must be greater than 0")
        if self.n_epochs is not None and (
            self.n_epochs <= 10 or not isinstance(self.n_epochs, int)
        ):
            raise ValueError("n_epochs must be a positive integer of at least 10")
        if self.metric_kwds is None:
            self._metric_kwds = {}
        else:
            self._metric_kwds = self.metric_kwds
        if self.output_metric_kwds is None:
            self._output_metric_kwds = {}
        else:
            self._output_metric_kwds = self.output_metric_kwds
        if self.target_metric_kwds is None:
            self._target_metric_kwds = {}
        else:
            self._target_metric_kwds = self.target_metric_kwds
        # check sparsity of data upfront to set proper _input_distance_func &
        # save repeated checks later on
        if scipy.sparse.isspmatrix_csr(self._raw_data):
            self._sparse_data = True
        else:
            self._sparse_data = False
        # set input distance metric & inverse_transform distance metric
        if callable(self.metric):
            in_returns_grad = self._check_custom_metric(
                self.metric, self._metric_kwds, self._raw_data
            )
            if in_returns_grad:
                _m = self.metric

                @numba.njit(fastmath=True)
                def _dist_only(x, y, *kwds):
                    return _m(x, y, *kwds)[0]

                self._input_distance_func = _dist_only
                self._inverse_distance_func = self.metric
            else:
                self._input_distance_func = self.metric
                self._inverse_distance_func = None
                warn(
                    "custom distance metric does not return gradient; inverse_transform will be unavailable. "
                    "To enable using inverse_transform method method, define a distance function that returns "
                    "a tuple of (distance [float], gradient [np.array])"
                )
        elif self.metric == "precomputed":
            if self.unique:
                raise ValueError("unique is poorly defined on a precomputed metric")
            warn(
                "using precomputed metric; transform will be unavailable for new data and inverse_transform "
                "will be unavailable for all data"
            )
            self._input_distance_func = self.metric
            self._inverse_distance_func = None
        elif self.metric == "hellinger" and self._raw_data.min() < 0:
            raise ValueError("Metric 'hellinger' does not support negative values")
        elif self.metric in dist.named_distances:
            if self._sparse_data:
                if self.metric in sparse.sparse_named_distances:
                    self._input_distance_func = sparse.sparse_named_distances[
                        self.metric
                    ]
                else:
                    raise ValueError(
                        "Metric {} is not supported for sparse data".format(self.metric)
                    )
            else:
                self._input_distance_func = dist.named_distances[self.metric]
            try:
                self._inverse_distance_func = dist.named_distances_with_gradients[
                    self.metric
                ]
            except KeyError:
                warn(
                    "gradient function is not yet implemented for {} distance metric; "
                    "inverse_transform will be unavailable".format(self.metric)
                )
                self._inverse_distance_func = None
        else:
            raise ValueError("metric is neither callable nor a recognised string")
        # set ooutput distance metric
        if callable(self.output_metric):
            out_returns_grad = self._check_custom_metric(
                self.output_metric, self._output_metric_kwds
            )
            if out_returns_grad:
                self._output_distance_func = self.output_metric
            else:
                raise ValueError(
                    "custom output_metric must return a tuple of (distance [float], gradient [np.array])"
                )
        elif self.output_metric == "precomputed":
            raise ValueError("output_metric cannnot be 'precomputed'")
        elif self.output_metric in dist.named_distances_with_gradients:
            self._output_distance_func = dist.named_distances_with_gradients[
                self.output_metric
            ]
        elif self.output_metric in dist.named_distances:
            raise ValueError(
                "gradient function is not yet implemented for {}.".format(
                    self.output_metric
                )
            )
        else:
            raise ValueError(
                "output_metric is neither callable nor a recognised string"
            )
        # set angularity for NN search based on metric
        if self.metric in (
            "cosine",
            "correlation",
            "dice",
            "jaccard",
            "ll_dirichlet",
            "hellinger",
        ):
            self.angular_rp_forest = True

    def _check_custom_metric(self, metric, kwds, data=None):
        # quickly check to determine whether user-defined
        # self.metric/self.output_metric returns both distance and gradient
        if data is not None:
            # if checking the high-dimensional distance metric, test directly on
            # input data so we don't risk violating any assumptions potentially
            # hard-coded in the metric (e.g., bounded; non-negative)
            x, y = data[np.random.randint(0, data.shape[0], 2)]
        else:
            # if checking the manifold distance metric, simulate some data on a
            # reasonable interval with output dimensionality
            x, y = np.random.uniform(low=-10, high=10, size=(2, self.n_components))

        if scipy.sparse.issparse(data):
            metric_out = metric(x.indices, x.data, y.indices, y.data, **kwds)
        else:
            metric_out = metric(x, y, **kwds)
        # True if metric returns iterable of length 2, False otherwise
        return hasattr(metric_out, "__iter__") and len(metric_out) == 2

    def fit(self, X, y=None):
        """Fit X into an embedded space.

        Optionally use y for supervised dimension reduction.

        Parameters
        ----------
        X : array, shape (n_samples, n_features) or (n_samples, n_samples)
            If the metric is 'precomputed' X must be a square distance
            matrix. Otherwise it contains a sample per row. If the method
            is 'exact', X may be a sparse matrix of type 'csr', 'csc'
            or 'coo'.

        y : array, shape (n_samples)
            A target array for supervised dimension reduction. How this is
            handled is determined by parameters UMAP was instantiated with.
            The relevant attributes are ``target_metric`` and
            ``target_metric_kwds``.
        """

        X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
        self._raw_data = X

        # Handle all the optional arguments, setting default
        if self.a is None or self.b is None:
            self._a, self._b = find_ab_params(self.spread, self.min_dist)
        else:
            self._a = self.a
            self._b = self.b

        if isinstance(self.init, np.ndarray):
            init = check_array(self.init, dtype=np.float32, accept_sparse=False)
        else:
            init = self.init

        self._initial_alpha = self.learning_rate

        self._validate_parameters()

        if self.verbose:
            print(str(self))

        # Check if we should unique the data
        # We've already ensured that we aren't in the precomputed case
        if self.unique:
            # check if the matrix is dense
            if self._sparse_data:
                # Call a sparse unique function
                index, inverse, counts = csr_unique(X)
            else:
                index, inverse, counts = np.unique(
                    X,
                    return_index=True,
                    return_inverse=True,
                    return_counts=True,
                    axis=0,
                )[1:4]
            if self.verbose:
                print(
                    "Unique=True -> Number of data points reduced from ",
                    X.shape[0],
                    " to ",
                    X[index].shape[0],
                )
                most_common = np.argmax(counts)
                print(
                    "Most common duplicate is",
                    index[most_common],
                    " with a count of ",
                    counts[most_common],
                )
        # If we aren't asking for unique use the full index.
        # This will save special cases later.
        else:
            index = list(range(X.shape[0]))
            inverse = list(range(X.shape[0]))

        # Error check n_neighbors based on data size
        if X[index].shape[0] <= self.n_neighbors:
            if X[index].shape[0] == 1:
                self.embedding_ = np.zeros(
                    (1, self.n_components)
                )  # needed to sklearn comparability
                return self

            warn(
                "n_neighbors is larger than the dataset size; truncating to "
                "X.shape[0] - 1"
            )
            self._n_neighbors = X[index].shape[0] - 1
        else:
            self._n_neighbors = self.n_neighbors

        # Note: unless it causes issues for setting 'index', could move this to
        # initial sparsity check above
        if self._sparse_data and not X.has_sorted_indices:
            X.sort_indices()

        random_state = check_random_state(self.random_state)

        if self.verbose:
            print("Construct fuzzy simplicial set")

        if self.metric == "precomputed" and self._sparse_data:
            # For sparse precomputed distance matrices, we just argsort the rows to find
            # nearest neighbors. To make this easier, we expect matrices that are
            # symmetrical (so we can find neighbors by looking at rows in isolation,
            # rather than also having to consider that sample's column too).
            print("Computing KNNs for sparse precomputed distances...")
            if sparse_tril(X).getnnz() != sparse_triu(X).getnnz():
                raise ValueError(
                    "Sparse precomputed distance matrices should be symmetrical!"
                )
            if not np.all(X.diagonal() == 0):
                raise ValueError("Non-zero distances from samples to themselves!")
            self._knn_indices = np.zeros((X.shape[0], self.n_neighbors), dtype=np.int)
            self._knn_dists = np.zeros(self._knn_indices.shape, dtype=np.float)
            for row_id in range(X.shape[0]):
                # Find KNNs row-by-row
                row_data = X[row_id].data
                row_indices = X[row_id].indices
                if len(row_data) < self._n_neighbors:
                    raise ValueError(
                        "Some rows contain fewer than n_neighbors distances!"
                    )
                row_nn_data_indices = np.argsort(row_data)[: self._n_neighbors]
                self._knn_indices[row_id] = row_indices[row_nn_data_indices]
                self._knn_dists[row_id] = row_data[row_nn_data_indices]
            self.graph_, self._sigmas, self._rhos = fuzzy_simplicial_set(
                X[index],
                self.n_neighbors,
                random_state,
                "precomputed",
                self._metric_kwds,
                self._knn_indices,
                self._knn_dists,
                self.angular_rp_forest,
                self.set_op_mix_ratio,
                self.local_connectivity,
                True,
                self.verbose,
            )
        # Handle small cases efficiently by computing all distances
        elif X[index].shape[0] < 4096 and not self.force_approximation_algorithm:
            self._small_data = True
            try:
                # sklearn pairwise_distances fails for callable metric on sparse data
                _m = self.metric if self._sparse_data else self._input_distance_func
                dmat = pairwise_distances(X[index], metric=_m, **self._metric_kwds)
            except (ValueError, TypeError) as e:
                # metric is numba.jit'd or not supported by sklearn,
                # fallback to pairwise special

                if self._sparse_data:
                    # Get a fresh metric since we are casting to dense
                    if not callable(self.metric):
                        _m = dist.named_distances[self.metric]
                        dmat = dist.pairwise_special_metric(
                            X[index].toarray(), metric=_m, kwds=self._metric_kwds,
                        )
                    else:
                        dmat = dist.pairwise_special_metric(
                            X[index],
                            metric=self._input_distance_func,
                            kwds=self._metric_kwds,
                        )
                else:
                    dmat = dist.pairwise_special_metric(
                        X[index],
                        metric=self._input_distance_func,
                        kwds=self._metric_kwds,
                    )
            self.graph_, self._sigmas, self._rhos = fuzzy_simplicial_set(
                dmat,
                self._n_neighbors,
                random_state,
                "precomputed",
                self._metric_kwds,
                None,
                None,
                self.angular_rp_forest,
                self.set_op_mix_ratio,
                self.local_connectivity,
                True,
                self.verbose,
            )
        else:
            # Standard case
            self._small_data = False
            # pass string identifier if pynndescent also defines distance metric
            if _HAVE_PYNNDESCENT:
                if self._sparse_data and self.metric in pynn_sparse_named_distances:
                    nn_metric = self.metric
                elif not self._sparse_data and self.metric in pynn_named_distances:
                    nn_metric = self.metric
                else:
                    nn_metric = self._input_distance_func
            else:
                nn_metric = self._input_distance_func
            (self._knn_indices, self._knn_dists, self._rp_forest) = nearest_neighbors(
                X[index],
                self._n_neighbors,
                nn_metric,
                self._metric_kwds,
                self.angular_rp_forest,
                random_state,
                self.low_memory,
                use_pynndescent=True,
                verbose=self.verbose,
            )

            self.graph_, self._sigmas, self._rhos = fuzzy_simplicial_set(
                X[index],
                self.n_neighbors,
                random_state,
                nn_metric,
                self._metric_kwds,
                self._knn_indices,
                self._knn_dists,
                self.angular_rp_forest,
                self.set_op_mix_ratio,
                self.local_connectivity,
                True,
                self.verbose,
            )

            if not _HAVE_PYNNDESCENT:
                self._search_graph = scipy.sparse.lil_matrix(
                    (X[index].shape[0], X[index].shape[0]), dtype=np.int8
                )
                _rows = []
                _data = []
                for i in self._knn_indices:
                    _non_neg = i[i >= 0]
                    _rows.append(_non_neg.tolist())
                    _data.append(np.ones(_non_neg.shape[0], dtype=np.int8).tolist())

                self._search_graph.rows = np.empty(len(_rows), dtype=object)
                self._search_graph.rows[:] = _rows
                self._search_graph.data = np.empty(len(_data), dtype=object)
                self._search_graph.data[:] = _data
                self._search_graph = self._search_graph.maximum(
                    self._search_graph.transpose()
                ).tocsr()

                if (self.metric != "precomputed") and (len(self._metric_kwds) > 0):
                    # Create a partial function for distances with arguments
                    _distance_func = self._input_distance_func
                    _dist_args = tuple(self._metric_kwds.values())
                    if self._sparse_data:

                        @numba.njit()
                        def _partial_dist_func(ind1, data1, ind2, data2):
                            return _distance_func(ind1, data1, ind2, data2, *_dist_args)

                        self._input_distance_func = _partial_dist_func
                    else:

                        @numba.njit()
                        def _partial_dist_func(x, y):
                            return _distance_func(x, y, *_dist_args)

                        self._input_distance_func = _partial_dist_func

        # Currently not checking if any duplicate points have differing labels
        # Might be worth throwing a warning...
        if y is not None:
            len_X = len(X) if not self._sparse_data else X.shape[0]
            if len_X != len(y):
                raise ValueError(
                    "Length of x = {len_x}, length of y = {len_y}, while it must be equal.".format(
                        len_x=len_X, len_y=len(y)
                    )
                )
            y_ = check_array(y, ensure_2d=False)[index]
            if self.target_metric == "categorical":
                if self.target_weight < 1.0:
                    far_dist = 2.5 * (1.0 / (1.0 - self.target_weight))
                else:
                    far_dist = 1.0e12
                self.graph_ = discrete_metric_simplicial_set_intersection(
                    self.graph_, y_, far_dist=far_dist
                )
            elif self.target_metric in dist.DISCRETE_METRICS:
                if self.target_weight < 1.0:
                    scale = 2.5 * (1.0 / (1.0 - self.target_weight))
                else:
                    scale = 1.0e12
                # self.graph_ = discrete_metric_simplicial_set_intersection(
                #     self.graph_,
                #     y_,
                #     metric=self.target_metric,
                #     metric_kws=self.target_metric_kwds,
                #     metric_scale=scale
                # )

                metric_kws = dist.get_discrete_params(y_, self.target_metric)

                self.graph_ = discrete_metric_simplicial_set_intersection(
                    self.graph_,
                    y_,
                    metric=self.target_metric,
                    metric_kws=metric_kws,
                    metric_scale=scale,
                )
            else:
                if len(y_.shape) == 1:
                    y_ = y_.reshape(-1, 1)
                if self.target_n_neighbors == -1:
                    target_n_neighbors = self._n_neighbors
                else:
                    target_n_neighbors = self.target_n_neighbors

                # Handle the small case as precomputed as before
                if y.shape[0] < 4096:
                    try:
                        ydmat = pairwise_distances(
                            y_, metric=self.target_metric, **self._target_metric_kwds
                        )
                    except (TypeError, ValueError):
                        ydmat = dist.pairwise_special_metric(
                            y_,
                            metric=self.target_metric,
                            kwds=self._target_metric_kwds,
                        )

                    target_graph, target_sigmas, target_rhos = fuzzy_simplicial_set(
                        ydmat,
                        target_n_neighbors,
                        random_state,
                        "precomputed",
                        self._target_metric_kwds,
                        None,
                        None,
                        False,
                        1.0,
                        1.0,
                        False,
                    )
                else:
                    # Standard case
                    target_graph, target_sigmas, target_rhos = fuzzy_simplicial_set(
                        y_,
                        target_n_neighbors,
                        random_state,
                        self.target_metric,
                        self._target_metric_kwds,
                        None,
                        None,
                        False,
                        1.0,
                        1.0,
                        False,
                    )
                # product = self.graph_.multiply(target_graph)
                # # self.graph_ = 0.99 * product + 0.01 * (self.graph_ +
                # #                                        target_graph -
                # #                                        product)
                # self.graph_ = product
                self.graph_ = general_simplicial_set_intersection(
                    self.graph_, target_graph, self.target_weight
                )
                self.graph_ = reset_local_connectivity(self.graph_)

        if self.n_epochs is None:
            n_epochs = 0
        else:
            n_epochs = self.n_epochs

        if self.verbose:
            print(ts(), "Construct embedding")

        self.embedding_ = simplicial_set_embedding(
            self._raw_data[index],  # JH why raw data?
            self.graph_,
            self.n_components,
            self._initial_alpha,
            self._a,
            self._b,
            self.repulsion_strength,
            self.negative_sample_rate,
            n_epochs,
            init,
            random_state,
            self._input_distance_func,
            self._metric_kwds,
            self._output_distance_func,
            self._output_metric_kwds,
            self.output_metric in ("euclidean", "l2"),
            self.random_state is None,
            self.verbose,
        )[inverse]

        if self.verbose:
            print(ts() + " Finished embedding")

        self._input_hash = joblib.hash(self._raw_data)

        return self

    def fit_transform(self, X, y=None):
        """Fit X into an embedded space and return that transformed
        output.

        Parameters
        ----------
        X : array, shape (n_samples, n_features) or (n_samples, n_samples)
            If the metric is 'precomputed' X must be a square distance
            matrix. Otherwise it contains a sample per row.

        y : array, shape (n_samples)
            A target array for supervised dimension reduction. How this is
            handled is determined by parameters UMAP was instantiated with.
            The relevant attributes are ``target_metric`` and
            ``target_metric_kwds``.

        Returns
        -------
        X_new : array, shape (n_samples, n_components)
            Embedding of the training data in low-dimensional space.
        """
        self.fit(X, y)
        return self.embedding_

    def transform(self, X):
        """Transform X into the existing embedded space and return that
        transformed output.

        Parameters
        ----------
        X : array, shape (n_samples, n_features)
            New data to be transformed.

        Returns
        -------
        X_new : array, shape (n_samples, n_components)
            Embedding of the new data in low-dimensional space.
        """
        # If we fit just a single instance then error
        if self.embedding_.shape[0] == 1:
            raise ValueError(
                "Transform unavailable when model was fit with only a single data sample."
            )
        # If we just have the original input then short circuit things
        X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
        x_hash = joblib.hash(X)
        if x_hash == self._input_hash:
            return self.embedding_

        if self.metric == "precomputed":
            raise ValueError(
                "Transform  of new data not available for precomputed metric."
            )

        # X = check_array(X, dtype=np.float32, order="C", accept_sparse="csr")
        random_state = check_random_state(self.transform_seed)
        rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

        if self._small_data:
            try:
                # sklearn pairwise_distances fails for callable metric on sparse data
                _m = self.metric if self._sparse_data else self._input_distance_func
                dmat = pairwise_distances(
                    X, self._raw_data, metric=_m, **self._metric_kwds
                )
            except (TypeError, ValueError):
                dmat = dist.pairwise_special_metric(
                    X,
                    self._raw_data,
                    metric=self._input_distance_func,
                    kwds=self._metric_kwds,
                )
            indices = np.argpartition(dmat, self._n_neighbors)[:, : self._n_neighbors]
            dmat_shortened = submatrix(dmat, indices, self._n_neighbors)
            indices_sorted = np.argsort(dmat_shortened)
            indices = submatrix(indices, indices_sorted, self._n_neighbors)
            dists = submatrix(dmat_shortened, indices_sorted, self._n_neighbors)
        elif _HAVE_PYNNDESCENT:
            indices, dists = self._rp_forest.query(X, self.n_neighbors)
        elif self._sparse_data:
            if not scipy.sparse.issparse(X):
                X = scipy.sparse.csr_matrix(X)

            init = sparse_nn.sparse_initialise_search(
                self._rp_forest,
                self._raw_data.indices,
                self._raw_data.indptr,
                self._raw_data.data,
                X.indices,
                X.indptr,
                X.data,
                int(
                    self._n_neighbors
                    * self.transform_queue_size
                    * (1 + int(self._sparse_data))
                ),
                rng_state,
                self._input_distance_func,
            )
            result = sparse_nn.sparse_initialized_nnd_search(
                self._raw_data.indices,
                self._raw_data.indptr,
                self._raw_data.data,
                self._search_graph.indptr,
                self._search_graph.indices,
                init,
                X.indices,
                X.indptr,
                X.data,
                self._input_distance_func,
            )

            indices, dists = deheap_sort(result)
            indices = indices[:, : self._n_neighbors]
            dists = dists[:, : self._n_neighbors]
        else:
            init = initialise_search(
                self._rp_forest,
                self._raw_data,
                X,
                int(self._n_neighbors * self.transform_queue_size),
                rng_state,
                self._input_distance_func,
            )
            result = initialized_nnd_search(
                self._raw_data,
                self._search_graph.indptr,
                self._search_graph.indices,
                init,
                X,
                self._input_distance_func,
            )

            indices, dists = deheap_sort(result)
            indices = indices[:, : self._n_neighbors]
            dists = dists[:, : self._n_neighbors]

        dists = dists.astype(np.float32, order="C")

        adjusted_local_connectivity = max(0.0, self.local_connectivity - 1.0)
        sigmas, rhos = smooth_knn_dist(
            dists,
            float(self._n_neighbors),
            local_connectivity=float(adjusted_local_connectivity),
        )

        rows, cols, vals = compute_membership_strengths(indices, dists, sigmas, rhos)

        graph = scipy.sparse.coo_matrix(
            (vals, (rows, cols)), shape=(X.shape[0], self._raw_data.shape[0])
        )

        # This was a very specially constructed graph with constant degree.
        # That lets us do fancy unpacking by reshaping the csr matrix indices
        # and data. Doing so relies on the constant degree assumption!
        csr_graph = normalize(graph.tocsr(), norm="l1")
        inds = csr_graph.indices.reshape(X.shape[0], self._n_neighbors)
        weights = csr_graph.data.reshape(X.shape[0], self._n_neighbors)
        embedding = init_transform(inds, weights, self.embedding_)

        if self.n_epochs is None:
            # For smaller datasets we can use more epochs
            if graph.shape[0] <= 10000:
                n_epochs = 100
            else:
                n_epochs = 30
        else:
            n_epochs = int(self.n_epochs // 3.0)

        graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0
        graph.eliminate_zeros()

        epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs)

        head = graph.row
        tail = graph.col
        weight = graph.data

        # optimize_layout = make_optimize_layout(
        #     self._output_distance_func,
        #     tuple(self.output_metric_kwds.values()),
        # )

        if self.output_metric == "euclidean":
            embedding = optimize_layout_euclidean(
                embedding,
                self.embedding_.astype(np.float32, copy=True),  # Fixes #179 & #217,
                head,
                tail,
                n_epochs,
                graph.shape[1],
                epochs_per_sample,
                self._a,
                self._b,
                rng_state,
                self.repulsion_strength,
                self._initial_alpha / 4.0,
                self.negative_sample_rate,
                self.random_state is None,
                verbose=self.verbose,
            )
        else:
            embedding = optimize_layout_generic(
                embedding,
                self.embedding_.astype(np.float32, copy=True),  # Fixes #179 & #217
                head,
                tail,
                n_epochs,
                graph.shape[1],
                epochs_per_sample,
                self._a,
                self._b,
                rng_state,
                self.repulsion_strength,
                self._initial_alpha / 4.0,
                self.negative_sample_rate,
                self._output_distance_func,
                tuple(self._output_metric_kwds.values()),
                verbose=self.verbose,
            )

        return embedding

    def inverse_transform(self, X):
        """Transform X in the existing embedded space back into the input
        data space and return that transformed output.

        Parameters
        ----------
        X : array, shape (n_samples, n_components)
            New points to be inverse transformed.

        Returns
        -------
        X_new : array, shape (n_samples, n_features)
            Generated data points new data in data space.
        """

        if self._sparse_data:
            raise ValueError("Inverse transform not available for sparse input.")
        elif self._inverse_distance_func is None:
            raise ValueError("Inverse transform not available for given metric.")
        elif self.n_components >= 8:
            warn(
                "Inverse transform works best with low dimensional embeddings."
                " Results may be poor, or this approach to inverse transform"
                " may fail altogether! If you need a high dimensional latent"
                " space and inverse transform operations consider using an"
                " autoencoder."
            )

        X = check_array(X, dtype=np.float32, order="C")
        random_state = check_random_state(self.transform_seed)
        rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

        # build Delaunay complex (Does this not assume a roughly euclidean output metric)?
        deltri = scipy.spatial.Delaunay(
            self.embedding_, incremental=True, qhull_options="QJ"
        )
        neighbors = deltri.simplices[deltri.find_simplex(X)]
        adjmat = scipy.sparse.lil_matrix(
            (self.embedding_.shape[0], self.embedding_.shape[0]), dtype=int
        )
        for i in np.arange(0, deltri.simplices.shape[0]):
            for j in deltri.simplices[i]:
                if j < self.embedding_.shape[0]:
                    idx = deltri.simplices[i][
                        deltri.simplices[i] < self.embedding_.shape[0]
                    ]
                    adjmat[j, idx] = 1
                    adjmat[idx, j] = 1

        adjmat = scipy.sparse.csr_matrix(adjmat)

        min_vertices = min(self._raw_data.shape[-1], self._raw_data.shape[0])

        neighborhood = [
            breadth_first_search(adjmat, v[0], min_vertices=min_vertices)
            for v in neighbors
        ]
        if callable(self.output_metric):
            # need to create another numba.jit-able wrapper for callable
            # output_metrics that return a tuple (already checked that it does
            # during param validation in `fit` method)
            _out_m = self.output_metric

            @numba.njit(fastmath=True)
            def _output_dist_only(x, y, *kwds):
                return _out_m(x, y, *kwds)[0]

            dist_only_func = _output_dist_only
        elif self.output_metric in dist.named_distances.keys():
            dist_only_func = dist.named_distances[self.output_metric]
        else:
            # shouldn't really ever get here because of checks already performed,
            # but works as a failsafe in case attr was altered manually after fitting
            raise ValueError(
                "Unrecognized output metric: {}".format(self.output_metric)
            )

        dist_args = tuple(self._output_metric_kwds.values())
        distances = [
            np.array(
                [
                    dist_only_func(X[i], self.embedding_[nb], *dist_args)
                    for nb in neighborhood[i]
                ]
            )
            for i in range(X.shape[0])
        ]
        idx = np.array([np.argsort(e)[:min_vertices] for e in distances])

        dists_output_space = np.array(
            [distances[i][idx[i]] for i in range(len(distances))]
        )
        indices = np.array([neighborhood[i][idx[i]] for i in range(len(neighborhood))])

        rows, cols, distances = np.array(
            [
                [i, indices[i, j], dists_output_space[i, j]]
                for i in range(indices.shape[0])
                for j in range(min_vertices)
            ]
        ).T

        # calculate membership strength of each edge
        weights = 1 / (1 + self._a * distances ** (2 * self._b))

        # compute 1-skeleton
        # convert 1-skeleton into coo_matrix adjacency matrix
        graph = scipy.sparse.coo_matrix(
            (weights, (rows, cols)), shape=(X.shape[0], self._raw_data.shape[0])
        )

        # That lets us do fancy unpacking by reshaping the csr matrix indices
        # and data. Doing so relies on the constant degree assumption!
        # csr_graph = graph.tocsr()
        csr_graph = normalize(graph.tocsr(), norm="l1")
        inds = csr_graph.indices.reshape(X.shape[0], min_vertices)
        weights = csr_graph.data.reshape(X.shape[0], min_vertices)
        inv_transformed_points = init_transform(inds, weights, self._raw_data)

        if self.n_epochs is None:
            # For smaller datasets we can use more epochs
            if graph.shape[0] <= 10000:
                n_epochs = 100
            else:
                n_epochs = 30
        else:
            n_epochs = int(self.n_epochs // 3.0)

        # graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0
        # graph.eliminate_zeros()

        epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs)

        head = graph.row
        tail = graph.col
        weight = graph.data

        inv_transformed_points = optimize_layout_inverse(
            inv_transformed_points,
            self._raw_data,
            head,
            tail,
            weight,
            self._sigmas,
            self._rhos,
            n_epochs,
            graph.shape[1],
            epochs_per_sample,
            self._a,
            self._b,
            rng_state,
            self.repulsion_strength,
            self._initial_alpha / 4.0,
            self.negative_sample_rate,
            self._inverse_distance_func,
            tuple(self._metric_kwds.values()),
            verbose=self.verbose,
        )

        return inv_transformed_points


class DataFrameUMAP(BaseEstimator):
    def __init__(
        self,
        metrics,
        n_neighbors=15,
        n_components=2,
        output_metric="euclidean",
        output_metric_kwds=None,
        n_epochs=None,
        learning_rate=1.0,
        init="spectral",
        min_dist=0.1,
        spread=1.0,
        set_op_mix_ratio=1.0,
        local_connectivity=1.0,
        repulsion_strength=1.0,
        negative_sample_rate=5,
        transform_queue_size=4.0,
        a=None,
        b=None,
        random_state=None,
        angular_rp_forest=False,
        target_n_neighbors=-1,
        target_metric="categorical",
        target_metric_kwds=None,
        target_weight=0.5,
        transform_seed=42,
        verbose=False,
    ):
        self.metrics = metrics
        self.n_neighbors = n_neighbors
        self.output_metric = output_metric
        self.output_metric_kwds = output_metric_kwds
        self.n_epochs = n_epochs
        self.init = init
        self.n_components = n_components
        self.repulsion_strength = repulsion_strength
        self.learning_rate = learning_rate

        self.spread = spread
        self.min_dist = min_dist
        self.set_op_mix_ratio = set_op_mix_ratio
        self.local_connectivity = local_connectivity
        self.negative_sample_rate = negative_sample_rate
        self.random_state = random_state
        self.angular_rp_forest = angular_rp_forest
        self.transform_queue_size = transform_queue_size
        self.target_n_neighbors = target_n_neighbors
        self.target_metric = target_metric
        self.target_metric_kwds = target_metric_kwds
        self.target_weight = target_weight
        self.transform_seed = transform_seed
        self.verbose = verbose

        self.a = a
        self.b = b

    def _validate_parameters(self):
        if self.set_op_mix_ratio < 0.0 or self.set_op_mix_ratio > 1.0:
            raise ValueError("set_op_mix_ratio must be between 0.0 and 1.0")
        if self.repulsion_strength < 0.0:
            raise ValueError("repulsion_strength cannot be negative")
        if self.min_dist > self.spread:
            raise ValueError("min_dist must be less than or equal to spread")
        if self.min_dist < 0.0:
            raise ValueError("min_dist must be greater than 0.0")
        if not isinstance(self.init, str) and not isinstance(self.init, np.ndarray):
            raise ValueError("init must be a string or ndarray")
        if isinstance(self.init, str) and self.init not in ("spectral", "random"):
            raise ValueError('string init values must be "spectral" or "random"')
        if (
            isinstance(self.init, np.ndarray)
            and self.init.shape[1] != self.n_components
        ):
            raise ValueError("init ndarray must match n_components value")
        if self.negative_sample_rate < 0:
            raise ValueError("negative sample rate must be positive")
        if self.learning_rate < 0.0:
            raise ValueError("learning_rate must be positive")
        if self.n_neighbors < 2:
            raise ValueError("n_neighbors must be greater than 2")
        if self.target_n_neighbors < 2 and self.target_n_neighbors != -1:
            raise ValueError("target_n_neighbors must be greater than 2")
        if not isinstance(self.n_components, int):
            raise ValueError("n_components must be an int")
        if self.n_components < 1:
            raise ValueError("n_components must be greater than 0")
        if self.n_epochs is not None and (
            self.n_epochs <= 10 or not isinstance(self.n_epochs, int)
        ):
            raise ValueError("n_epochs must be a positive integer " "larger than 10")
        if self.output_metric_kwds is None:
            self._output_metric_kwds = {}
        else:
            self._output_metric_kwds = self.output_metric_kwds

        if callable(self.output_metric):
            self._output_distance_func = self.output_metric
        elif (
            self.output_metric in dist.named_distances
            and self.output_metric in dist.named_distances_with_gradients
        ):
            self._output_distance_func = dist.named_distances_with_gradients[
                self.output_metric
            ]
        elif self.output_metric == "precomputed":
            raise ValueError("output_metric cannnot be 'precomputed'")
        else:
            if self.output_metric in dist.named_distances:
                raise ValueError(
                    "gradient function is not yet implemented for "
                    + repr(self.output_metric)
                    + "."
                )
            else:
                raise ValueError(
                    "output_metric is neither callable, " + "nor a recognised string"
                )

        # validate metrics argument
        assert isinstance(self.metrics, list) or self.metrics == "infer"
        if self.metrics != "infer":
            for item in self.metrics:
                assert isinstance(item, tuple) and len(item) == 3
                assert isinstance(item[0], str)
                assert item[1] in dist.named_distances
                assert isinstance(item[2], list) and len(item[2]) >= 1

                for col in item[2]:
                    assert isinstance(col, str) or isinstance(col, int)

    def fit(self, X, y=None):

        self._validate_parameters()

        # X should be a pandas dataframe, or np.array; check
        # how column transformer handles this.
        self._raw_data = X

        # Handle all the optional arguments, setting default
        if self.a is None or self.b is None:
            self._a, self._b = find_ab_params(self.spread, self.min_dist)
        else:
            self._a = self.a
            self._b = self.b

        if isinstance(self.init, np.ndarray):
            init = check_array(self.init, dtype=np.float32, accept_sparse=False)
        else:
            init = self.init

        self._initial_alpha = self.learning_rate

        # Error check n_neighbors based on data size
        if X.shape[0] <= self.n_neighbors:
            if X.shape[0] == 1:
                self.embedding_ = np.zeros(
                    (1, self.n_components)
                )  # needed to sklearn comparability
                return self

            warn(
                "n_neighbors is larger than the dataset size; truncating to "
                "X.shape[0] - 1"
            )
            self._n_neighbors = X.shape[0] - 1
        else:
            self._n_neighbors = self.n_neighbors

        if self.metrics == "infer":
            raise NotImplementedError("Metric inference not implemented yet")

        random_state = check_random_state(self.random_state)

        self.metric_graphs_ = {}
        self._sigmas = {}
        self._rhos = {}
        self._knn_indices = {}
        self._knn_dists = {}
        self._rp_forest = {}
        self.graph_ = None

        def is_discrete_metric(metric_data):
            return metric_data[1] in dist.DISCRETE_METRICS

        for metric_data in sorted(self.metrics, key=is_discrete_metric):
            name, metric, columns = metric_data
            print(name, metric, columns)

            if metric in dist.DISCRETE_METRICS:
                self.metric_graphs_[name] = None
                for col in columns:

                    discrete_space = X[col].values
                    metric_kws = dist.get_discrete_params(discrete_space, metric)

                    self.graph_ = discrete_metric_simplicial_set_intersection(
                        self.graph_,
                        discrete_space,
                        metric=metric,
                        metric_kws=metric_kws,
                    )
            else:
                # Sparse not supported yet
                sub_data = check_array(
                    X[columns], dtype=np.float32, accept_sparse=False
                )

                if X.shape[0] < 4096:
                    # small case
                    self._small_data = True
                    # TODO: metric keywords not supported yet!
                    if metric in ("ll_dirichlet", "hellinger"):
                        dmat = dist.pairwise_special_metric(sub_data, metric=metric)
                    else:
                        dmat = pairwise_distances(sub_data, metric=metric)

                    (
                        self.metric_graphs_[name],
                        self._sigmas[name],
                        self._rhos[name],
                    ) = fuzzy_simplicial_set(
                        dmat,
                        self._n_neighbors,
                        random_state,
                        "precomputed",
                        {},
                        None,
                        None,
                        self.angular_rp_forest,
                        self.set_op_mix_ratio,
                        self.local_connectivity,
                        False,
                        self.verbose,
                    )
                else:
                    self._small_data = False
                    # Standard case
                    # TODO: metric keywords not supported yet!
                    (
                        self._knn_indices[name],
                        self._knn_dists[name],
                        self._rp_forest[name],
                    ) = nearest_neighbors(
                        sub_data,
                        self._n_neighbors,
                        metric,
                        {},
                        self.angular_rp_forest,
                        random_state,
                        use_pynndescent=True,
                        verbose=self.verbose,
                    )

                    (
                        self.metric_graphs_[name],
                        self._sigmas[name],
                        self._rhos[name],
                    ) = fuzzy_simplicial_set(
                        sub_data,
                        self.n_neighbors,
                        random_state,
                        metric,
                        {},
                        self._knn_indices[name],
                        self._knn_dists[name],
                        self.angular_rp_forest,
                        self.set_op_mix_ratio,
                        self.local_connectivity,
                        False,
                        self.verbose,
                    )
                    # TODO: set up transform data

                if self.graph_ is None:
                    self.graph_ = self.metric_graphs_[name]
                else:
                    self.graph_ = general_simplicial_set_intersection(
                        self.graph_, self.metric_graphs_[name], 0.5
                    )

            print(self.graph_.data)
            self.graph_ = reset_local_connectivity(
                self.graph_, reset_local_metrics=True
            )

        if self.n_epochs is None:
            n_epochs = 0
        else:
            n_epochs = self.n_epochs

        if self.verbose:
            print("Construct embedding")

        # TODO: Handle connected component issues properly
        # For now we just use manhattan and hope.
        self.embedding_ = simplicial_set_embedding(
            self._raw_data,
            self.graph_,
            self.n_components,
            self._initial_alpha,
            self._a,
            self._b,
            self.repulsion_strength,
            self.negative_sample_rate,
            n_epochs,
            init,
            random_state,
            "manhattan",
            {},
            self._output_distance_func,
            self.output_metric_kwds,
            self.output_metric in ("euclidean", "l2"),
            self.random_state is None,
            self.verbose,
        )

        self._input_hash = joblib.hash(self._raw_data)

        return self