1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
|
import numpy as np
import numba
from warnings import warn
try:
import pandas as pd
import datashader as ds
import datashader.transfer_functions as tf
import datashader.bundling as bd
import matplotlib.pyplot as plt
import colorcet
import matplotlib.colors
import matplotlib.cm
import bokeh.plotting as bpl
import bokeh.transform as btr
import holoviews as hv
import holoviews.operation.datashader as hd
except ImportError:
warn(
"""The umap.plot package requires extra plotting libraries to be installed.
You can install these via pip using
pip install umap-learn[plot]
or via conda using
conda install pandas matplotlib datashader bokeh holoviews colorcet scikit-image
"""
)
raise ImportError(
"umap.plot requires pandas matplotlib datashader bokeh holoviews scikit-image and colorcet to be "
"installed"
) from None
import sklearn.decomposition
import sklearn.cluster
import sklearn.neighbors
from matplotlib.patches import Patch
from umap.utils import submatrix, average_nn_distance
from bokeh.plotting import show as show_interactive
from bokeh.plotting import output_file, output_notebook
from bokeh.layouts import column
from bokeh.models import CustomJS, TextInput
from matplotlib.pyplot import show as show_static
from warnings import warn
fire_cmap = matplotlib.colors.LinearSegmentedColormap.from_list("fire", colorcet.fire)
darkblue_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
"darkblue", colorcet.kbc
)
darkgreen_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
"darkgreen", colorcet.kgy
)
darkred_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
"darkred", colors=colorcet.linear_kry_5_95_c72[:192], N=256
)
darkpurple_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
"darkpurple", colorcet.linear_bmw_5_95_c89
)
plt.register_cmap("fire", fire_cmap)
plt.register_cmap("darkblue", darkblue_cmap)
plt.register_cmap("darkgreen", darkgreen_cmap)
plt.register_cmap("darkred", darkred_cmap)
plt.register_cmap("darkpurple", darkpurple_cmap)
def _to_hex(arr):
return [matplotlib.colors.to_hex(c) for c in arr]
@numba.vectorize(["uint8(uint32)", "uint8(uint32)"])
def _red(x):
return (x & 0xFF0000) >> 16
@numba.vectorize(["uint8(uint32)", "uint8(uint32)"])
def _green(x):
return (x & 0x00FF00) >> 8
@numba.vectorize(["uint8(uint32)", "uint8(uint32)"])
def _blue(x):
return x & 0x0000FF
_themes = {
"fire": {
"cmap": "fire",
"color_key_cmap": "rainbow",
"background": "black",
"edge_cmap": "fire",
},
"viridis": {
"cmap": "viridis",
"color_key_cmap": "Spectral",
"background": "black",
"edge_cmap": "gray",
},
"inferno": {
"cmap": "inferno",
"color_key_cmap": "Spectral",
"background": "black",
"edge_cmap": "gray",
},
"blue": {
"cmap": "Blues",
"color_key_cmap": "tab20",
"background": "white",
"edge_cmap": "gray_r",
},
"red": {
"cmap": "Reds",
"color_key_cmap": "tab20b",
"background": "white",
"edge_cmap": "gray_r",
},
"green": {
"cmap": "Greens",
"color_key_cmap": "tab20c",
"background": "white",
"edge_cmap": "gray_r",
},
"darkblue": {
"cmap": "darkblue",
"color_key_cmap": "rainbow",
"background": "black",
"edge_cmap": "darkred",
},
"darkred": {
"cmap": "darkred",
"color_key_cmap": "rainbow",
"background": "black",
"edge_cmap": "darkblue",
},
"darkgreen": {
"cmap": "darkgreen",
"color_key_cmap": "rainbow",
"background": "black",
"edge_cmap": "darkpurple",
},
}
_diagnostic_types = np.array(["pca", "ica", "vq", "local_dim", "neighborhood"])
def _get_embedding(umap_object):
if hasattr(umap_object, "embedding_"):
return umap_object.embedding_
elif hasattr(umap_object, "embedding"):
return umap_object.embedding
else:
raise ValueError("Could not find embedding attribute of umap_object")
def _get_metric(umap_object):
if hasattr(umap_object, "metric"):
return umap_object.metric
else:
# Assume euclidean if no attribute per cuML.UMAP
return "euclidean"
def _get_metric_kwds(umap_object):
if hasattr(umap_object, "_metric_kwds"):
return umap_object._metric_kwds
else:
# Assume no keywords exist
return {}
def _embed_datashader_in_an_axis(datashader_image, ax):
img_rev = datashader_image.data[::-1]
mpl_img = np.dstack([_blue(img_rev), _green(img_rev), _red(img_rev)])
ax.imshow(mpl_img)
return ax
def _nhood_search(umap_object, nhood_size):
if hasattr(umap_object, "_small_data") and umap_object._small_data:
dmat = sklearn.metrics.pairwise_distances(umap_object._raw_data)
indices = np.argpartition(dmat, nhood_size)[:, :nhood_size]
dmat_shortened = submatrix(dmat, indices, nhood_size)
indices_sorted = np.argsort(dmat_shortened)
indices = submatrix(indices, indices_sorted, nhood_size)
dists = submatrix(dmat_shortened, indices_sorted, nhood_size)
else:
rng_state = np.empty(3, dtype=np.int64)
indices, dists = umap_object._knn_search_index.query(
umap_object._raw_data,
k=nhood_size,
)
return indices, dists
@numba.jit()
def _nhood_compare(indices_left, indices_right):
"""Compute Jaccard index of two neighborhoods"""
result = np.empty(indices_left.shape[0])
for i in range(indices_left.shape[0]):
intersection_size = np.intersect1d(indices_left[i], indices_right[i]).shape[0]
union_size = np.unique(np.hstack([indices_left[i], indices_right[i]])).shape[0]
result[i] = float(intersection_size) / float(union_size)
return result
def _get_extent(points):
"""Compute bounds on a space with appropriate padding"""
min_x = np.nanmin(points[:, 0])
max_x = np.nanmax(points[:, 0])
min_y = np.nanmin(points[:, 1])
max_y = np.nanmax(points[:, 1])
extent = (
np.round(min_x - 0.05 * (max_x - min_x)),
np.round(max_x + 0.05 * (max_x - min_x)),
np.round(min_y - 0.05 * (max_y - min_y)),
np.round(max_y + 0.05 * (max_y - min_y)),
)
return extent
def _select_font_color(background):
if background == "black":
font_color = "white"
elif background.startswith("#"):
mean_val = np.mean(
[int("0x" + c) for c in (background[1:3], background[3:5], background[5:7])]
)
if mean_val > 126:
font_color = "black"
else:
font_color = "white"
else:
font_color = "black"
return font_color
def _datashade_points(
points,
ax=None,
labels=None,
values=None,
cmap="Blues",
color_key=None,
color_key_cmap="Spectral",
background="white",
width=800,
height=800,
show_legend=True,
alpha=255,
):
"""Use datashader to plot points"""
extent = _get_extent(points)
canvas = ds.Canvas(
plot_width=width,
plot_height=height,
x_range=(extent[0], extent[1]),
y_range=(extent[2], extent[3]),
)
data = pd.DataFrame(points, columns=("x", "y"))
legend_elements = None
# Color by labels
if labels is not None:
if labels.shape[0] != points.shape[0]:
raise ValueError(
"Labels must have a label for "
"each sample (size mismatch: {} {})".format(
labels.shape[0], points.shape[0]
)
)
data["label"] = pd.Categorical(labels)
aggregation = canvas.points(data, "x", "y", agg=ds.count_cat("label"))
if color_key is None and color_key_cmap is None:
result = tf.shade(aggregation, how="eq_hist", alpha=alpha)
elif color_key is None:
unique_labels = np.unique(labels)
num_labels = unique_labels.shape[0]
color_key = _to_hex(
plt.get_cmap(color_key_cmap)(np.linspace(0, 1, num_labels))
)
legend_elements = [
Patch(facecolor=color_key[i], label=k)
for i, k in enumerate(unique_labels)
]
result = tf.shade(
aggregation, color_key=color_key, how="eq_hist", alpha=alpha
)
else:
legend_elements = [
Patch(facecolor=color_key[k], label=k) for k in color_key.keys()
]
result = tf.shade(
aggregation, color_key=color_key, how="eq_hist", alpha=alpha
)
# Color by values
elif values is not None:
if values.shape[0] != points.shape[0]:
raise ValueError(
"Values must have a value for "
"each sample (size mismatch: {} {})".format(
values.shape[0], points.shape[0]
)
)
unique_values = np.unique(values)
if unique_values.shape[0] >= 256:
min_val, max_val = np.min(values), np.max(values)
bin_size = (max_val - min_val) / 255.0
data["val_cat"] = pd.Categorical(
np.round((values - min_val) / bin_size).astype(np.int16)
)
aggregation = canvas.points(data, "x", "y", agg=ds.count_cat("val_cat"))
color_key = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, 256)))
result = tf.shade(
aggregation, color_key=color_key, how="eq_hist", alpha=alpha
)
else:
data["val_cat"] = pd.Categorical(values)
aggregation = canvas.points(data, "x", "y", agg=ds.count_cat("val_cat"))
color_key_cols = _to_hex(
plt.get_cmap(cmap)(np.linspace(0, 1, unique_values.shape[0]))
)
color_key = dict(zip(unique_values, color_key_cols))
result = tf.shade(
aggregation, color_key=color_key, how="eq_hist", alpha=alpha
)
# Color by density (default datashader option)
else:
aggregation = canvas.points(data, "x", "y", agg=ds.count())
result = tf.shade(aggregation, cmap=plt.get_cmap(cmap), alpha=alpha)
if background is not None:
result = tf.set_background(result, background)
if ax is not None:
_embed_datashader_in_an_axis(result, ax)
if show_legend and legend_elements is not None:
ax.legend(handles=legend_elements)
return ax
else:
return result
def _matplotlib_points(
points,
ax=None,
labels=None,
values=None,
cmap="Blues",
color_key=None,
color_key_cmap="Spectral",
background="white",
width=800,
height=800,
show_legend=True,
alpha=None,
):
"""Use matplotlib to plot points"""
point_size = 100.0 / np.sqrt(points.shape[0])
legend_elements = None
if ax is None:
dpi = plt.rcParams["figure.dpi"]
fig = plt.figure(figsize=(width / dpi, height / dpi))
ax = fig.add_subplot(111)
ax.set_facecolor(background)
# Color by labels
if labels is not None:
if labels.shape[0] != points.shape[0]:
raise ValueError(
"Labels must have a label for "
"each sample (size mismatch: {} {})".format(
labels.shape[0], points.shape[0]
)
)
if color_key is None:
unique_labels = np.unique(labels)
num_labels = unique_labels.shape[0]
color_key = plt.get_cmap(color_key_cmap)(np.linspace(0, 1, num_labels))
legend_elements = [
Patch(facecolor=color_key[i], label=unique_labels[i])
for i, k in enumerate(unique_labels)
]
if isinstance(color_key, dict):
colors = pd.Series(labels).map(color_key)
unique_labels = np.unique(labels)
legend_elements = [
Patch(facecolor=color_key[k], label=k) for k in unique_labels
]
else:
unique_labels = np.unique(labels)
if len(color_key) < unique_labels.shape[0]:
raise ValueError(
"Color key must have enough colors for the number of labels"
)
new_color_key = {
k: matplotlib.colors.to_hex(color_key[i])
for i, k in enumerate(unique_labels)
}
legend_elements = [
Patch(facecolor=color_key[i], label=k)
for i, k in enumerate(unique_labels)
]
colors = pd.Series(labels).map(new_color_key)
ax.scatter(points[:, 0], points[:, 1], s=point_size, c=colors, alpha=alpha)
# Color by values
elif values is not None:
if values.shape[0] != points.shape[0]:
raise ValueError(
"Values must have a value for "
"each sample (size mismatch: {} {})".format(
values.shape[0], points.shape[0]
)
)
ax.scatter(
points[:, 0], points[:, 1], s=point_size, c=values, cmap=cmap, alpha=alpha
)
# No color (just pick the midpoint of the cmap)
else:
color = plt.get_cmap(cmap)(0.5)
ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color)
if show_legend and legend_elements is not None:
ax.legend(handles=legend_elements)
return ax
def show(plot_to_show):
"""Display a plot, either interactive or static.
Parameters
----------
plot_to_show: Output of a plotting command (matplotlib axis or bokeh figure)
The plot to show
Returns
-------
None
"""
if isinstance(plot_to_show, plt.Axes):
show_static()
elif isinstance(plot_to_show, bpl.Figure):
show_interactive(plot_to_show)
elif isinstance(plot_to_show, hv.core.spaces.DynamicMap):
show_interactive(hv.render(plot_to_show), backend="bokeh")
else:
raise ValueError(
"The type of ``plot_to_show`` was not valid, or not understood."
)
def points(
umap_object,
labels=None,
values=None,
theme=None,
cmap="Blues",
color_key=None,
color_key_cmap="Spectral",
background="white",
width=800,
height=800,
show_legend=True,
subset_points=None,
ax=None,
alpha=None,
):
"""Plot an embedding as points. Currently this only works
for 2D embeddings. While there are many optional parameters
to further control and tailor the plotting, you need only
pass in the trained/fit umap model to get results. This plot
utility will attempt to do the hard work of avoiding
overplotting issues, and make it easy to automatically
colour points by a categorical labelling or numeric values.
This method is intended to be used within a Jupyter
notebook with ``%matplotlib inline``.
Parameters
----------
umap_object: trained UMAP object
A trained UMAP object that has a 2D embedding.
labels: array, shape (n_samples,) (optional, default None)
An array of labels (assumed integer or categorical),
one for each data sample.
This will be used for coloring the points in
the plot according to their label. Note that
this option is mutually exclusive to the ``values``
option.
values: array, shape (n_samples,) (optional, default None)
An array of values (assumed float or continuous),
one for each sample.
This will be used for coloring the points in
the plot according to a colorscale associated
to the total range of values. Note that this
option is mutually exclusive to the ``labels``
option.
theme: string (optional, default None)
A color theme to use for plotting. A small set of
predefined themes are provided which have relatively
good aesthetics. Available themes are:
* 'blue'
* 'red'
* 'green'
* 'inferno'
* 'fire'
* 'viridis'
* 'darkblue'
* 'darkred'
* 'darkgreen'
cmap: string (optional, default 'Blues')
The name of a matplotlib colormap to use for coloring
or shading points. If no labels or values are passed
this will be used for shading points according to
density (largely only of relevance for very large
datasets). If values are passed this will be used for
shading according the value. Note that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
color_key: dict or array, shape (n_categories) (optional, default None)
A way to assign colors to categoricals. This can either be
an explicit dict mapping labels to colors (as strings of form
'#RRGGBB'), or an array like object providing one color for
each distinct category being provided in ``labels``. Either
way this mapping will be used to color points according to
the label. Note that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
color_key_cmap: string (optional, default 'Spectral')
The name of a matplotlib colormap to use for categorical coloring.
If an explicit ``color_key`` is not given a color mapping for
categories can be generated from the label list and selecting
a matching list of colors from the given colormap. Note
that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
background: string (optional, default 'white)
The color of the background. Usually this will be either
'white' or 'black', but any color name will work. Ideally
one wants to match this appropriately to the colors being
used for points etc. This is one of the things that themes
handle for you. Note that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
width: int (optional, default 800)
The desired width of the plot in pixels.
height: int (optional, default 800)
The desired height of the plot in pixels
show_legend: bool (optional, default True)
Whether to display a legend of the labels
subset_points: array, shape (n_samples,) (optional, default None)
A way to select a subset of points based on an array of boolean
values.
ax: matplotlib axis (optional, default None)
The matplotlib axis to draw the plot to, or if None, which is
the default, a new axis will be created and returned.
alpha: float (optional, default: None)
The alpha blending value, between 0 (transparent) and 1 (opaque).
Returns
-------
result: matplotlib axis
The result is a matplotlib axis with the relevant plot displayed.
If you are using a notebooks and have ``%matplotlib inline`` set
then this will simply display inline.
"""
# if not hasattr(umap_object, "embedding_"):
# raise ValueError(
# "UMAP object must perform fit on data before it can be visualized"
# )
if theme is not None:
cmap = _themes[theme]["cmap"]
color_key_cmap = _themes[theme]["color_key_cmap"]
background = _themes[theme]["background"]
if labels is not None and values is not None:
raise ValueError(
"Conflicting options; only one of labels or values should be set"
)
if alpha is not None:
if not 0.0 <= alpha <= 1.0:
raise ValueError("Alpha must be between 0 and 1 inclusive")
points = _get_embedding(umap_object)
if subset_points is not None:
if len(subset_points) != points.shape[0]:
raise ValueError(
"Size of subset points ({}) does not match number of input points ({})".format(
len(subset_points), points.shape[0]
)
)
points = points[subset_points]
if labels is not None:
labels = labels[subset_points]
if values is not None:
values = values[subset_points]
if points.shape[1] != 2:
raise ValueError("Plotting is currently only implemented for 2D embeddings")
font_color = _select_font_color(background)
if ax is None:
dpi = plt.rcParams["figure.dpi"]
fig = plt.figure(figsize=(width / dpi, height / dpi))
ax = fig.add_subplot(111)
if points.shape[0] <= width * height // 10:
ax = _matplotlib_points(
points,
ax,
labels,
values,
cmap,
color_key,
color_key_cmap,
background,
width,
height,
show_legend,
alpha,
)
else:
# Datashader uses 0-255 as the range for alpha, with 255 as the default
if alpha is not None:
alpha = alpha * 255
else:
alpha = 255
ax = _datashade_points(
points,
ax,
labels,
values,
cmap,
color_key,
color_key_cmap,
background,
width,
height,
show_legend,
alpha,
)
ax.set(xticks=[], yticks=[])
if _get_metric(umap_object) != "euclidean":
ax.text(
0.99,
0.01,
"UMAP: metric={}, n_neighbors={}, min_dist={}".format(
_get_metric(umap_object), umap_object.n_neighbors, umap_object.min_dist
),
transform=ax.transAxes,
horizontalalignment="right",
color=font_color,
)
else:
ax.text(
0.99,
0.01,
"UMAP: n_neighbors={}, min_dist={}".format(
umap_object.n_neighbors, umap_object.min_dist
),
transform=ax.transAxes,
horizontalalignment="right",
color=font_color,
)
return ax
def connectivity(
umap_object,
edge_bundling=None,
edge_cmap="gray_r",
show_points=False,
labels=None,
values=None,
theme=None,
cmap="Blues",
color_key=None,
color_key_cmap="Spectral",
background="white",
width=800,
height=800,
):
"""Plot connectivity relationships of the underlying UMAP
simplicial set data structure. Internally UMAP will make
use of what can be viewed as a weighted graph. This graph
can be plotted using the layout provided by UMAP as a
potential diagnostic view of the embedding. Currently this only works
for 2D embeddings. While there are many optional parameters
to further control and tailor the plotting, you need only
pass in the trained/fit umap model to get results. This plot
utility will attempt to do the hard work of avoiding
overplotting issues and provide options for plotting the
points as well as using edge bundling for graph visualization.
Parameters
----------
umap_object: trained UMAP object
A trained UMAP object that has a 2D embedding.
edge_bundling: string or None (optional, default None)
The edge bundling method to use. Currently supported
are None or 'hammer'. See the datashader docs
on graph visualization for more details.
edge_cmap: string (default 'gray_r')
The name of a matplotlib colormap to use for shading/
coloring the edges of the connectivity graph. Note that
the ``theme``, if specified, will override this.
show_points: bool (optional False)
Whether to display the points over top of the edge
connectivity. Further options allow for coloring/
shading the points accordingly.
labels: array, shape (n_samples,) (optional, default None)
An array of labels (assumed integer or categorical),
one for each data sample.
This will be used for coloring the points in
the plot according to their label. Note that
this option is mutually exclusive to the ``values``
option.
values: array, shape (n_samples,) (optional, default None)
An array of values (assumed float or continuous),
one for each sample.
This will be used for coloring the points in
the plot according to a colorscale associated
to the total range of values. Note that this
option is mutually exclusive to the ``labels``
option.
theme: string (optional, default None)
A color theme to use for plotting. A small set of
predefined themes are provided which have relatively
good aesthetics. Available themes are:
* 'blue'
* 'red'
* 'green'
* 'inferno'
* 'fire'
* 'viridis'
* 'darkblue'
* 'darkred'
* 'darkgreen'
cmap: string (optional, default 'Blues')
The name of a matplotlib colormap to use for coloring
or shading points. If no labels or values are passed
this will be used for shading points according to
density (largely only of relevance for very large
datasets). If values are passed this will be used for
shading according the value. Note that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
color_key: dict or array, shape (n_categories) (optional, default None)
A way to assign colors to categoricals. This can either be
an explicit dict mapping labels to colors (as strings of form
'#RRGGBB'), or an array like object providing one color for
each distinct category being provided in ``labels``. Either
way this mapping will be used to color points according to
the label. Note that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
color_key_cmap: string (optional, default 'Spectral')
The name of a matplotlib colormap to use for categorical coloring.
If an explicit ``color_key`` is not given a color mapping for
categories can be generated from the label list and selecting
a matching list of colors from the given colormap. Note
that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
background: string (optional, default 'white)
The color of the background. Usually this will be either
'white' or 'black', but any color name will work. Ideally
one wants to match this appropriately to the colors being
used for points etc. This is one of the things that themes
handle for you. Note that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
width: int (optional, default 800)
The desired width of the plot in pixels.
height: int (optional, default 800)
The desired height of the plot in pixels
Returns
-------
result: matplotlib axis
The result is a matplotlib axis with the relevant plot displayed.
If you are using a notbooks and have ``%matplotlib inline`` set
then this will simply display inline.
"""
if theme is not None:
cmap = _themes[theme]["cmap"]
color_key_cmap = _themes[theme]["color_key_cmap"]
edge_cmap = _themes[theme]["edge_cmap"]
background = _themes[theme]["background"]
points = _get_embedding(umap_object)
point_df = pd.DataFrame(points, columns=("x", "y"))
point_size = 100.0 / np.sqrt(points.shape[0])
if point_size > 1:
px_size = int(np.round(point_size))
else:
px_size = 1
if show_points:
edge_how = "log"
else:
edge_how = "eq_hist"
coo_graph = umap_object.graph_.tocoo()
edge_df = pd.DataFrame(
np.vstack([coo_graph.row, coo_graph.col, coo_graph.data]).T,
columns=("source", "target", "weight"),
)
edge_df["source"] = edge_df.source.astype(np.int32)
edge_df["target"] = edge_df.target.astype(np.int32)
extent = _get_extent(points)
canvas = ds.Canvas(
plot_width=width,
plot_height=height,
x_range=(extent[0], extent[1]),
y_range=(extent[2], extent[3]),
)
if edge_bundling is None:
edges = bd.directly_connect_edges(point_df, edge_df, weight="weight")
elif edge_bundling == "hammer":
warn(
"Hammer edge bundling is expensive for large graphs!\n"
"This may take a long time to compute!"
)
edges = bd.hammer_bundle(point_df, edge_df, weight="weight")
else:
raise ValueError("{} is not a recognised bundling method".format(edge_bundling))
edge_img = tf.shade(
canvas.line(edges, "x", "y", agg=ds.sum("weight")),
cmap=plt.get_cmap(edge_cmap),
how=edge_how,
)
edge_img = tf.set_background(edge_img, background)
if show_points:
point_img = _datashade_points(
points,
None,
labels,
values,
cmap,
color_key,
color_key_cmap,
None,
width,
height,
False,
)
if px_size > 1:
point_img = tf.dynspread(point_img, threshold=0.5, max_px=px_size)
result = tf.stack(edge_img, point_img, how="over")
else:
result = edge_img
font_color = _select_font_color(background)
dpi = plt.rcParams["figure.dpi"]
fig = plt.figure(figsize=(width / dpi, height / dpi))
ax = fig.add_subplot(111)
_embed_datashader_in_an_axis(result, ax)
ax.set(xticks=[], yticks=[])
ax.text(
0.99,
0.01,
"UMAP: n_neighbors={}, min_dist={}".format(
umap_object.n_neighbors, umap_object.min_dist
),
transform=ax.transAxes,
horizontalalignment="right",
color=font_color,
)
return ax
def diagnostic(
umap_object,
diagnostic_type="pca",
nhood_size=15,
local_variance_threshold=0.8,
ax=None,
cmap="viridis",
point_size=None,
background="white",
width=800,
height=800,
):
"""Provide a diagnostic plot or plots for a UMAP embedding.
There are a number of plots that can be helpful for diagnostic
purposes in understanding your embedding. Currently these are
restricted to methods of coloring a scatterplot of the
embedding to show more about how the embedding is representing
the data. The first class of such plots uses a linear method
that preserves global structure well to embed the data into
three dimensions, and then interprets such coordinates as a
color space -- coloring the points by their location in the
linear global structure preserving embedding. In such plots
one should look for discontinuities of colour, and consider
overall global gradients of color. The diagnostic types here
are ``'pca'``, ``'ica'``, and ``'vq'`` (vector quantization).
The second class consider the local neighbor structure. One
can either look at how well the neighbor structure is
preserved, or how the estimated local dimension of the data
varies. Both of these are available, although the local
dimension estimation is the preferred option. You can
access these are diagnostic types ``'local_dim'`` and
``'neighborhood'``.
Finally the diagnostic type ``'all'`` will provide a
grid of diagnostic plots.
Parameters
----------
umap_object: trained UMAP object
A trained UMAP object that has a 2D embedding.
diagnostic_type: str (optional, default 'pca')
The type of diagnostic plot to show. The options are
* 'pca'
* 'ica'
* 'vq'
* 'local_dim'
* 'neighborhood'
* 'all'
nhood_size: int (optional, default 15)
The size of neighborhood to compare for local
neighborhood preservation estimates.
local_variance_threshold: float (optional, default 0.8)
To estimate the local dimension we consider a PCA of
the local neighborhood and estimate the dimension
as that which provides ``local_variance_threshold``
or more of the ``variance_explained_ratio``.
ax: matlotlib axis (optional, default None)
A matplotlib axis to plot to, or, if None, a new
axis will be created and returned.
cmap: str (optional, default 'viridis')
The name of a matplotlib colormap to use for coloring
points if the ``'local_dim'`` or ``'neighborhood'``
option are selected.
point_size: int (optional, None)
If provided this will fix the point size for the
plot(s). If None then a suitable point size will
be estimated from the data.
Returns
-------
result: matplotlib axis
The result is a matplotlib axis with the relevant plot displayed.
If you are using a notbooks and have ``%matplotlib inline`` set
then this will simply display inline.
"""
points = _get_embedding(umap_object)
if points.shape[1] != 2:
raise ValueError("Plotting is currently only implemented for 2D embeddings")
if point_size is None:
point_size = 100.0 / np.sqrt(points.shape[0])
if ax is None:
dpi = plt.rcParams["figure.dpi"]
if diagnostic_type in ("local_dim", "neighborhood"):
width *= 1.1
font_color = _select_font_color(background)
if ax is None and diagnostic_type != "all":
fig = plt.figure()
ax = fig.add_subplot(111)
if diagnostic_type == "pca":
color_proj = sklearn.decomposition.PCA(n_components=3).fit_transform(
umap_object._raw_data
)
color_proj -= np.min(color_proj)
color_proj /= np.max(color_proj, axis=0)
ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color_proj, alpha=0.66)
ax.set_title("Colored by RGB coords of PCA embedding")
ax.text(
0.99,
0.01,
"UMAP: n_neighbors={}, min_dist={}".format(
umap_object.n_neighbors, umap_object.min_dist
),
transform=ax.transAxes,
horizontalalignment="right",
color=font_color,
)
ax.set(xticks=[], yticks=[])
elif diagnostic_type == "ica":
color_proj = sklearn.decomposition.FastICA(n_components=3).fit_transform(
umap_object._raw_data
)
color_proj -= np.min(color_proj)
color_proj /= np.max(color_proj, axis=0)
ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color_proj, alpha=0.66)
ax.set_title("Colored by RGB coords of FastICA embedding")
ax.text(
0.99,
0.01,
"UMAP: n_neighbors={}, min_dist={}".format(
umap_object.n_neighbors, umap_object.min_dist
),
transform=ax.transAxes,
horizontalalignment="right",
color=font_color,
)
ax.set(xticks=[], yticks=[])
elif diagnostic_type == "vq":
color_projector = sklearn.cluster.KMeans(n_clusters=3).fit(
umap_object._raw_data
)
color_proj = sklearn.metrics.pairwise_distances(
umap_object._raw_data, color_projector.cluster_centers_
)
color_proj -= np.min(color_proj)
color_proj /= np.max(color_proj, axis=0)
ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color_proj, alpha=0.66)
ax.set_title("Colored by RGB coords of Vector Quantization")
ax.text(
0.99,
0.01,
"UMAP: n_neighbors={}, min_dist={}".format(
umap_object.n_neighbors, umap_object.min_dist
),
transform=ax.transAxes,
horizontalalignment="right",
color=font_color,
)
ax.set(xticks=[], yticks=[])
elif diagnostic_type == "neighborhood":
highd_indices, highd_dists = _nhood_search(umap_object, nhood_size)
tree = sklearn.neighbors.KDTree(points)
lowd_dists, lowd_indices = tree.query(points, k=nhood_size)
accuracy = _nhood_compare(
highd_indices.astype(np.int32), lowd_indices.astype(np.int32)
)
vmin = np.percentile(accuracy, 5)
vmax = np.percentile(accuracy, 95)
ax.scatter(
points[:, 0],
points[:, 1],
s=point_size,
c=accuracy,
cmap=cmap,
vmin=vmin,
vmax=vmax,
)
ax.set_title("Colored by neighborhood Jaccard index")
ax.text(
0.99,
0.01,
"UMAP: n_neighbors={}, min_dist={}".format(
umap_object.n_neighbors, umap_object.min_dist
),
transform=ax.transAxes,
horizontalalignment="right",
color=font_color,
)
ax.set(xticks=[], yticks=[])
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap)
mappable.set_array(accuracy)
plt.colorbar(mappable, ax=ax)
elif diagnostic_type == "local_dim":
highd_indices, highd_dists = _nhood_search(umap_object, umap_object.n_neighbors)
data = umap_object._raw_data
local_dim = np.empty(data.shape[0], dtype=np.int64)
for i in range(data.shape[0]):
pca = sklearn.decomposition.PCA().fit(data[highd_indices[i]])
local_dim[i] = np.where(
np.cumsum(pca.explained_variance_ratio_) > local_variance_threshold
)[0][0]
vmin = np.percentile(local_dim, 5)
vmax = np.percentile(local_dim, 95)
ax.scatter(
points[:, 0],
points[:, 1],
s=point_size,
c=local_dim,
cmap=cmap,
vmin=vmin,
vmax=vmax,
)
ax.set_title("Colored by approx local dimension")
ax.text(
0.99,
0.01,
"UMAP: n_neighbors={}, min_dist={}".format(
umap_object.n_neighbors, umap_object.min_dist
),
transform=ax.transAxes,
horizontalalignment="right",
color=font_color,
)
ax.set(xticks=[], yticks=[])
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap)
mappable.set_array(local_dim)
plt.colorbar(mappable, ax=ax)
elif diagnostic_type == "all":
cols = int(len(_diagnostic_types) ** 0.5 // 1)
rows = len(_diagnostic_types) // cols + 1
fig, axs = plt.subplots(rows, cols, figsize=(10, 10), constrained_layout=True)
axs = axs.flat
for ax in axs[len(_diagnostic_types) :]:
ax.remove()
for ax, plt_type in zip(axs, _diagnostic_types):
diagnostic(
umap_object,
diagnostic_type=plt_type,
ax=ax,
point_size=point_size / 4.0,
)
else:
raise ValueError(
"Unknown diagnostic; should be one of "
+ ", ".join(list(_diagnostic_types))
+ ' or "all"'
)
return ax
def interactive(
umap_object,
labels=None,
values=None,
hover_data=None,
theme=None,
cmap="Blues",
color_key=None,
color_key_cmap="Spectral",
background="white",
width=800,
height=800,
point_size=None,
subset_points=None,
interactive_text_search=False,
interactive_text_search_columns=None,
interactive_text_search_alpha_contrast=0.95,
alpha=None,
):
"""Create an interactive bokeh plot of a UMAP embedding.
While static plots are useful, sometimes a plot that
supports interactive zooming, and hover tooltips for
individual points is much more desireable. This function
provides a simple interface for creating such plots. The
result is a bokeh plot that will be displayed in a notebook.
Note that more complex tooltips etc. will require custom
code -- this is merely meant to provide fast and easy
access to interactive plotting.
Parameters
----------
umap_object: trained UMAP object
A trained UMAP object that has a 2D embedding.
labels: array, shape (n_samples,) (optional, default None)
An array of labels (assumed integer or categorical),
one for each data sample.
This will be used for coloring the points in
the plot according to their label. Note that
this option is mutually exclusive to the ``values``
option.
values: array, shape (n_samples,) (optional, default None)
An array of values (assumed float or continuous),
one for each sample.
This will be used for coloring the points in
the plot according to a colorscale associated
to the total range of values. Note that this
option is mutually exclusive to the ``labels``
option.
hover_data: DataFrame, shape (n_samples, n_tooltip_features)
(optional, default None)
A dataframe of tooltip data. Each column of the dataframe
should be a Series of length ``n_samples`` providing a value
for each data point. Column names will be used for
identifying information within the tooltip.
theme: string (optional, default None)
A color theme to use for plotting. A small set of
predefined themes are provided which have relatively
good aesthetics. Available themes are:
* 'blue'
* 'red'
* 'green'
* 'inferno'
* 'fire'
* 'viridis'
* 'darkblue'
* 'darkred'
* 'darkgreen'
cmap: string (optional, default 'Blues')
The name of a matplotlib colormap to use for coloring
or shading points. If no labels or values are passed
this will be used for shading points according to
density (largely only of relevance for very large
datasets). If values are passed this will be used for
shading according the value. Note that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
color_key: dict or array, shape (n_categories) (optional, default None)
A way to assign colors to categoricals. This can either be
an explicit dict mapping labels to colors (as strings of form
'#RRGGBB'), or an array like object providing one color for
each distinct category being provided in ``labels``. Either
way this mapping will be used to color points according to
the label. Note that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
color_key_cmap: string (optional, default 'Spectral')
The name of a matplotlib colormap to use for categorical coloring.
If an explicit ``color_key`` is not given a color mapping for
categories can be generated from the label list and selecting
a matching list of colors from the given colormap. Note
that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
background: string (optional, default 'white')
The color of the background. Usually this will be either
'white' or 'black', but any color name will work. Ideally
one wants to match this appropriately to the colors being
used for points etc. This is one of the things that themes
handle for you. Note that if theme
is passed then this value will be overridden by the
corresponding option of the theme.
width: int (optional, default 800)
The desired width of the plot in pixels.
height: int (optional, default 800)
The desired height of the plot in pixels
point_size: int (optional, default None)
The size of each point marker
subset_points: array, shape (n_samples,) (optional, default None)
A way to select a subset of points based on an array of boolean
values.
interactive_text_search: bool (optional, default False)
Whether to include a text search widget above the interactive plot
interactive_text_search_columns: list (optional, default None)
Columns of data source to search. Searches labels and hover_data by default.
interactive_text_search_alpha_contrast: float (optional, default 0.95)
Alpha value for points matching text search. Alpha value for points
not matching text search will be 1 - interactive_text_search_alpha_contrast
alpha: float (optional, default: None)
The alpha blending value, between 0 (transparent) and 1 (opaque).
Returns
-------
"""
if theme is not None:
cmap = _themes[theme]["cmap"]
color_key_cmap = _themes[theme]["color_key_cmap"]
background = _themes[theme]["background"]
if labels is not None and values is not None:
raise ValueError(
"Conflicting options; only one of labels or values should be set"
)
if alpha is not None:
if not 0.0 <= alpha <= 1.0:
raise ValueError("Alpha must be between 0 and 1 inclusive")
points = _get_embedding(umap_object)
if subset_points is not None:
if len(subset_points) != points.shape[0]:
raise ValueError(
"Size of subset points ({}) does not match number of input points ({})".format(
len(subset_points), points.shape[0]
)
)
points = points[subset_points]
if points.shape[1] != 2:
raise ValueError("Plotting is currently only implemented for 2D embeddings")
if point_size is None:
point_size = 100.0 / np.sqrt(points.shape[0])
data = pd.DataFrame(_get_embedding(umap_object), columns=("x", "y"))
if labels is not None:
data["label"] = labels
if color_key is None:
unique_labels = np.unique(labels)
num_labels = unique_labels.shape[0]
color_key = _to_hex(
plt.get_cmap(color_key_cmap)(np.linspace(0, 1, num_labels))
)
if isinstance(color_key, dict):
data["color"] = pd.Series(labels).map(color_key)
else:
unique_labels = np.unique(labels)
if len(color_key) < unique_labels.shape[0]:
raise ValueError(
"Color key must have enough colors for the number of labels"
)
new_color_key = {k: color_key[i] for i, k in enumerate(unique_labels)}
data["color"] = pd.Series(labels).map(new_color_key)
colors = "color"
elif values is not None:
data["value"] = values
palette = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, 256)))
colors = btr.linear_cmap(
"value", palette, low=np.min(values), high=np.max(values)
)
else:
colors = matplotlib.colors.rgb2hex(plt.get_cmap(cmap)(0.5))
if subset_points is not None:
data = data[subset_points]
if hover_data is not None:
hover_data = hover_data[subset_points]
if points.shape[0] <= width * height // 10:
if hover_data is not None:
tooltip_dict = {}
for col_name in hover_data:
data[col_name] = hover_data[col_name]
tooltip_dict[col_name] = "@{" + col_name + "}"
tooltips = list(tooltip_dict.items())
else:
tooltips = None
if alpha is not None:
data["alpha"] = alpha
else:
data["alpha"] = 1
# bpl.output_notebook(hide_banner=True) # this doesn't work for non-notebook use
data_source = bpl.ColumnDataSource(data)
plot = bpl.figure(
width=width,
height=height,
tooltips=tooltips,
background_fill_color=background,
)
plot.circle(
x="x",
y="y",
source=data_source,
color=colors,
size=point_size,
alpha="alpha",
)
plot.grid.visible = False
plot.axis.visible = False
if interactive_text_search:
text_input = TextInput(value="", title="Search:")
if interactive_text_search_columns is None:
interactive_text_search_columns = []
if hover_data is not None:
interactive_text_search_columns.extend(hover_data.columns)
if labels is not None:
interactive_text_search_columns.append("label")
if len(interactive_text_search_columns) == 0:
warn(
"interactive_text_search_columns set to True, but no hover_data or labels provided."
"Please provide hover_data or labels to use interactive text search."
)
else:
callback = CustomJS(
args=dict(
source=data_source,
matching_alpha=interactive_text_search_alpha_contrast,
non_matching_alpha=1 - interactive_text_search_alpha_contrast,
search_columns=interactive_text_search_columns,
),
code="""
var data = source.data;
var text_search = cb_obj.value;
var search_columns_dict = {}
for (var col in search_columns){
search_columns_dict[col] = search_columns[col]
}
// Loop over columns and values
// If there is no match for any column for a given row, change the alpha value
var string_match = false;
for (var i = 0; i < data.x.length; i++) {
string_match = false
for (var j in search_columns_dict) {
if (String(data[search_columns_dict[j]][i]).includes(text_search) ) {
string_match = true
}
}
if (string_match){
data['alpha'][i] = matching_alpha
}else{
data['alpha'][i] = non_matching_alpha
}
}
source.change.emit();
""",
)
text_input.js_on_change("value", callback)
plot = column(text_input, plot)
# bpl.show(plot)
else:
if hover_data is not None:
warn(
"Too many points for hover data -- tooltips will not"
"be displayed. Sorry; try subssampling your data."
)
if interactive_text_search:
warn(
"Too many points for text search." "Sorry; try subssampling your data."
)
if alpha is not None:
warn("Alpha parameter will not be applied on holoviews plots")
hv.extension("bokeh")
hv.output(size=300)
hv.opts.defaults(hv.opts.RGB(bgcolor=background, xaxis=None, yaxis=None))
if labels is not None:
point_plot = hv.Points(data, kdims=["x", "y"])
plot = hd.datashade(
point_plot,
aggregator=ds.count_cat("color"),
color_key=color_key,
cmap=plt.get_cmap(cmap),
width=width,
height=height,
)
elif values is not None:
min_val = data.values.min()
val_range = data.values.max() - min_val
data["val_cat"] = pd.Categorical(
(data.values - min_val) // (val_range // 256)
)
point_plot = hv.Points(data, kdims=["x", "y"], vdims=["val_cat"])
plot = hd.datashade(
point_plot,
aggregator=ds.count_cat("val_cat"),
cmap=plt.get_cmap(cmap),
width=width,
height=height,
)
else:
point_plot = hv.Points(data, kdims=["x", "y"])
plot = hd.datashade(
point_plot,
aggregator=ds.count(),
cmap=plt.get_cmap(cmap),
width=width,
height=height,
)
return plot
def nearest_neighbour_distribution(umap_object, bins=25, ax=None):
"""Create a histogram of the average distance to each points
nearest neighbors.
Parameters
----------
umap_object: trained UMAP object
A trained UMAP object that has an embedding.
bins: int (optional, default 25)
Number of bins to put the points into
ax: matlotlib axis (optional, default None)
A matplotlib axis to plot to, or, if None, a new
axis will be created and returned.
Returns
-------
"""
nn_distances = average_nn_distance(umap_object.graph_)
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlabel(f"Average distance to nearest neighbors")
ax.set_ylabel("Frequency")
ax.hist(nn_distances, bins=bins)
return ax
|