File: utils.py

package info (click to toggle)
umap-learn 0.4.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,668 kB
  • sloc: python: 7,504; sh: 77; makefile: 17
file content (601 lines) | stat: -rw-r--r-- 17,523 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# Author: Leland McInnes <leland.mcinnes@gmail.com>
#
# License: BSD 3 clause

import time

import numpy as np
import numba
import scipy.sparse


@numba.njit(parallel=True)
def fast_knn_indices(X, n_neighbors):
    """A fast computation of knn indices.

    Parameters
    ----------
    X: array of shape (n_samples, n_features)
        The input data to compute the k-neighbor indices of.

    n_neighbors: int
        The number of nearest neighbors to compute for each sample in ``X``.

    Returns
    -------
    knn_indices: array of shape (n_samples, n_neighbors)
        The indices on the ``n_neighbors`` closest points in the dataset.
    """
    knn_indices = np.empty((X.shape[0], n_neighbors), dtype=np.int32)
    for row in numba.prange(X.shape[0]):
        # v = np.argsort(X[row])  # Need to call argsort this way for numba
        v = X[row].argsort(kind="quicksort")
        v = v[:n_neighbors]
        knn_indices[row] = v
    return knn_indices


@numba.njit("i4(i8[:])")
def tau_rand_int(state):
    """A fast (pseudo)-random number generator.

    Parameters
    ----------
    state: array of int64, shape (3,)
        The internal state of the rng

    Returns
    -------
    A (pseudo)-random int32 value
    """
    state[0] = (((state[0] & 4294967294) << 12) & 0xFFFFFFFF) ^ (
        (((state[0] << 13) & 0xFFFFFFFF) ^ state[0]) >> 19
    )
    state[1] = (((state[1] & 4294967288) << 4) & 0xFFFFFFFF) ^ (
        (((state[1] << 2) & 0xFFFFFFFF) ^ state[1]) >> 25
    )
    state[2] = (((state[2] & 4294967280) << 17) & 0xFFFFFFFF) ^ (
        (((state[2] << 3) & 0xFFFFFFFF) ^ state[2]) >> 11
    )

    return state[0] ^ state[1] ^ state[2]


@numba.njit("f4(i8[:])")
def tau_rand(state):
    """A fast (pseudo)-random number generator for floats in the range [0,1]

    Parameters
    ----------
    state: array of int64, shape (3,)
        The internal state of the rng

    Returns
    -------
    A (pseudo)-random float32 in the interval [0, 1]
    """
    integer = tau_rand_int(state)
    return abs(float(integer) / 0x7FFFFFFF)


@numba.njit()
def norm(vec):
    """Compute the (standard l2) norm of a vector.

    Parameters
    ----------
    vec: array of shape (dim,)

    Returns
    -------
    The l2 norm of vec.
    """
    result = 0.0
    for i in range(vec.shape[0]):
        result += vec[i] ** 2
    return np.sqrt(result)


@numba.njit()
def rejection_sample(n_samples, pool_size, rng_state):
    """Generate n_samples many integers from 0 to pool_size such that no
    integer is selected twice. The duplication constraint is achieved via
    rejection sampling.

    Parameters
    ----------
    n_samples: int
        The number of random samples to select from the pool

    pool_size: int
        The size of the total pool of candidates to sample from

    rng_state: array of int64, shape (3,)
        Internal state of the random number generator

    Returns
    -------
    sample: array of shape(n_samples,)
        The ``n_samples`` randomly selected elements from the pool.
    """
    result = np.empty(n_samples, dtype=np.int64)
    for i in range(n_samples):
        reject_sample = True
        j = 0
        while reject_sample:
            j = tau_rand_int(rng_state) % pool_size
            for k in range(i):
                if j == result[k]:
                    break
            else:
                reject_sample = False
        result[i] = j
    return result


@numba.njit()
def make_heap(n_points, size):
    """Constructor for the numba enabled heap objects. The heaps are used
    for approximate nearest neighbor search, maintaining a list of potential
    neighbors sorted by their distance. We also flag if potential neighbors
    are newly added to the list or not. Internally this is stored as
    a single ndarray; the first axis determines whether we are looking at the
    array of candidate indices, the array of distances, or the flag array for
    whether elements are new or not. Each of these arrays are of shape
    (``n_points``, ``size``)

    Parameters
    ----------
    n_points: int
        The number of data points to track in the heap.

    size: int
        The number of items to keep on the heap for each data point.

    Returns
    -------
    heap: An ndarray suitable for passing to other numba enabled heap functions.
    """
    result = np.zeros(
        (np.int64(3), np.int64(n_points), np.int64(size)), dtype=np.float64
    )
    result[0] = -1
    result[1] = np.infty
    result[2] = 0

    return result


@numba.njit("i8(f8[:,:,:],i8,f8,i8,i8)")
def heap_push(heap, row, weight, index, flag):
    """Push a new element onto the heap. The heap stores potential neighbors
    for each data point. The ``row`` parameter determines which data point we
    are addressing, the ``weight`` determines the distance (for heap sorting),
    the ``index`` is the element to add, and the flag determines whether this
    is to be considered a new addition.

    Parameters
    ----------
    heap: ndarray generated by ``make_heap``
        The heap object to push into

    row: int
        Which actual heap within the heap object to push to

    weight: float
        The priority value of the element to push onto the heap

    index: int
        The actual value to be pushed

    flag: int
        Whether to flag the newly added element or not.

    Returns
    -------
    success: The number of new elements successfully pushed into the heap.
    """
    row = int(row)
    indices = heap[0, row]
    weights = heap[1, row]
    is_new = heap[2, row]

    if weight >= weights[0]:
        return 0

    # break if we already have this element.
    for i in range(indices.shape[0]):
        if index == indices[i]:
            return 0

    # insert val at position zero
    weights[0] = weight
    indices[0] = index
    is_new[0] = flag

    # descend the heap, swapping values until the max heap criterion is met
    i = 0
    while True:
        ic1 = 2 * i + 1
        ic2 = ic1 + 1

        if ic1 >= heap.shape[2]:
            break
        elif ic2 >= heap.shape[2]:
            if weights[ic1] > weight:
                i_swap = ic1
            else:
                break
        elif weights[ic1] >= weights[ic2]:
            if weight < weights[ic1]:
                i_swap = ic1
            else:
                break
        else:
            if weight < weights[ic2]:
                i_swap = ic2
            else:
                break

        weights[i] = weights[i_swap]
        indices[i] = indices[i_swap]
        is_new[i] = is_new[i_swap]

        i = i_swap

    weights[i] = weight
    indices[i] = index
    is_new[i] = flag

    return 1


@numba.njit("i8(f8[:,:,:],i8,f8,i8,i8)")
def unchecked_heap_push(heap, row, weight, index, flag):
    """Push a new element onto the heap. The heap stores potential neighbors
    for each data point. The ``row`` parameter determines which data point we
    are addressing, the ``weight`` determines the distance (for heap sorting),
    the ``index`` is the element to add, and the flag determines whether this
    is to be considered a new addition.

    Parameters
    ----------
    heap: ndarray generated by ``make_heap``
        The heap object to push into

    row: int
        Which actual heap within the heap object to push to

    weight: float
        The priority value of the element to push onto the heap

    index: int
        The actual value to be pushed

    flag: int
        Whether to flag the newly added element or not.

    Returns
    -------
    success: The number of new elements successfully pushed into the heap.
    """
    if weight >= heap[1, row, 0]:
        return 0

    indices = heap[0, row]
    weights = heap[1, row]
    is_new = heap[2, row]

    # insert val at position zero
    weights[0] = weight
    indices[0] = index
    is_new[0] = flag

    # descend the heap, swapping values until the max heap criterion is met
    i = 0
    while True:
        ic1 = 2 * i + 1
        ic2 = ic1 + 1

        if ic1 >= heap.shape[2]:
            break
        elif ic2 >= heap.shape[2]:
            if weights[ic1] > weight:
                i_swap = ic1
            else:
                break
        elif weights[ic1] >= weights[ic2]:
            if weight < weights[ic1]:
                i_swap = ic1
            else:
                break
        else:
            if weight < weights[ic2]:
                i_swap = ic2
            else:
                break

        weights[i] = weights[i_swap]
        indices[i] = indices[i_swap]
        is_new[i] = is_new[i_swap]

        i = i_swap

    weights[i] = weight
    indices[i] = index
    is_new[i] = flag

    return 1


@numba.njit()
def siftdown(heap1, heap2, elt):
    """Restore the heap property for a heap with an out of place element
    at position ``elt``. This works with a heap pair where heap1 carries
    the weights and heap2 holds the corresponding elements."""
    while elt * 2 + 1 < heap1.shape[0]:
        left_child = elt * 2 + 1
        right_child = left_child + 1
        swap = elt

        if heap1[swap] < heap1[left_child]:
            swap = left_child

        if right_child < heap1.shape[0] and heap1[swap] < heap1[right_child]:
            swap = right_child

        if swap == elt:
            break
        else:
            heap1[elt], heap1[swap] = (heap1[swap], heap1[elt])
            heap2[elt], heap2[swap] = (heap2[swap], heap2[elt])
            elt = swap


@numba.njit()
def deheap_sort(heap):
    """Given an array of heaps (of indices and weights), unpack the heap
    out to give and array of sorted lists of indices and weights by increasing
    weight. This is effectively just the second half of heap sort (the first
    half not being required since we already have the data in a heap).

    Parameters
    ----------
    heap : array of shape (3, n_samples, n_neighbors)
        The heap to turn into sorted lists.

    Returns
    -------
    indices, weights: arrays of shape (n_samples, n_neighbors)
        The indices and weights sorted by increasing weight.
    """
    indices = heap[0]
    weights = heap[1]

    for i in range(indices.shape[0]):

        ind_heap = indices[i]
        dist_heap = weights[i]

        for j in range(ind_heap.shape[0] - 1):
            ind_heap[0], ind_heap[ind_heap.shape[0] - j - 1] = (
                ind_heap[ind_heap.shape[0] - j - 1],
                ind_heap[0],
            )
            dist_heap[0], dist_heap[dist_heap.shape[0] - j - 1] = (
                dist_heap[dist_heap.shape[0] - j - 1],
                dist_heap[0],
            )

            siftdown(
                dist_heap[: dist_heap.shape[0] - j - 1],
                ind_heap[: ind_heap.shape[0] - j - 1],
                0,
            )

    return indices.astype(np.int64), weights


@numba.njit("i8(f8[:, :, :],i8)")
def smallest_flagged(heap, row):
    """Search the heap for the smallest element that is
    still flagged.

    Parameters
    ----------
    heap: array of shape (3, n_samples, n_neighbors)
        The heaps to search

    row: int
        Which of the heaps to search

    Returns
    -------
    index: int
        The index of the smallest flagged element
        of the ``row``th heap, or -1 if no flagged
        elements remain in the heap.
    """
    ind = heap[0, row]
    dist = heap[1, row]
    flag = heap[2, row]

    min_dist = np.inf
    result_index = -1

    for i in range(ind.shape[0]):
        if flag[i] == 1 and dist[i] < min_dist:
            min_dist = dist[i]
            result_index = i

    if result_index >= 0:
        flag[result_index] = 0.0
        return int(ind[result_index])
    else:
        return -1


@numba.njit(parallel=True)
def build_candidates(current_graph, n_vertices, n_neighbors, max_candidates, rng_state):
    """Build a heap of candidate neighbors for nearest neighbor descent. For
    each vertex the candidate neighbors are any current neighbors, and any
    vertices that have the vertex as one of their nearest neighbors.

    Parameters
    ----------
    current_graph: heap
        The current state of the graph for nearest neighbor descent.

    n_vertices: int
        The total number of vertices in the graph.

    n_neighbors: int
        The number of neighbor edges per node in the current graph.

    max_candidates: int
        The maximum number of new candidate neighbors.

    rng_state: array of int64, shape (3,)
        The internal state of the rng

    Returns
    -------
    candidate_neighbors: A heap with an array of (randomly sorted) candidate
    neighbors for each vertex in the graph.
    """
    candidate_neighbors = make_heap(n_vertices, max_candidates)
    for i in range(n_vertices):
        for j in range(n_neighbors):
            if current_graph[0, i, j] < 0:
                continue
            idx = current_graph[0, i, j]
            isn = current_graph[2, i, j]
            d = tau_rand(rng_state)
            heap_push(candidate_neighbors, i, d, idx, isn)
            heap_push(candidate_neighbors, idx, d, i, isn)
            current_graph[2, i, j] = 0

    return candidate_neighbors


@numba.njit()
def new_build_candidates(
    current_graph, n_vertices, n_neighbors, max_candidates, rng_state, rho=0.5
):  # pragma: no cover
    """Build a heap of candidate neighbors for nearest neighbor descent. For
    each vertex the candidate neighbors are any current neighbors, and any
    vertices that have the vertex as one of their nearest neighbors.

    Parameters
    ----------
    current_graph: heap
        The current state of the graph for nearest neighbor descent.

    n_vertices: int
        The total number of vertices in the graph.

    n_neighbors: int
        The number of neighbor edges per node in the current graph.

    max_candidates: int
        The maximum number of new candidate neighbors.

    rng_state: array of int64, shape (3,)
        The internal state of the rng

    Returns
    -------
    candidate_neighbors: A heap with an array of (randomly sorted) candidate
    neighbors for each vertex in the graph.
    """
    new_candidate_neighbors = make_heap(n_vertices, max_candidates)
    old_candidate_neighbors = make_heap(n_vertices, max_candidates)

    for i in range(n_vertices):
        for j in range(n_neighbors):
            if current_graph[0, i, j] < 0:
                continue
            idx = current_graph[0, i, j]
            isn = current_graph[2, i, j]
            d = tau_rand(rng_state)
            if tau_rand(rng_state) < rho:
                c = 0
                if isn:
                    c += heap_push(new_candidate_neighbors, i, d, idx, isn)
                    c += heap_push(new_candidate_neighbors, idx, d, i, isn)
                else:
                    heap_push(old_candidate_neighbors, i, d, idx, isn)
                    heap_push(old_candidate_neighbors, idx, d, i, isn)

                if c > 0:
                    current_graph[2, i, j] = 0

    return new_candidate_neighbors, old_candidate_neighbors


@numba.njit(parallel=True)
def submatrix(dmat, indices_col, n_neighbors):
    """Return a submatrix given an orginal matrix and the indices to keep.

    Parameters
    ----------
    dmat: array, shape (n_samples, n_samples)
        Original matrix.

    indices_col: array, shape (n_samples, n_neighbors)
        Indices to keep. Each row consists of the indices of the columns.

    n_neighbors: int
        Number of neighbors.

    Returns
    -------
    submat: array, shape (n_samples, n_neighbors)
        The corresponding submatrix.
    """
    n_samples_transform, n_samples_fit = dmat.shape
    submat = np.zeros((n_samples_transform, n_neighbors), dtype=dmat.dtype)
    for i in numba.prange(n_samples_transform):
        for j in numba.prange(n_neighbors):
            submat[i, j] = dmat[i, indices_col[i, j]]
    return submat


# Generates a timestamp for use in logging messages when verbose=True
def ts():
    return time.ctime(time.time())


# I'm not enough of a numba ninja to numba this successfully.
# np.arrays of lists, which are objects...
def csr_unique(matrix, return_index=True, return_inverse=True, return_counts=True):
    """Find the unique elements of a sparse csr matrix.
    We don't explicitly construct the unique matrix leaving that to the user
    who may not want to duplicate a massive array in memory.
    Returns the indices of the input array that give the unique values.
    Returns the indices of the unique array that reconstructs the input array.
    Returns the number of times each unique row appears in the input matrix.

    matrix: a csr matrix
    return_index = bool, optional
        If true, return the row indices of 'matrix'
    return_inverse: bool, optional
        If true, return the the indices of the unique array that can be
           used to reconstruct 'matrix'.
    return_counts = bool, optional
        If true, returns the number of times each unique item appears in 'matrix'

    The unique matrix can computed via
    unique_matrix = matrix[index]
    and the original matrix reconstructed via
    unique_matrix[inverse]
    """
    lil_matrix = matrix.tolil()
    rows = [x + y for x, y in zip(lil_matrix.rows, lil_matrix.data)]
    return_values = return_counts + return_inverse + return_index
    return np.unique(
        rows,
        return_index=return_index,
        return_inverse=return_inverse,
        return_counts=return_counts,
    )[1 : (return_values + 1)]