1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
from setuptools import setup
def readme():
try:
with open("README.rst", encoding="UTF-8") as readme_file:
return readme_file.read()
except TypeError:
# Python 2.7 doesn't support encoding argument in builtin open
import io
with io.open("README.rst", encoding="UTF-8") as readme_file:
return readme_file.read()
configuration = {
"name": "umap-learn",
"version": "0.5.3",
"description": "Uniform Manifold Approximation and Projection",
"long_description": readme(),
"long_description_content_type": "text/x-rst",
"classifiers": [
"Development Status :: 3 - Alpha",
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"License :: OSI Approved",
"Programming Language :: C",
"Programming Language :: Python",
"Topic :: Software Development",
"Topic :: Scientific/Engineering",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX",
"Operating System :: Unix",
"Operating System :: MacOS",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
],
"keywords": "dimension reduction t-sne manifold",
"url": "http://github.com/lmcinnes/umap",
"maintainer": "Leland McInnes",
"maintainer_email": "leland.mcinnes@gmail.com",
"license": "BSD",
"packages": ["umap"],
"install_requires": [
"numpy >= 1.17",
"scikit-learn >= 0.22",
"scipy >= 1.0",
"numba >= 0.49",
"pynndescent >= 0.5",
"tqdm",
],
"extras_require": {
"plot": [
"pandas",
"matplotlib",
"datashader",
"bokeh",
"holoviews",
"colorcet",
"seaborn",
"scikit-image",
],
"parametric_umap": ["tensorflow >= 2.1", "tensorflow-probability >= 0.10"],
},
"ext_modules": [],
"cmdclass": {},
"test_suite": "pytest",
"tests_require": ["pytest"],
"data_files": (),
"zip_safe": False,
}
setup(**configuration)
|