File: plot.py

package info (click to toggle)
umap-learn 0.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,468 kB
  • sloc: python: 9,458; sh: 87; makefile: 20
file content (1601 lines) | stat: -rw-r--r-- 54,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
import numpy as np
import numba
from warnings import warn

try:
    import pandas as pd
    import datashader as ds
    import datashader.transfer_functions as tf
    import datashader.bundling as bd
    import matplotlib.pyplot as plt
    import colorcet
    import matplotlib.colors
    import matplotlib.cm

    import bokeh.plotting as bpl
    import bokeh.transform as btr
    import holoviews as hv
    import holoviews.operation.datashader as hd
except ImportError:
    warn(
        """The umap.plot package requires extra plotting libraries to be installed.
    You can install these via pip using

    pip install umap-learn[plot]

    or via conda using

     conda install pandas matplotlib datashader bokeh holoviews colorcet scikit-image
    """
    )
    raise ImportError(
        "umap.plot requires pandas matplotlib datashader bokeh holoviews scikit-image and colorcet to be "
        "installed"
    ) from None

import sklearn.decomposition
import sklearn.cluster
import sklearn.neighbors

from matplotlib.patches import Patch

from umap.utils import submatrix, average_nn_distance

from bokeh.plotting import show as show_interactive
from bokeh.plotting import output_file, output_notebook
from bokeh.layouts import column
from bokeh.models import CustomJS, TextInput
from matplotlib.pyplot import show as show_static

from warnings import warn

fire_cmap = matplotlib.colors.LinearSegmentedColormap.from_list("fire", colorcet.fire)
darkblue_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
    "darkblue", colorcet.kbc
)
darkgreen_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
    "darkgreen", colorcet.kgy
)
darkred_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
    "darkred", colors=colorcet.linear_kry_5_95_c72[:192], N=256
)
darkpurple_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
    "darkpurple", colorcet.linear_bmw_5_95_c89
)

plt.register_cmap("fire", fire_cmap)
plt.register_cmap("darkblue", darkblue_cmap)
plt.register_cmap("darkgreen", darkgreen_cmap)
plt.register_cmap("darkred", darkred_cmap)
plt.register_cmap("darkpurple", darkpurple_cmap)


def _to_hex(arr):
    return [matplotlib.colors.to_hex(c) for c in arr]


@numba.vectorize(["uint8(uint32)", "uint8(uint32)"])
def _red(x):
    return (x & 0xFF0000) >> 16


@numba.vectorize(["uint8(uint32)", "uint8(uint32)"])
def _green(x):
    return (x & 0x00FF00) >> 8


@numba.vectorize(["uint8(uint32)", "uint8(uint32)"])
def _blue(x):
    return x & 0x0000FF


_themes = {
    "fire": {
        "cmap": "fire",
        "color_key_cmap": "rainbow",
        "background": "black",
        "edge_cmap": "fire",
    },
    "viridis": {
        "cmap": "viridis",
        "color_key_cmap": "Spectral",
        "background": "black",
        "edge_cmap": "gray",
    },
    "inferno": {
        "cmap": "inferno",
        "color_key_cmap": "Spectral",
        "background": "black",
        "edge_cmap": "gray",
    },
    "blue": {
        "cmap": "Blues",
        "color_key_cmap": "tab20",
        "background": "white",
        "edge_cmap": "gray_r",
    },
    "red": {
        "cmap": "Reds",
        "color_key_cmap": "tab20b",
        "background": "white",
        "edge_cmap": "gray_r",
    },
    "green": {
        "cmap": "Greens",
        "color_key_cmap": "tab20c",
        "background": "white",
        "edge_cmap": "gray_r",
    },
    "darkblue": {
        "cmap": "darkblue",
        "color_key_cmap": "rainbow",
        "background": "black",
        "edge_cmap": "darkred",
    },
    "darkred": {
        "cmap": "darkred",
        "color_key_cmap": "rainbow",
        "background": "black",
        "edge_cmap": "darkblue",
    },
    "darkgreen": {
        "cmap": "darkgreen",
        "color_key_cmap": "rainbow",
        "background": "black",
        "edge_cmap": "darkpurple",
    },
}

_diagnostic_types = np.array(["pca", "ica", "vq", "local_dim", "neighborhood"])


def _get_embedding(umap_object):
    if hasattr(umap_object, "embedding_"):
        return umap_object.embedding_
    elif hasattr(umap_object, "embedding"):
        return umap_object.embedding
    else:
        raise ValueError("Could not find embedding attribute of umap_object")


def _get_metric(umap_object):
    if hasattr(umap_object, "metric"):
        return umap_object.metric
    else:
        # Assume euclidean if no attribute per cuML.UMAP
        return "euclidean"


def _get_metric_kwds(umap_object):
    if hasattr(umap_object, "_metric_kwds"):
        return umap_object._metric_kwds
    else:
        # Assume no keywords exist
        return {}


def _embed_datashader_in_an_axis(datashader_image, ax):
    img_rev = datashader_image.data[::-1]
    mpl_img = np.dstack([_blue(img_rev), _green(img_rev), _red(img_rev)])
    ax.imshow(mpl_img)
    return ax


def _nhood_search(umap_object, nhood_size):
    if hasattr(umap_object, "_small_data") and umap_object._small_data:
        dmat = sklearn.metrics.pairwise_distances(umap_object._raw_data)
        indices = np.argpartition(dmat, nhood_size)[:, :nhood_size]
        dmat_shortened = submatrix(dmat, indices, nhood_size)
        indices_sorted = np.argsort(dmat_shortened)
        indices = submatrix(indices, indices_sorted, nhood_size)
        dists = submatrix(dmat_shortened, indices_sorted, nhood_size)
    else:
        rng_state = np.empty(3, dtype=np.int64)

        indices, dists = umap_object._knn_search_index.query(
            umap_object._raw_data,
            k=nhood_size,
        )

    return indices, dists


@numba.jit()
def _nhood_compare(indices_left, indices_right):
    """Compute Jaccard index of two neighborhoods"""
    result = np.empty(indices_left.shape[0])

    for i in range(indices_left.shape[0]):
        intersection_size = np.intersect1d(indices_left[i], indices_right[i]).shape[0]
        union_size = np.unique(np.hstack([indices_left[i], indices_right[i]])).shape[0]
        result[i] = float(intersection_size) / float(union_size)

    return result


def _get_extent(points):
    """Compute bounds on a space with appropriate padding"""
    min_x = np.nanmin(points[:, 0])
    max_x = np.nanmax(points[:, 0])
    min_y = np.nanmin(points[:, 1])
    max_y = np.nanmax(points[:, 1])

    extent = (
        np.round(min_x - 0.05 * (max_x - min_x)),
        np.round(max_x + 0.05 * (max_x - min_x)),
        np.round(min_y - 0.05 * (max_y - min_y)),
        np.round(max_y + 0.05 * (max_y - min_y)),
    )

    return extent


def _select_font_color(background):
    if background == "black":
        font_color = "white"
    elif background.startswith("#"):
        mean_val = np.mean(
            [int("0x" + c) for c in (background[1:3], background[3:5], background[5:7])]
        )
        if mean_val > 126:
            font_color = "black"
        else:
            font_color = "white"

    else:
        font_color = "black"

    return font_color


def _datashade_points(
    points,
    ax=None,
    labels=None,
    values=None,
    cmap="Blues",
    color_key=None,
    color_key_cmap="Spectral",
    background="white",
    width=800,
    height=800,
    show_legend=True,
    alpha=255,
):

    """Use datashader to plot points"""
    extent = _get_extent(points)
    canvas = ds.Canvas(
        plot_width=width,
        plot_height=height,
        x_range=(extent[0], extent[1]),
        y_range=(extent[2], extent[3]),
    )
    data = pd.DataFrame(points, columns=("x", "y"))

    legend_elements = None

    # Color by labels
    if labels is not None:
        if labels.shape[0] != points.shape[0]:
            raise ValueError(
                "Labels must have a label for "
                "each sample (size mismatch: {} {})".format(
                    labels.shape[0], points.shape[0]
                )
            )

        data["label"] = pd.Categorical(labels)
        aggregation = canvas.points(data, "x", "y", agg=ds.count_cat("label"))
        if color_key is None and color_key_cmap is None:
            result = tf.shade(aggregation, how="eq_hist", alpha=alpha)
        elif color_key is None:
            unique_labels = np.unique(labels)
            num_labels = unique_labels.shape[0]
            color_key = _to_hex(
                plt.get_cmap(color_key_cmap)(np.linspace(0, 1, num_labels))
            )
            legend_elements = [
                Patch(facecolor=color_key[i], label=k)
                for i, k in enumerate(unique_labels)
            ]
            result = tf.shade(
                aggregation, color_key=color_key, how="eq_hist", alpha=alpha
            )
        else:
            legend_elements = [
                Patch(facecolor=color_key[k], label=k) for k in color_key.keys()
            ]
            result = tf.shade(
                aggregation, color_key=color_key, how="eq_hist", alpha=alpha
            )

    # Color by values
    elif values is not None:
        if values.shape[0] != points.shape[0]:
            raise ValueError(
                "Values must have a value for "
                "each sample (size mismatch: {} {})".format(
                    values.shape[0], points.shape[0]
                )
            )
        unique_values = np.unique(values)
        if unique_values.shape[0] >= 256:
            min_val, max_val = np.min(values), np.max(values)
            bin_size = (max_val - min_val) / 255.0
            data["val_cat"] = pd.Categorical(
                np.round((values - min_val) / bin_size).astype(np.int16)
            )
            aggregation = canvas.points(data, "x", "y", agg=ds.count_cat("val_cat"))
            color_key = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, 256)))
            result = tf.shade(
                aggregation, color_key=color_key, how="eq_hist", alpha=alpha
            )
        else:
            data["val_cat"] = pd.Categorical(values)
            aggregation = canvas.points(data, "x", "y", agg=ds.count_cat("val_cat"))
            color_key_cols = _to_hex(
                plt.get_cmap(cmap)(np.linspace(0, 1, unique_values.shape[0]))
            )
            color_key = dict(zip(unique_values, color_key_cols))
            result = tf.shade(
                aggregation, color_key=color_key, how="eq_hist", alpha=alpha
            )

    # Color by density (default datashader option)
    else:
        aggregation = canvas.points(data, "x", "y", agg=ds.count())
        result = tf.shade(aggregation, cmap=plt.get_cmap(cmap), alpha=alpha)

    if background is not None:
        result = tf.set_background(result, background)

    if ax is not None:
        _embed_datashader_in_an_axis(result, ax)
        if show_legend and legend_elements is not None:
            ax.legend(handles=legend_elements)
        return ax
    else:
        return result


def _matplotlib_points(
    points,
    ax=None,
    labels=None,
    values=None,
    cmap="Blues",
    color_key=None,
    color_key_cmap="Spectral",
    background="white",
    width=800,
    height=800,
    show_legend=True,
    alpha=None,
):
    """Use matplotlib to plot points"""
    point_size = 100.0 / np.sqrt(points.shape[0])

    legend_elements = None

    if ax is None:
        dpi = plt.rcParams["figure.dpi"]
        fig = plt.figure(figsize=(width / dpi, height / dpi))
        ax = fig.add_subplot(111)

    ax.set_facecolor(background)

    # Color by labels
    if labels is not None:
        if labels.shape[0] != points.shape[0]:
            raise ValueError(
                "Labels must have a label for "
                "each sample (size mismatch: {} {})".format(
                    labels.shape[0], points.shape[0]
                )
            )
        if color_key is None:
            unique_labels = np.unique(labels)
            num_labels = unique_labels.shape[0]
            color_key = plt.get_cmap(color_key_cmap)(np.linspace(0, 1, num_labels))
            legend_elements = [
                Patch(facecolor=color_key[i], label=unique_labels[i])
                for i, k in enumerate(unique_labels)
            ]

        if isinstance(color_key, dict):
            colors = pd.Series(labels).map(color_key)
            unique_labels = np.unique(labels)
            legend_elements = [
                Patch(facecolor=color_key[k], label=k) for k in unique_labels
            ]
        else:
            unique_labels = np.unique(labels)
            if len(color_key) < unique_labels.shape[0]:
                raise ValueError(
                    "Color key must have enough colors for the number of labels"
                )

            new_color_key = {
                k: matplotlib.colors.to_hex(color_key[i])
                for i, k in enumerate(unique_labels)
            }
            legend_elements = [
                Patch(facecolor=color_key[i], label=k)
                for i, k in enumerate(unique_labels)
            ]
            colors = pd.Series(labels).map(new_color_key)

        ax.scatter(points[:, 0], points[:, 1], s=point_size, c=colors, alpha=alpha)

    # Color by values
    elif values is not None:
        if values.shape[0] != points.shape[0]:
            raise ValueError(
                "Values must have a value for "
                "each sample (size mismatch: {} {})".format(
                    values.shape[0], points.shape[0]
                )
            )
        ax.scatter(
            points[:, 0], points[:, 1], s=point_size, c=values, cmap=cmap, alpha=alpha
        )

    # No color (just pick the midpoint of the cmap)
    else:

        color = plt.get_cmap(cmap)(0.5)
        ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color)

    if show_legend and legend_elements is not None:
        ax.legend(handles=legend_elements)

    return ax


def show(plot_to_show):
    """Display a plot, either interactive or static.

    Parameters
    ----------
    plot_to_show: Output of a plotting command (matplotlib axis or bokeh figure)
        The plot to show

    Returns
    -------
    None
    """
    if isinstance(plot_to_show, plt.Axes):
        show_static()
    elif isinstance(plot_to_show, bpl.Figure):
        show_interactive(plot_to_show)
    elif isinstance(plot_to_show, hv.core.spaces.DynamicMap):
        show_interactive(hv.render(plot_to_show), backend="bokeh")
    else:
        raise ValueError(
            "The type of ``plot_to_show`` was not valid, or not understood."
        )


def points(
    umap_object,
    labels=None,
    values=None,
    theme=None,
    cmap="Blues",
    color_key=None,
    color_key_cmap="Spectral",
    background="white",
    width=800,
    height=800,
    show_legend=True,
    subset_points=None,
    ax=None,
    alpha=None,
):
    """Plot an embedding as points. Currently this only works
    for 2D embeddings. While there are many optional parameters
    to further control and tailor the plotting, you need only
    pass in the trained/fit umap model to get results. This plot
    utility will attempt to do the hard work of avoiding
    overplotting issues, and make it easy to automatically
    colour points by a categorical labelling or numeric values.

    This method is intended to be used within a Jupyter
    notebook with ``%matplotlib inline``.

    Parameters
    ----------
    umap_object: trained UMAP object
        A trained UMAP object that has a 2D embedding.

    labels: array, shape (n_samples,) (optional, default None)
        An array of labels (assumed integer or categorical),
        one for each data sample.
        This will be used for coloring the points in
        the plot according to their label. Note that
        this option is mutually exclusive to the ``values``
        option.

    values: array, shape (n_samples,) (optional, default None)
        An array of values (assumed float or continuous),
        one for each sample.
        This will be used for coloring the points in
        the plot according to a colorscale associated
        to the total range of values. Note that this
        option is mutually exclusive to the ``labels``
        option.

    theme: string (optional, default None)
        A color theme to use for plotting. A small set of
        predefined themes are provided which have relatively
        good aesthetics. Available themes are:
           * 'blue'
           * 'red'
           * 'green'
           * 'inferno'
           * 'fire'
           * 'viridis'
           * 'darkblue'
           * 'darkred'
           * 'darkgreen'

    cmap: string (optional, default 'Blues')
        The name of a matplotlib colormap to use for coloring
        or shading points. If no labels or values are passed
        this will be used for shading points according to
        density (largely only of relevance for very large
        datasets). If values are passed this will be used for
        shading according the value. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    color_key: dict or array, shape (n_categories) (optional, default None)
        A way to assign colors to categoricals. This can either be
        an explicit dict mapping labels to colors (as strings of form
        '#RRGGBB'), or an array like object providing one color for
        each distinct category being provided in ``labels``. Either
        way this mapping will be used to color points according to
        the label. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    color_key_cmap: string (optional, default 'Spectral')
        The name of a matplotlib colormap to use for categorical coloring.
        If an explicit ``color_key`` is not given a color mapping for
        categories can be generated from the label list and selecting
        a matching list of colors from the given colormap. Note
        that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    background: string (optional, default 'white)
        The color of the background. Usually this will be either
        'white' or 'black', but any color name will work. Ideally
        one wants to match this appropriately to the colors being
        used for points etc. This is one of the things that themes
        handle for you. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    width: int (optional, default 800)
        The desired width of the plot in pixels.

    height: int (optional, default 800)
        The desired height of the plot in pixels

    show_legend: bool (optional, default True)
        Whether to display a legend of the labels

    subset_points: array, shape (n_samples,) (optional, default None)
        A way to select a subset of points based on an array of boolean
        values.

    ax: matplotlib axis (optional, default None)
        The matplotlib axis to draw the plot to, or if None, which is
        the default, a new axis will be created and returned.

    alpha: float (optional, default: None)
        The alpha blending value, between 0 (transparent) and 1 (opaque).

    Returns
    -------
    result: matplotlib axis
        The result is a matplotlib axis with the relevant plot displayed.
        If you are using a notebooks and have ``%matplotlib inline`` set
        then this will simply display inline.
    """
    # if not hasattr(umap_object, "embedding_"):
    #     raise ValueError(
    #         "UMAP object must perform fit on data before it can be visualized"
    #     )

    if theme is not None:
        cmap = _themes[theme]["cmap"]
        color_key_cmap = _themes[theme]["color_key_cmap"]
        background = _themes[theme]["background"]

    if labels is not None and values is not None:
        raise ValueError(
            "Conflicting options; only one of labels or values should be set"
        )

    if alpha is not None:
        if not 0.0 <= alpha <= 1.0:
            raise ValueError("Alpha must be between 0 and 1 inclusive")

    points = _get_embedding(umap_object)

    if subset_points is not None:
        if len(subset_points) != points.shape[0]:
            raise ValueError(
                "Size of subset points ({}) does not match number of input points ({})".format(
                    len(subset_points), points.shape[0]
                )
            )
        points = points[subset_points]

        if labels is not None:
            labels = labels[subset_points]
        if values is not None:
            values = values[subset_points]

    if points.shape[1] != 2:
        raise ValueError("Plotting is currently only implemented for 2D embeddings")

    font_color = _select_font_color(background)

    if ax is None:
        dpi = plt.rcParams["figure.dpi"]
        fig = plt.figure(figsize=(width / dpi, height / dpi))
        ax = fig.add_subplot(111)

    if points.shape[0] <= width * height // 10:
        ax = _matplotlib_points(
            points,
            ax,
            labels,
            values,
            cmap,
            color_key,
            color_key_cmap,
            background,
            width,
            height,
            show_legend,
            alpha,
        )
    else:
        # Datashader uses 0-255 as the range for alpha, with 255 as the default
        if alpha is not None:
            alpha = alpha * 255
        else:
            alpha = 255

        ax = _datashade_points(
            points,
            ax,
            labels,
            values,
            cmap,
            color_key,
            color_key_cmap,
            background,
            width,
            height,
            show_legend,
            alpha,
        )

    ax.set(xticks=[], yticks=[])
    if _get_metric(umap_object) != "euclidean":
        ax.text(
            0.99,
            0.01,
            "UMAP: metric={}, n_neighbors={}, min_dist={}".format(
                _get_metric(umap_object), umap_object.n_neighbors, umap_object.min_dist
            ),
            transform=ax.transAxes,
            horizontalalignment="right",
            color=font_color,
        )
    else:
        ax.text(
            0.99,
            0.01,
            "UMAP: n_neighbors={}, min_dist={}".format(
                umap_object.n_neighbors, umap_object.min_dist
            ),
            transform=ax.transAxes,
            horizontalalignment="right",
            color=font_color,
        )

    return ax


def connectivity(
    umap_object,
    edge_bundling=None,
    edge_cmap="gray_r",
    show_points=False,
    labels=None,
    values=None,
    theme=None,
    cmap="Blues",
    color_key=None,
    color_key_cmap="Spectral",
    background="white",
    width=800,
    height=800,
):
    """Plot connectivity relationships of the underlying UMAP
    simplicial set data structure. Internally UMAP will make
    use of what can be viewed as a weighted graph. This graph
    can be plotted using the layout provided by UMAP as a
    potential diagnostic view of the embedding. Currently this only works
    for 2D embeddings. While there are many optional parameters
    to further control and tailor the plotting, you need only
    pass in the trained/fit umap model to get results. This plot
    utility will attempt to do the hard work of avoiding
    overplotting issues and provide options for plotting the
    points as well as using edge bundling for graph visualization.

    Parameters
    ----------
    umap_object: trained UMAP object
        A trained UMAP object that has a 2D embedding.

    edge_bundling: string or None (optional, default None)
        The edge bundling method to use. Currently supported
        are None or 'hammer'. See the datashader docs
        on graph visualization for more details.

    edge_cmap: string (default 'gray_r')
        The name of a matplotlib colormap to use for shading/
        coloring the edges of the connectivity graph. Note that
        the ``theme``, if specified, will override this.

    show_points: bool (optional False)
        Whether to display the points over top of the edge
        connectivity. Further options allow for coloring/
        shading the points accordingly.

    labels: array, shape (n_samples,) (optional, default None)
        An array of labels (assumed integer or categorical),
        one for each data sample.
        This will be used for coloring the points in
        the plot according to their label. Note that
        this option is mutually exclusive to the ``values``
        option.

    values: array, shape (n_samples,) (optional, default None)
        An array of values (assumed float or continuous),
        one for each sample.
        This will be used for coloring the points in
        the plot according to a colorscale associated
        to the total range of values. Note that this
        option is mutually exclusive to the ``labels``
        option.

    theme: string (optional, default None)
        A color theme to use for plotting. A small set of
        predefined themes are provided which have relatively
        good aesthetics. Available themes are:
           * 'blue'
           * 'red'
           * 'green'
           * 'inferno'
           * 'fire'
           * 'viridis'
           * 'darkblue'
           * 'darkred'
           * 'darkgreen'

    cmap: string (optional, default 'Blues')
        The name of a matplotlib colormap to use for coloring
        or shading points. If no labels or values are passed
        this will be used for shading points according to
        density (largely only of relevance for very large
        datasets). If values are passed this will be used for
        shading according the value. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    color_key: dict or array, shape (n_categories) (optional, default None)
        A way to assign colors to categoricals. This can either be
        an explicit dict mapping labels to colors (as strings of form
        '#RRGGBB'), or an array like object providing one color for
        each distinct category being provided in ``labels``. Either
        way this mapping will be used to color points according to
        the label. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    color_key_cmap: string (optional, default 'Spectral')
        The name of a matplotlib colormap to use for categorical coloring.
        If an explicit ``color_key`` is not given a color mapping for
        categories can be generated from the label list and selecting
        a matching list of colors from the given colormap. Note
        that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    background: string (optional, default 'white)
        The color of the background. Usually this will be either
        'white' or 'black', but any color name will work. Ideally
        one wants to match this appropriately to the colors being
        used for points etc. This is one of the things that themes
        handle for you. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    width: int (optional, default 800)
        The desired width of the plot in pixels.

    height: int (optional, default 800)
        The desired height of the plot in pixels

    Returns
    -------
    result: matplotlib axis
        The result is a matplotlib axis with the relevant plot displayed.
        If you are using a notbooks and have ``%matplotlib inline`` set
        then this will simply display inline.
    """
    if theme is not None:
        cmap = _themes[theme]["cmap"]
        color_key_cmap = _themes[theme]["color_key_cmap"]
        edge_cmap = _themes[theme]["edge_cmap"]
        background = _themes[theme]["background"]

    points = _get_embedding(umap_object)
    point_df = pd.DataFrame(points, columns=("x", "y"))

    point_size = 100.0 / np.sqrt(points.shape[0])
    if point_size > 1:
        px_size = int(np.round(point_size))
    else:
        px_size = 1

    if show_points:
        edge_how = "log"
    else:
        edge_how = "eq_hist"

    coo_graph = umap_object.graph_.tocoo()
    edge_df = pd.DataFrame(
        np.vstack([coo_graph.row, coo_graph.col, coo_graph.data]).T,
        columns=("source", "target", "weight"),
    )
    edge_df["source"] = edge_df.source.astype(np.int32)
    edge_df["target"] = edge_df.target.astype(np.int32)

    extent = _get_extent(points)
    canvas = ds.Canvas(
        plot_width=width,
        plot_height=height,
        x_range=(extent[0], extent[1]),
        y_range=(extent[2], extent[3]),
    )

    if edge_bundling is None:
        edges = bd.directly_connect_edges(point_df, edge_df, weight="weight")
    elif edge_bundling == "hammer":
        warn(
            "Hammer edge bundling is expensive for large graphs!\n"
            "This may take a long time to compute!"
        )
        edges = bd.hammer_bundle(point_df, edge_df, weight="weight")
    else:
        raise ValueError("{} is not a recognised bundling method".format(edge_bundling))

    edge_img = tf.shade(
        canvas.line(edges, "x", "y", agg=ds.sum("weight")),
        cmap=plt.get_cmap(edge_cmap),
        how=edge_how,
    )
    edge_img = tf.set_background(edge_img, background)

    if show_points:
        point_img = _datashade_points(
            points,
            None,
            labels,
            values,
            cmap,
            color_key,
            color_key_cmap,
            None,
            width,
            height,
            False,
        )
        if px_size > 1:
            point_img = tf.dynspread(point_img, threshold=0.5, max_px=px_size)
        result = tf.stack(edge_img, point_img, how="over")
    else:
        result = edge_img

    font_color = _select_font_color(background)

    dpi = plt.rcParams["figure.dpi"]
    fig = plt.figure(figsize=(width / dpi, height / dpi))
    ax = fig.add_subplot(111)

    _embed_datashader_in_an_axis(result, ax)

    ax.set(xticks=[], yticks=[])
    ax.text(
        0.99,
        0.01,
        "UMAP: n_neighbors={}, min_dist={}".format(
            umap_object.n_neighbors, umap_object.min_dist
        ),
        transform=ax.transAxes,
        horizontalalignment="right",
        color=font_color,
    )

    return ax


def diagnostic(
    umap_object,
    diagnostic_type="pca",
    nhood_size=15,
    local_variance_threshold=0.8,
    ax=None,
    cmap="viridis",
    point_size=None,
    background="white",
    width=800,
    height=800,
):
    """Provide a diagnostic plot or plots for a UMAP embedding.
    There are a number of plots that can be helpful for diagnostic
    purposes in understanding your embedding. Currently these are
    restricted to methods of coloring a scatterplot of the
    embedding to show more about how the embedding is representing
    the data. The first class of such plots uses a linear method
    that preserves global structure well to embed the data into
    three dimensions, and then interprets such coordinates as a
    color space -- coloring the points by their location in the
    linear global structure preserving embedding. In such plots
    one should look for discontinuities of colour, and consider
    overall global gradients of color. The diagnostic types here
    are ``'pca'``, ``'ica'``, and ``'vq'`` (vector quantization).

    The second class consider the local neighbor structure. One
    can either look at how well the neighbor structure is
    preserved, or how the estimated local dimension of the data
    varies. Both of these are available, although the local
    dimension estimation is the preferred option. You can
    access these are diagnostic types ``'local_dim'`` and
    ``'neighborhood'``.

    Finally the diagnostic type ``'all'`` will provide a
    grid of diagnostic plots.

    Parameters
    ----------
    umap_object: trained UMAP object
        A trained UMAP object that has a 2D embedding.

    diagnostic_type: str (optional, default 'pca')
        The type of diagnostic plot to show. The options are
           * 'pca'
           * 'ica'
           * 'vq'
           * 'local_dim'
           * 'neighborhood'
           * 'all'

    nhood_size: int (optional, default 15)
        The size of neighborhood to compare for local
        neighborhood preservation estimates.

    local_variance_threshold: float (optional, default 0.8)
        To estimate the local dimension we consider a PCA of
        the local neighborhood and estimate the dimension
        as that which provides ``local_variance_threshold``
        or more of the ``variance_explained_ratio``.

    ax: matlotlib axis (optional, default None)
        A matplotlib axis to plot to, or, if None, a new
        axis will be created and returned.

    cmap: str (optional, default 'viridis')
        The name of a matplotlib colormap to use for coloring
        points if the ``'local_dim'`` or ``'neighborhood'``
        option are selected.

    point_size: int (optional, None)
        If provided this will fix the point size for the
        plot(s). If None then a suitable point size will
        be estimated from the data.

    Returns
    -------
    result: matplotlib axis
        The result is a matplotlib axis with the relevant plot displayed.
        If you are using a notbooks and have ``%matplotlib inline`` set
        then this will simply display inline.
    """

    points = _get_embedding(umap_object)

    if points.shape[1] != 2:
        raise ValueError("Plotting is currently only implemented for 2D embeddings")

    if point_size is None:
        point_size = 100.0 / np.sqrt(points.shape[0])

    if ax is None:
        dpi = plt.rcParams["figure.dpi"]
        if diagnostic_type in ("local_dim", "neighborhood"):
            width *= 1.1

    font_color = _select_font_color(background)

    if ax is None and diagnostic_type != "all":
        fig = plt.figure()
        ax = fig.add_subplot(111)

    if diagnostic_type == "pca":
        color_proj = sklearn.decomposition.PCA(n_components=3).fit_transform(
            umap_object._raw_data
        )
        color_proj -= np.min(color_proj)
        color_proj /= np.max(color_proj, axis=0)

        ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color_proj, alpha=0.66)
        ax.set_title("Colored by RGB coords of PCA embedding")
        ax.text(
            0.99,
            0.01,
            "UMAP: n_neighbors={}, min_dist={}".format(
                umap_object.n_neighbors, umap_object.min_dist
            ),
            transform=ax.transAxes,
            horizontalalignment="right",
            color=font_color,
        )
        ax.set(xticks=[], yticks=[])

    elif diagnostic_type == "ica":
        color_proj = sklearn.decomposition.FastICA(n_components=3).fit_transform(
            umap_object._raw_data
        )
        color_proj -= np.min(color_proj)
        color_proj /= np.max(color_proj, axis=0)

        ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color_proj, alpha=0.66)
        ax.set_title("Colored by RGB coords of FastICA embedding")
        ax.text(
            0.99,
            0.01,
            "UMAP: n_neighbors={}, min_dist={}".format(
                umap_object.n_neighbors, umap_object.min_dist
            ),
            transform=ax.transAxes,
            horizontalalignment="right",
            color=font_color,
        )
        ax.set(xticks=[], yticks=[])

    elif diagnostic_type == "vq":
        color_projector = sklearn.cluster.KMeans(n_clusters=3).fit(
            umap_object._raw_data
        )
        color_proj = sklearn.metrics.pairwise_distances(
            umap_object._raw_data, color_projector.cluster_centers_
        )
        color_proj -= np.min(color_proj)
        color_proj /= np.max(color_proj, axis=0)

        ax.scatter(points[:, 0], points[:, 1], s=point_size, c=color_proj, alpha=0.66)
        ax.set_title("Colored by RGB coords of Vector Quantization")
        ax.text(
            0.99,
            0.01,
            "UMAP: n_neighbors={}, min_dist={}".format(
                umap_object.n_neighbors, umap_object.min_dist
            ),
            transform=ax.transAxes,
            horizontalalignment="right",
            color=font_color,
        )
        ax.set(xticks=[], yticks=[])

    elif diagnostic_type == "neighborhood":
        highd_indices, highd_dists = _nhood_search(umap_object, nhood_size)
        tree = sklearn.neighbors.KDTree(points)
        lowd_dists, lowd_indices = tree.query(points, k=nhood_size)
        accuracy = _nhood_compare(
            highd_indices.astype(np.int32), lowd_indices.astype(np.int32)
        )

        vmin = np.percentile(accuracy, 5)
        vmax = np.percentile(accuracy, 95)
        ax.scatter(
            points[:, 0],
            points[:, 1],
            s=point_size,
            c=accuracy,
            cmap=cmap,
            vmin=vmin,
            vmax=vmax,
        )
        ax.set_title("Colored by neighborhood Jaccard index")
        ax.text(
            0.99,
            0.01,
            "UMAP: n_neighbors={}, min_dist={}".format(
                umap_object.n_neighbors, umap_object.min_dist
            ),
            transform=ax.transAxes,
            horizontalalignment="right",
            color=font_color,
        )
        ax.set(xticks=[], yticks=[])
        norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
        mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap)
        mappable.set_array(accuracy)
        plt.colorbar(mappable, ax=ax)

    elif diagnostic_type == "local_dim":
        highd_indices, highd_dists = _nhood_search(umap_object, umap_object.n_neighbors)
        data = umap_object._raw_data
        local_dim = np.empty(data.shape[0], dtype=np.int64)
        for i in range(data.shape[0]):
            pca = sklearn.decomposition.PCA().fit(data[highd_indices[i]])
            local_dim[i] = np.where(
                np.cumsum(pca.explained_variance_ratio_) > local_variance_threshold
            )[0][0]
        vmin = np.percentile(local_dim, 5)
        vmax = np.percentile(local_dim, 95)
        ax.scatter(
            points[:, 0],
            points[:, 1],
            s=point_size,
            c=local_dim,
            cmap=cmap,
            vmin=vmin,
            vmax=vmax,
        )
        ax.set_title("Colored by approx local dimension")
        ax.text(
            0.99,
            0.01,
            "UMAP: n_neighbors={}, min_dist={}".format(
                umap_object.n_neighbors, umap_object.min_dist
            ),
            transform=ax.transAxes,
            horizontalalignment="right",
            color=font_color,
        )
        ax.set(xticks=[], yticks=[])
        norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
        mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap)
        mappable.set_array(local_dim)
        plt.colorbar(mappable, ax=ax)

    elif diagnostic_type == "all":
        cols = int(len(_diagnostic_types) ** 0.5 // 1)
        rows = len(_diagnostic_types) // cols + 1

        fig, axs = plt.subplots(rows, cols, figsize=(10, 10), constrained_layout=True)
        axs = axs.flat
        for ax in axs[len(_diagnostic_types) :]:
            ax.remove()
        for ax, plt_type in zip(axs, _diagnostic_types):
            diagnostic(
                umap_object,
                diagnostic_type=plt_type,
                ax=ax,
                point_size=point_size / 4.0,
            )

    else:
        raise ValueError(
            "Unknown diagnostic; should be one of "
            + ", ".join(list(_diagnostic_types))
            + ' or "all"'
        )

    return ax


def interactive(
    umap_object,
    labels=None,
    values=None,
    hover_data=None,
    theme=None,
    cmap="Blues",
    color_key=None,
    color_key_cmap="Spectral",
    background="white",
    width=800,
    height=800,
    point_size=None,
    subset_points=None,
    interactive_text_search=False,
    interactive_text_search_columns=None,
    interactive_text_search_alpha_contrast=0.95,
    alpha=None,
):
    """Create an interactive bokeh plot of a UMAP embedding.
    While static plots are useful, sometimes a plot that
    supports interactive zooming, and hover tooltips for
    individual points is much more desireable. This function
    provides a simple interface for creating such plots. The
    result is a bokeh plot that will be displayed in a notebook.

    Note that more complex tooltips etc. will require custom
    code -- this is merely meant to provide fast and easy
    access to interactive plotting.

    Parameters
    ----------
    umap_object: trained UMAP object
        A trained UMAP object that has a 2D embedding.

    labels: array, shape (n_samples,) (optional, default None)
        An array of labels (assumed integer or categorical),
        one for each data sample.
        This will be used for coloring the points in
        the plot according to their label. Note that
        this option is mutually exclusive to the ``values``
        option.

    values: array, shape (n_samples,) (optional, default None)
        An array of values (assumed float or continuous),
        one for each sample.
        This will be used for coloring the points in
        the plot according to a colorscale associated
        to the total range of values. Note that this
        option is mutually exclusive to the ``labels``
        option.

    hover_data: DataFrame, shape (n_samples, n_tooltip_features)
    (optional, default None)
        A dataframe of tooltip data. Each column of the dataframe
        should be a Series of length ``n_samples`` providing a value
        for each data point. Column names will be used for
        identifying information within the tooltip.

    theme: string (optional, default None)
        A color theme to use for plotting. A small set of
        predefined themes are provided which have relatively
        good aesthetics. Available themes are:
           * 'blue'
           * 'red'
           * 'green'
           * 'inferno'
           * 'fire'
           * 'viridis'
           * 'darkblue'
           * 'darkred'
           * 'darkgreen'

    cmap: string (optional, default 'Blues')
        The name of a matplotlib colormap to use for coloring
        or shading points. If no labels or values are passed
        this will be used for shading points according to
        density (largely only of relevance for very large
        datasets). If values are passed this will be used for
        shading according the value. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    color_key: dict or array, shape (n_categories) (optional, default None)
        A way to assign colors to categoricals. This can either be
        an explicit dict mapping labels to colors (as strings of form
        '#RRGGBB'), or an array like object providing one color for
        each distinct category being provided in ``labels``. Either
        way this mapping will be used to color points according to
        the label. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    color_key_cmap: string (optional, default 'Spectral')
        The name of a matplotlib colormap to use for categorical coloring.
        If an explicit ``color_key`` is not given a color mapping for
        categories can be generated from the label list and selecting
        a matching list of colors from the given colormap. Note
        that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    background: string (optional, default 'white')
        The color of the background. Usually this will be either
        'white' or 'black', but any color name will work. Ideally
        one wants to match this appropriately to the colors being
        used for points etc. This is one of the things that themes
        handle for you. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.

    width: int (optional, default 800)
        The desired width of the plot in pixels.

    height: int (optional, default 800)
        The desired height of the plot in pixels

    point_size: int (optional, default None)
        The size of each point marker

    subset_points: array, shape (n_samples,) (optional, default None)
        A way to select a subset of points based on an array of boolean
        values.

    interactive_text_search: bool (optional, default False)
        Whether to include a text search widget above the interactive plot

    interactive_text_search_columns: list (optional, default None)
        Columns of data source to search. Searches labels and hover_data by default.

    interactive_text_search_alpha_contrast: float (optional, default 0.95)
        Alpha value for points matching text search. Alpha value for points
        not matching text search will be 1 - interactive_text_search_alpha_contrast

    alpha: float (optional, default: None)
        The alpha blending value, between 0 (transparent) and 1 (opaque).

    Returns
    -------

    """
    if theme is not None:
        cmap = _themes[theme]["cmap"]
        color_key_cmap = _themes[theme]["color_key_cmap"]
        background = _themes[theme]["background"]

    if labels is not None and values is not None:
        raise ValueError(
            "Conflicting options; only one of labels or values should be set"
        )

    if alpha is not None:
        if not 0.0 <= alpha <= 1.0:
            raise ValueError("Alpha must be between 0 and 1 inclusive")

    points = _get_embedding(umap_object)
    if subset_points is not None:
        if len(subset_points) != points.shape[0]:
            raise ValueError(
                "Size of subset points ({}) does not match number of input points ({})".format(
                    len(subset_points), points.shape[0]
                )
            )
        points = points[subset_points]

    if points.shape[1] != 2:
        raise ValueError("Plotting is currently only implemented for 2D embeddings")

    if point_size is None:
        point_size = 100.0 / np.sqrt(points.shape[0])

    data = pd.DataFrame(_get_embedding(umap_object), columns=("x", "y"))

    if labels is not None:
        data["label"] = labels

        if color_key is None:
            unique_labels = np.unique(labels)
            num_labels = unique_labels.shape[0]
            color_key = _to_hex(
                plt.get_cmap(color_key_cmap)(np.linspace(0, 1, num_labels))
            )

        if isinstance(color_key, dict):
            data["color"] = pd.Series(labels).map(color_key)
        else:
            unique_labels = np.unique(labels)
            if len(color_key) < unique_labels.shape[0]:
                raise ValueError(
                    "Color key must have enough colors for the number of labels"
                )

            new_color_key = {k: color_key[i] for i, k in enumerate(unique_labels)}
            data["color"] = pd.Series(labels).map(new_color_key)

        colors = "color"

    elif values is not None:
        data["value"] = values
        palette = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, 256)))
        colors = btr.linear_cmap(
            "value", palette, low=np.min(values), high=np.max(values)
        )

    else:
        colors = matplotlib.colors.rgb2hex(plt.get_cmap(cmap)(0.5))

    if subset_points is not None:
        data = data[subset_points]
        if hover_data is not None:
            hover_data = hover_data[subset_points]

    if points.shape[0] <= width * height // 10:

        if hover_data is not None:
            tooltip_dict = {}
            for col_name in hover_data:
                data[col_name] = hover_data[col_name]
                tooltip_dict[col_name] = "@{" + col_name + "}"
            tooltips = list(tooltip_dict.items())
        else:
            tooltips = None

        if alpha is not None:
            data["alpha"] = alpha
        else:
            data["alpha"] = 1

        # bpl.output_notebook(hide_banner=True) # this doesn't work for non-notebook use
        data_source = bpl.ColumnDataSource(data)

        plot = bpl.figure(
            width=width,
            height=height,
            tooltips=tooltips,
            background_fill_color=background,
        )
        plot.circle(
            x="x",
            y="y",
            source=data_source,
            color=colors,
            size=point_size,
            alpha="alpha",
        )

        plot.grid.visible = False
        plot.axis.visible = False

        if interactive_text_search:
            text_input = TextInput(value="", title="Search:")

            if interactive_text_search_columns is None:
                interactive_text_search_columns = []
                if hover_data is not None:
                    interactive_text_search_columns.extend(hover_data.columns)
                if labels is not None:
                    interactive_text_search_columns.append("label")

            if len(interactive_text_search_columns) == 0:
                warn(
                    "interactive_text_search_columns set to True, but no hover_data or labels provided."
                    "Please provide hover_data or labels to use interactive text search."
                )

            else:
                callback = CustomJS(
                    args=dict(
                        source=data_source,
                        matching_alpha=interactive_text_search_alpha_contrast,
                        non_matching_alpha=1 - interactive_text_search_alpha_contrast,
                        search_columns=interactive_text_search_columns,
                    ),
                    code="""
                    var data = source.data;
                    var text_search = cb_obj.value;
                    
                    var search_columns_dict = {}
                    for (var col in search_columns){
                        search_columns_dict[col] = search_columns[col]
                    }
                    
                    // Loop over columns and values
                    // If there is no match for any column for a given row, change the alpha value
                    var string_match = false;
                    for (var i = 0; i < data.x.length; i++) {
                        string_match = false
                        for (var j in search_columns_dict) {
                            if (String(data[search_columns_dict[j]][i]).includes(text_search) ) {
                                string_match = true
                            }
                        }
                        if (string_match){
                            data['alpha'][i] = matching_alpha
                        }else{
                            data['alpha'][i] = non_matching_alpha
                        }
                    }
                    source.change.emit();
                """,
                )

                text_input.js_on_change("value", callback)

                plot = column(text_input, plot)

        # bpl.show(plot)
    else:
        if hover_data is not None:
            warn(
                "Too many points for hover data -- tooltips will not"
                "be displayed. Sorry; try subssampling your data."
            )
        if interactive_text_search:
            warn(
                "Too many points for text search." "Sorry; try subssampling your data."
            )
        if alpha is not None:
            warn("Alpha parameter will not be applied on holoviews plots")
        hv.extension("bokeh")
        hv.output(size=300)
        hv.opts.defaults(hv.opts.RGB(bgcolor=background, xaxis=None, yaxis=None))

        if labels is not None:
            point_plot = hv.Points(data, kdims=["x", "y"])
            plot = hd.datashade(
                point_plot,
                aggregator=ds.count_cat("color"),
                color_key=color_key,
                cmap=plt.get_cmap(cmap),
                width=width,
                height=height,
            )
        elif values is not None:
            min_val = data.values.min()
            val_range = data.values.max() - min_val
            data["val_cat"] = pd.Categorical(
                (data.values - min_val) // (val_range // 256)
            )
            point_plot = hv.Points(data, kdims=["x", "y"], vdims=["val_cat"])
            plot = hd.datashade(
                point_plot,
                aggregator=ds.count_cat("val_cat"),
                cmap=plt.get_cmap(cmap),
                width=width,
                height=height,
            )
        else:
            point_plot = hv.Points(data, kdims=["x", "y"])
            plot = hd.datashade(
                point_plot,
                aggregator=ds.count(),
                cmap=plt.get_cmap(cmap),
                width=width,
                height=height,
            )

    return plot


def nearest_neighbour_distribution(umap_object, bins=25, ax=None):
    """Create a histogram of the average distance to each points
    nearest neighbors.

    Parameters
    ----------
    umap_object: trained UMAP object
        A trained UMAP object that has an embedding.

    bins: int (optional, default 25)
        Number of bins to put the points into

    ax: matlotlib axis (optional, default None)
        A matplotlib axis to plot to, or, if None, a new
        axis will be created and returned.

    Returns
    -------

    """
    nn_distances = average_nn_distance(umap_object.graph_)

    if ax is None:
        fig = plt.figure()
        ax = fig.add_subplot(111)

    ax.set_xlabel(f"Average distance to nearest neighbors")
    ax.set_ylabel("Frequency")

    ax.hist(nn_distances, bins=bins)

    return ax