1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
# Author: Leland McInnes <leland.mcinnes@gmail.com>
#
# License: BSD 3 clause
import time
import numpy as np
import numba
import scipy.sparse
@numba.njit(parallel=True)
def fast_knn_indices(X, n_neighbors):
"""A fast computation of knn indices.
Parameters
----------
X: array of shape (n_samples, n_features)
The input data to compute the k-neighbor indices of.
n_neighbors: int
The number of nearest neighbors to compute for each sample in ``X``.
Returns
-------
knn_indices: array of shape (n_samples, n_neighbors)
The indices on the ``n_neighbors`` closest points in the dataset.
"""
knn_indices = np.empty((X.shape[0], n_neighbors), dtype=np.int32)
for row in numba.prange(X.shape[0]):
# v = np.argsort(X[row]) # Need to call argsort this way for numba
v = X[row].argsort(kind="quicksort")
v = v[:n_neighbors]
knn_indices[row] = v
return knn_indices
@numba.njit("i4(i8[:])")
def tau_rand_int(state):
"""A fast (pseudo)-random number generator.
Parameters
----------
state: array of int64, shape (3,)
The internal state of the rng
Returns
-------
A (pseudo)-random int32 value
"""
state[0] = (((state[0] & 4294967294) << 12) & 0xFFFFFFFF) ^ (
(((state[0] << 13) & 0xFFFFFFFF) ^ state[0]) >> 19
)
state[1] = (((state[1] & 4294967288) << 4) & 0xFFFFFFFF) ^ (
(((state[1] << 2) & 0xFFFFFFFF) ^ state[1]) >> 25
)
state[2] = (((state[2] & 4294967280) << 17) & 0xFFFFFFFF) ^ (
(((state[2] << 3) & 0xFFFFFFFF) ^ state[2]) >> 11
)
return state[0] ^ state[1] ^ state[2]
@numba.njit("f4(i8[:])")
def tau_rand(state):
"""A fast (pseudo)-random number generator for floats in the range [0,1]
Parameters
----------
state: array of int64, shape (3,)
The internal state of the rng
Returns
-------
A (pseudo)-random float32 in the interval [0, 1]
"""
integer = tau_rand_int(state)
return abs(float(integer) / 0x7FFFFFFF)
@numba.njit()
def norm(vec):
"""Compute the (standard l2) norm of a vector.
Parameters
----------
vec: array of shape (dim,)
Returns
-------
The l2 norm of vec.
"""
result = 0.0
for i in range(vec.shape[0]):
result += vec[i] ** 2
return np.sqrt(result)
@numba.njit()
def rejection_sample(n_samples, pool_size, rng_state):
"""Generate n_samples many integers from 0 to pool_size such that no
integer is selected twice. The duplication constraint is achieved via
rejection sampling.
Parameters
----------
n_samples: int
The number of random samples to select from the pool
pool_size: int
The size of the total pool of candidates to sample from
rng_state: array of int64, shape (3,)
Internal state of the random number generator
Returns
-------
sample: array of shape(n_samples,)
The ``n_samples`` randomly selected elements from the pool.
"""
result = np.empty(n_samples, dtype=np.int64)
for i in range(n_samples):
reject_sample = True
j = 0
while reject_sample:
j = tau_rand_int(rng_state) % pool_size
for k in range(i):
if j == result[k]:
break
else:
reject_sample = False
result[i] = j
return result
@numba.njit()
def make_heap(n_points, size):
"""Constructor for the numba enabled heap objects. The heaps are used
for approximate nearest neighbor search, maintaining a list of potential
neighbors sorted by their distance. We also flag if potential neighbors
are newly added to the list or not. Internally this is stored as
a single ndarray; the first axis determines whether we are looking at the
array of candidate indices, the array of distances, or the flag array for
whether elements are new or not. Each of these arrays are of shape
(``n_points``, ``size``)
Parameters
----------
n_points: int
The number of data points to track in the heap.
size: int
The number of items to keep on the heap for each data point.
Returns
-------
heap: An ndarray suitable for passing to other numba enabled heap functions.
"""
result = np.zeros(
(np.int64(3), np.int64(n_points), np.int64(size)), dtype=np.float64
)
result[0] = -1
result[1] = np.infty
result[2] = 0
return result
@numba.njit("i8(f8[:,:,:],i8,f8,i8,i8)")
def heap_push(heap, row, weight, index, flag):
"""Push a new element onto the heap. The heap stores potential neighbors
for each data point. The ``row`` parameter determines which data point we
are addressing, the ``weight`` determines the distance (for heap sorting),
the ``index`` is the element to add, and the flag determines whether this
is to be considered a new addition.
Parameters
----------
heap: ndarray generated by ``make_heap``
The heap object to push into
row: int
Which actual heap within the heap object to push to
weight: float
The priority value of the element to push onto the heap
index: int
The actual value to be pushed
flag: int
Whether to flag the newly added element or not.
Returns
-------
success: The number of new elements successfully pushed into the heap.
"""
row = int(row)
indices = heap[0, row]
weights = heap[1, row]
is_new = heap[2, row]
if weight >= weights[0]:
return 0
# break if we already have this element.
for i in range(indices.shape[0]):
if index == indices[i]:
return 0
# insert val at position zero
weights[0] = weight
indices[0] = index
is_new[0] = flag
# descend the heap, swapping values until the max heap criterion is met
i = 0
while True:
ic1 = 2 * i + 1
ic2 = ic1 + 1
if ic1 >= heap.shape[2]:
break
elif ic2 >= heap.shape[2]:
if weights[ic1] > weight:
i_swap = ic1
else:
break
elif weights[ic1] >= weights[ic2]:
if weight < weights[ic1]:
i_swap = ic1
else:
break
else:
if weight < weights[ic2]:
i_swap = ic2
else:
break
weights[i] = weights[i_swap]
indices[i] = indices[i_swap]
is_new[i] = is_new[i_swap]
i = i_swap
weights[i] = weight
indices[i] = index
is_new[i] = flag
return 1
@numba.njit("i8(f8[:,:,:],i8,f8,i8,i8)")
def unchecked_heap_push(heap, row, weight, index, flag):
"""Push a new element onto the heap. The heap stores potential neighbors
for each data point. The ``row`` parameter determines which data point we
are addressing, the ``weight`` determines the distance (for heap sorting),
the ``index`` is the element to add, and the flag determines whether this
is to be considered a new addition.
Parameters
----------
heap: ndarray generated by ``make_heap``
The heap object to push into
row: int
Which actual heap within the heap object to push to
weight: float
The priority value of the element to push onto the heap
index: int
The actual value to be pushed
flag: int
Whether to flag the newly added element or not.
Returns
-------
success: The number of new elements successfully pushed into the heap.
"""
if weight >= heap[1, row, 0]:
return 0
indices = heap[0, row]
weights = heap[1, row]
is_new = heap[2, row]
# insert val at position zero
weights[0] = weight
indices[0] = index
is_new[0] = flag
# descend the heap, swapping values until the max heap criterion is met
i = 0
while True:
ic1 = 2 * i + 1
ic2 = ic1 + 1
if ic1 >= heap.shape[2]:
break
elif ic2 >= heap.shape[2]:
if weights[ic1] > weight:
i_swap = ic1
else:
break
elif weights[ic1] >= weights[ic2]:
if weight < weights[ic1]:
i_swap = ic1
else:
break
else:
if weight < weights[ic2]:
i_swap = ic2
else:
break
weights[i] = weights[i_swap]
indices[i] = indices[i_swap]
is_new[i] = is_new[i_swap]
i = i_swap
weights[i] = weight
indices[i] = index
is_new[i] = flag
return 1
@numba.njit()
def siftdown(heap1, heap2, elt):
"""Restore the heap property for a heap with an out of place element
at position ``elt``. This works with a heap pair where heap1 carries
the weights and heap2 holds the corresponding elements."""
while elt * 2 + 1 < heap1.shape[0]:
left_child = elt * 2 + 1
right_child = left_child + 1
swap = elt
if heap1[swap] < heap1[left_child]:
swap = left_child
if right_child < heap1.shape[0] and heap1[swap] < heap1[right_child]:
swap = right_child
if swap == elt:
break
else:
heap1[elt], heap1[swap] = (heap1[swap], heap1[elt])
heap2[elt], heap2[swap] = (heap2[swap], heap2[elt])
elt = swap
@numba.njit()
def deheap_sort(heap):
"""Given an array of heaps (of indices and weights), unpack the heap
out to give and array of sorted lists of indices and weights by increasing
weight. This is effectively just the second half of heap sort (the first
half not being required since we already have the data in a heap).
Parameters
----------
heap : array of shape (3, n_samples, n_neighbors)
The heap to turn into sorted lists.
Returns
-------
indices, weights: arrays of shape (n_samples, n_neighbors)
The indices and weights sorted by increasing weight.
"""
indices = heap[0]
weights = heap[1]
for i in range(indices.shape[0]):
ind_heap = indices[i]
dist_heap = weights[i]
for j in range(ind_heap.shape[0] - 1):
ind_heap[0], ind_heap[ind_heap.shape[0] - j - 1] = (
ind_heap[ind_heap.shape[0] - j - 1],
ind_heap[0],
)
dist_heap[0], dist_heap[dist_heap.shape[0] - j - 1] = (
dist_heap[dist_heap.shape[0] - j - 1],
dist_heap[0],
)
siftdown(
dist_heap[: dist_heap.shape[0] - j - 1],
ind_heap[: ind_heap.shape[0] - j - 1],
0,
)
return indices.astype(np.int64), weights
@numba.njit("i8(f8[:, :, :],i8)")
def smallest_flagged(heap, row):
"""Search the heap for the smallest element that is
still flagged.
Parameters
----------
heap: array of shape (3, n_samples, n_neighbors)
The heaps to search
row: int
Which of the heaps to search
Returns
-------
index: int
The index of the smallest flagged element
of the ``row``th heap, or -1 if no flagged
elements remain in the heap.
"""
ind = heap[0, row]
dist = heap[1, row]
flag = heap[2, row]
min_dist = np.inf
result_index = -1
for i in range(ind.shape[0]):
if flag[i] == 1 and dist[i] < min_dist:
min_dist = dist[i]
result_index = i
if result_index >= 0:
flag[result_index] = 0.0
return int(ind[result_index])
else:
return -1
@numba.njit(parallel=True)
def build_candidates(current_graph, n_vertices, n_neighbors, max_candidates, rng_state):
"""Build a heap of candidate neighbors for nearest neighbor descent. For
each vertex the candidate neighbors are any current neighbors, and any
vertices that have the vertex as one of their nearest neighbors.
Parameters
----------
current_graph: heap
The current state of the graph for nearest neighbor descent.
n_vertices: int
The total number of vertices in the graph.
n_neighbors: int
The number of neighbor edges per node in the current graph.
max_candidates: int
The maximum number of new candidate neighbors.
rng_state: array of int64, shape (3,)
The internal state of the rng
Returns
-------
candidate_neighbors: A heap with an array of (randomly sorted) candidate
neighbors for each vertex in the graph.
"""
candidate_neighbors = make_heap(n_vertices, max_candidates)
for i in range(n_vertices):
for j in range(n_neighbors):
if current_graph[0, i, j] < 0:
continue
idx = current_graph[0, i, j]
isn = current_graph[2, i, j]
d = tau_rand(rng_state)
heap_push(candidate_neighbors, i, d, idx, isn)
heap_push(candidate_neighbors, idx, d, i, isn)
current_graph[2, i, j] = 0
return candidate_neighbors
@numba.njit()
def new_build_candidates(
current_graph, n_vertices, n_neighbors, max_candidates, rng_state, rho=0.5
): # pragma: no cover
"""Build a heap of candidate neighbors for nearest neighbor descent. For
each vertex the candidate neighbors are any current neighbors, and any
vertices that have the vertex as one of their nearest neighbors.
Parameters
----------
current_graph: heap
The current state of the graph for nearest neighbor descent.
n_vertices: int
The total number of vertices in the graph.
n_neighbors: int
The number of neighbor edges per node in the current graph.
max_candidates: int
The maximum number of new candidate neighbors.
rng_state: array of int64, shape (3,)
The internal state of the rng
Returns
-------
candidate_neighbors: A heap with an array of (randomly sorted) candidate
neighbors for each vertex in the graph.
"""
new_candidate_neighbors = make_heap(n_vertices, max_candidates)
old_candidate_neighbors = make_heap(n_vertices, max_candidates)
for i in range(n_vertices):
for j in range(n_neighbors):
if current_graph[0, i, j] < 0:
continue
idx = current_graph[0, i, j]
isn = current_graph[2, i, j]
d = tau_rand(rng_state)
if tau_rand(rng_state) < rho:
c = 0
if isn:
c += heap_push(new_candidate_neighbors, i, d, idx, isn)
c += heap_push(new_candidate_neighbors, idx, d, i, isn)
else:
heap_push(old_candidate_neighbors, i, d, idx, isn)
heap_push(old_candidate_neighbors, idx, d, i, isn)
if c > 0:
current_graph[2, i, j] = 0
return new_candidate_neighbors, old_candidate_neighbors
@numba.njit(parallel=True)
def submatrix(dmat, indices_col, n_neighbors):
"""Return a submatrix given an orginal matrix and the indices to keep.
Parameters
----------
dmat: array, shape (n_samples, n_samples)
Original matrix.
indices_col: array, shape (n_samples, n_neighbors)
Indices to keep. Each row consists of the indices of the columns.
n_neighbors: int
Number of neighbors.
Returns
-------
submat: array, shape (n_samples, n_neighbors)
The corresponding submatrix.
"""
n_samples_transform, n_samples_fit = dmat.shape
submat = np.zeros((n_samples_transform, n_neighbors), dtype=dmat.dtype)
for i in numba.prange(n_samples_transform):
for j in numba.prange(n_neighbors):
submat[i, j] = dmat[i, indices_col[i, j]]
return submat
# Generates a timestamp for use in logging messages when verbose=True
def ts():
return time.ctime(time.time())
# I'm not enough of a numba ninja to numba this successfully.
# np.arrays of lists, which are objects...
def csr_unique(matrix, return_index=True, return_inverse=True, return_counts=True):
"""Find the unique elements of a sparse csr matrix.
We don't explicitly construct the unique matrix leaving that to the user
who may not want to duplicate a massive array in memory.
Returns the indices of the input array that give the unique values.
Returns the indices of the unique array that reconstructs the input array.
Returns the number of times each unique row appears in the input matrix.
matrix: a csr matrix
return_index = bool, optional
If true, return the row indices of 'matrix'
return_inverse: bool, optional
If true, return the the indices of the unique array that can be
used to reconstruct 'matrix'.
return_counts = bool, optional
If true, returns the number of times each unique item appears in 'matrix'
The unique matrix can computed via
unique_matrix = matrix[index]
and the original matrix reconstructed via
unique_matrix[inverse]
"""
lil_matrix = matrix.tolil()
rows = [x + y for x, y in zip(lil_matrix.rows, lil_matrix.data)]
return_values = return_counts + return_inverse + return_index
return np.unique(
rows,
return_index=return_index,
return_inverse=return_inverse,
return_counts=return_counts,
)[1 : (return_values + 1)]
|