1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
|
# Author: Leland McInnes <leland.mcinnes@gmail.com>
#
# License: BSD 3 clause
from __future__ import print_function
import locale
from warnings import warn
import time
from scipy.optimize import curve_fit
from sklearn.base import BaseEstimator
from sklearn.utils import check_random_state, check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.metrics import pairwise_distances
from sklearn.preprocessing import normalize
from sklearn.neighbors import KDTree
try:
import joblib
except ImportError:
# sklearn.externals.joblib is deprecated in 0.21, will be removed in 0.23
from sklearn.externals import joblib
import numpy as np
import scipy.sparse
from scipy.sparse import tril as sparse_tril, triu as sparse_triu
import scipy.sparse.csgraph
import numba
import umap.distances as dist
import umap.sparse as sparse
from umap.utils import (
submatrix,
ts,
csr_unique,
fast_knn_indices,
)
from umap.spectral import spectral_layout
from umap.layouts import (
optimize_layout_euclidean,
optimize_layout_generic,
optimize_layout_inverse,
)
from pynndescent import NNDescent
from pynndescent.distances import named_distances as pynn_named_distances
from pynndescent.sparse import sparse_named_distances as pynn_sparse_named_distances
locale.setlocale(locale.LC_NUMERIC, "C")
INT32_MIN = np.iinfo(np.int32).min + 1
INT32_MAX = np.iinfo(np.int32).max - 1
SMOOTH_K_TOLERANCE = 1e-5
MIN_K_DIST_SCALE = 1e-3
NPY_INFINITY = np.inf
DISCONNECTION_DISTANCES = {
"correlation": 2,
"cosine": 2,
"hellinger": 1,
"jaccard": 1,
"dice": 1,
}
def flatten_iter(container):
for i in container:
if isinstance(i, (list, tuple)):
for j in flatten_iter(i):
yield j
else:
yield i
def flattened(container):
return tuple(flatten_iter(container))
def breadth_first_search(adjmat, start, min_vertices):
explored = []
queue = [start]
levels = {}
levels[start] = 0
max_level = np.inf
visited = [start]
while queue:
node = queue.pop(0)
explored.append(node)
if max_level == np.inf and len(explored) > min_vertices:
max_level = max(levels.values())
if levels[node] + 1 < max_level:
neighbors = adjmat[node].indices
for neighbour in neighbors:
if neighbour not in visited:
queue.append(neighbour)
visited.append(neighbour)
levels[neighbour] = levels[node] + 1
return np.array(explored)
def raise_disconnected_warning(
edges_removed,
vertices_disconnected,
disconnection_distance,
total_rows,
threshold=0.1,
verbose=False,
):
"""A simple wrapper function to avoid large amounts of code repetition."""
if verbose & (vertices_disconnected == 0) & (edges_removed > 0):
print(
f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges. "
f"This is not a problem as no vertices were disconnected."
)
elif (vertices_disconnected > 0) & (
vertices_disconnected <= threshold * total_rows
):
warn(
f"A few of your vertices were disconnected from the manifold. This shouldn't cause problems.\n"
f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges.\n"
f"It has only fully disconnected {vertices_disconnected} vertices.\n"
f"Use umap.utils.disconnected_vertices() to identify them.",
)
elif vertices_disconnected > threshold * total_rows:
warn(
f"A large number of your vertices were disconnected from the manifold.\n"
f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges.\n"
f"It has fully disconnected {vertices_disconnected} vertices.\n"
f"You might consider using find_disconnected_points() to find and remove these points from your data.\n"
f"Use umap.utils.disconnected_vertices() to identify them.",
)
@numba.njit(
locals={
"psum": numba.types.float32,
"lo": numba.types.float32,
"mid": numba.types.float32,
"hi": numba.types.float32,
},
fastmath=True,
) # benchmarking `parallel=True` shows it to *decrease* performance
def smooth_knn_dist(distances, k, n_iter=64, local_connectivity=1.0, bandwidth=1.0):
"""Compute a continuous version of the distance to the kth nearest
neighbor. That is, this is similar to knn-distance but allows continuous
k values rather than requiring an integral k. In essence we are simply
computing the distance such that the cardinality of fuzzy set we generate
is k.
Parameters
----------
distances: array of shape (n_samples, n_neighbors)
Distances to nearest neighbors for each samples. Each row should be a
sorted list of distances to a given samples nearest neighbors.
k: float
The number of nearest neighbors to approximate for.
n_iter: int (optional, default 64)
We need to binary search for the correct distance value. This is the
max number of iterations to use in such a search.
local_connectivity: int (optional, default 1)
The local connectivity required -- i.e. the number of nearest
neighbors that should be assumed to be connected at a local level.
The higher this value the more connected the manifold becomes
locally. In practice this should be not more than the local intrinsic
dimension of the manifold.
bandwidth: float (optional, default 1)
The target bandwidth of the kernel, larger values will produce
larger return values.
Returns
-------
knn_dist: array of shape (n_samples,)
The distance to kth nearest neighbor, as suitably approximated.
nn_dist: array of shape (n_samples,)
The distance to the 1st nearest neighbor for each point.
"""
target = np.log2(k) * bandwidth
rho = np.zeros(distances.shape[0], dtype=np.float32)
result = np.zeros(distances.shape[0], dtype=np.float32)
mean_distances = np.mean(distances)
for i in range(distances.shape[0]):
lo = 0.0
hi = NPY_INFINITY
mid = 1.0
# TODO: This is very inefficient, but will do for now. FIXME
ith_distances = distances[i]
non_zero_dists = ith_distances[ith_distances > 0.0]
if non_zero_dists.shape[0] >= local_connectivity:
index = int(np.floor(local_connectivity))
interpolation = local_connectivity - index
if index > 0:
rho[i] = non_zero_dists[index - 1]
if interpolation > SMOOTH_K_TOLERANCE:
rho[i] += interpolation * (
non_zero_dists[index] - non_zero_dists[index - 1]
)
else:
rho[i] = interpolation * non_zero_dists[0]
elif non_zero_dists.shape[0] > 0:
rho[i] = np.max(non_zero_dists)
for n in range(n_iter):
psum = 0.0
for j in range(1, distances.shape[1]):
d = distances[i, j] - rho[i]
if d > 0:
psum += np.exp(-(d / mid))
else:
psum += 1.0
if np.fabs(psum - target) < SMOOTH_K_TOLERANCE:
break
if psum > target:
hi = mid
mid = (lo + hi) / 2.0
else:
lo = mid
if hi == NPY_INFINITY:
mid *= 2
else:
mid = (lo + hi) / 2.0
result[i] = mid
# TODO: This is very inefficient, but will do for now. FIXME
if rho[i] > 0.0:
mean_ith_distances = np.mean(ith_distances)
if result[i] < MIN_K_DIST_SCALE * mean_ith_distances:
result[i] = MIN_K_DIST_SCALE * mean_ith_distances
else:
if result[i] < MIN_K_DIST_SCALE * mean_distances:
result[i] = MIN_K_DIST_SCALE * mean_distances
return result, rho
def nearest_neighbors(
X,
n_neighbors,
metric,
metric_kwds,
angular,
random_state,
low_memory=True,
use_pynndescent=True,
n_jobs=-1,
verbose=False,
):
"""Compute the ``n_neighbors`` nearest points for each data point in ``X``
under ``metric``. This may be exact, but more likely is approximated via
nearest neighbor descent.
Parameters
----------
X: array of shape (n_samples, n_features)
The input data to compute the k-neighbor graph of.
n_neighbors: int
The number of nearest neighbors to compute for each sample in ``X``.
metric: string or callable
The metric to use for the computation.
metric_kwds: dict
Any arguments to pass to the metric computation function.
angular: bool
Whether to use angular rp trees in NN approximation.
random_state: np.random state
The random state to use for approximate NN computations.
low_memory: bool (optional, default True)
Whether to pursue lower memory NNdescent.
verbose: bool (optional, default False)
Whether to print status data during the computation.
Returns
-------
knn_indices: array of shape (n_samples, n_neighbors)
The indices on the ``n_neighbors`` closest points in the dataset.
knn_dists: array of shape (n_samples, n_neighbors)
The distances to the ``n_neighbors`` closest points in the dataset.
rp_forest: list of trees
The random projection forest used for searching (if used, None otherwise)
"""
if verbose:
print(ts(), "Finding Nearest Neighbors")
if metric == "precomputed":
# Note that this does not support sparse distance matrices yet ...
# Compute indices of n nearest neighbors
knn_indices = fast_knn_indices(X, n_neighbors)
# knn_indices = np.argsort(X)[:, :n_neighbors]
# Compute the nearest neighbor distances
# (equivalent to np.sort(X)[:,:n_neighbors])
knn_dists = X[np.arange(X.shape[0])[:, None], knn_indices].copy()
# Prune any nearest neighbours that are infinite distance apart.
disconnected_index = knn_dists == np.inf
knn_indices[disconnected_index] = -1
knn_search_index = None
else:
# TODO: Hacked values for now
n_trees = min(64, 5 + int(round((X.shape[0]) ** 0.5 / 20.0)))
n_iters = max(5, int(round(np.log2(X.shape[0]))))
knn_search_index = NNDescent(
X,
n_neighbors=n_neighbors,
metric=metric,
metric_kwds=metric_kwds,
random_state=random_state,
n_trees=n_trees,
n_iters=n_iters,
max_candidates=60,
low_memory=low_memory,
n_jobs=n_jobs,
verbose=verbose,
compressed=False,
)
knn_indices, knn_dists = knn_search_index.neighbor_graph
if verbose:
print(ts(), "Finished Nearest Neighbor Search")
return knn_indices, knn_dists, knn_search_index
@numba.njit(
locals={
"knn_dists": numba.types.float32[:, ::1],
"sigmas": numba.types.float32[::1],
"rhos": numba.types.float32[::1],
"val": numba.types.float32,
},
parallel=True,
fastmath=True,
)
def compute_membership_strengths(
knn_indices,
knn_dists,
sigmas,
rhos,
return_dists=False,
bipartite=False,
):
"""Construct the membership strength data for the 1-skeleton of each local
fuzzy simplicial set -- this is formed as a sparse matrix where each row is
a local fuzzy simplicial set, with a membership strength for the
1-simplex to each other data point.
Parameters
----------
knn_indices: array of shape (n_samples, n_neighbors)
The indices on the ``n_neighbors`` closest points in the dataset.
knn_dists: array of shape (n_samples, n_neighbors)
The distances to the ``n_neighbors`` closest points in the dataset.
sigmas: array of shape(n_samples)
The normalization factor derived from the metric tensor approximation.
rhos: array of shape(n_samples)
The local connectivity adjustment.
return_dists: bool (optional, default False)
Whether to return the pairwise distance associated with each edge
bipartite: bool (optional, default False)
Does the nearest neighbour set represent a bipartite graph? That is are the
nearest neighbour indices from the same point set as the row indices?
Returns
-------
rows: array of shape (n_samples * n_neighbors)
Row data for the resulting sparse matrix (coo format)
cols: array of shape (n_samples * n_neighbors)
Column data for the resulting sparse matrix (coo format)
vals: array of shape (n_samples * n_neighbors)
Entries for the resulting sparse matrix (coo format)
dists: array of shape (n_samples * n_neighbors)
Distance associated with each entry in the resulting sparse matrix
"""
n_samples = knn_indices.shape[0]
n_neighbors = knn_indices.shape[1]
rows = np.zeros(knn_indices.size, dtype=np.int32)
cols = np.zeros(knn_indices.size, dtype=np.int32)
vals = np.zeros(knn_indices.size, dtype=np.float32)
if return_dists:
dists = np.zeros(knn_indices.size, dtype=np.float32)
else:
dists = None
for i in range(n_samples):
for j in range(n_neighbors):
if knn_indices[i, j] == -1:
continue # We didn't get the full knn for i
# If applied to an adjacency matrix points shouldn't be similar to themselves.
# If applied to an incidence matrix (or bipartite) then the row and column indices are different.
if (bipartite == False) & (knn_indices[i, j] == i):
val = 0.0
elif knn_dists[i, j] - rhos[i] <= 0.0 or sigmas[i] == 0.0:
val = 1.0
else:
val = np.exp(-((knn_dists[i, j] - rhos[i]) / (sigmas[i])))
rows[i * n_neighbors + j] = i
cols[i * n_neighbors + j] = knn_indices[i, j]
vals[i * n_neighbors + j] = val
if return_dists:
dists[i * n_neighbors + j] = knn_dists[i, j]
return rows, cols, vals, dists
def fuzzy_simplicial_set(
X,
n_neighbors,
random_state,
metric,
metric_kwds={},
knn_indices=None,
knn_dists=None,
angular=False,
set_op_mix_ratio=1.0,
local_connectivity=1.0,
apply_set_operations=True,
verbose=False,
return_dists=None,
):
"""Given a set of data X, a neighborhood size, and a measure of distance
compute the fuzzy simplicial set (here represented as a fuzzy graph in
the form of a sparse matrix) associated to the data. This is done by
locally approximating geodesic distance at each point, creating a fuzzy
simplicial set for each such point, and then combining all the local
fuzzy simplicial sets into a global one via a fuzzy union.
Parameters
----------
X: array of shape (n_samples, n_features)
The data to be modelled as a fuzzy simplicial set.
n_neighbors: int
The number of neighbors to use to approximate geodesic distance.
Larger numbers induce more global estimates of the manifold that can
miss finer detail, while smaller values will focus on fine manifold
structure to the detriment of the larger picture.
random_state: numpy RandomState or equivalent
A state capable being used as a numpy random state.
metric: string or function (optional, default 'euclidean')
The metric to use to compute distances in high dimensional space.
If a string is passed it must match a valid predefined metric. If
a general metric is required a function that takes two 1d arrays and
returns a float can be provided. For performance purposes it is
required that this be a numba jit'd function. Valid string metrics
include:
* euclidean (or l2)
* manhattan (or l1)
* cityblock
* braycurtis
* canberra
* chebyshev
* correlation
* cosine
* dice
* hamming
* jaccard
* kulsinski
* ll_dirichlet
* mahalanobis
* matching
* minkowski
* rogerstanimoto
* russellrao
* seuclidean
* sokalmichener
* sokalsneath
* sqeuclidean
* yule
* wminkowski
Metrics that take arguments (such as minkowski, mahalanobis etc.)
can have arguments passed via the metric_kwds dictionary. At this
time care must be taken and dictionary elements must be ordered
appropriately; this will hopefully be fixed in the future.
metric_kwds: dict (optional, default {})
Arguments to pass on to the metric, such as the ``p`` value for
Minkowski distance.
knn_indices: array of shape (n_samples, n_neighbors) (optional)
If the k-nearest neighbors of each point has already been calculated
you can pass them in here to save computation time. This should be
an array with the indices of the k-nearest neighbors as a row for
each data point.
knn_dists: array of shape (n_samples, n_neighbors) (optional)
If the k-nearest neighbors of each point has already been calculated
you can pass them in here to save computation time. This should be
an array with the distances of the k-nearest neighbors as a row for
each data point.
angular: bool (optional, default False)
Whether to use angular/cosine distance for the random projection
forest for seeding NN-descent to determine approximate nearest
neighbors.
set_op_mix_ratio: float (optional, default 1.0)
Interpolate between (fuzzy) union and intersection as the set operation
used to combine local fuzzy simplicial sets to obtain a global fuzzy
simplicial sets. Both fuzzy set operations use the product t-norm.
The value of this parameter should be between 0.0 and 1.0; a value of
1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy
intersection.
local_connectivity: int (optional, default 1)
The local connectivity required -- i.e. the number of nearest
neighbors that should be assumed to be connected at a local level.
The higher this value the more connected the manifold becomes
locally. In practice this should be not more than the local intrinsic
dimension of the manifold.
verbose: bool (optional, default False)
Whether to report information on the current progress of the algorithm.
return_dists: bool or None (optional, default None)
Whether to return the pairwise distance associated with each edge.
Returns
-------
fuzzy_simplicial_set: coo_matrix
A fuzzy simplicial set represented as a sparse matrix. The (i,
j) entry of the matrix represents the membership strength of the
1-simplex between the ith and jth sample points.
"""
if knn_indices is None or knn_dists is None:
knn_indices, knn_dists, _ = nearest_neighbors(
X,
n_neighbors,
metric,
metric_kwds,
angular,
random_state,
verbose=verbose,
)
knn_dists = knn_dists.astype(np.float32)
sigmas, rhos = smooth_knn_dist(
knn_dists,
float(n_neighbors),
local_connectivity=float(local_connectivity),
)
rows, cols, vals, dists = compute_membership_strengths(
knn_indices, knn_dists, sigmas, rhos, return_dists
)
result = scipy.sparse.coo_matrix(
(vals, (rows, cols)), shape=(X.shape[0], X.shape[0])
)
result.eliminate_zeros()
if apply_set_operations:
transpose = result.transpose()
prod_matrix = result.multiply(transpose)
result = (
set_op_mix_ratio * (result + transpose - prod_matrix)
+ (1.0 - set_op_mix_ratio) * prod_matrix
)
result.eliminate_zeros()
if return_dists is None:
return result, sigmas, rhos
else:
if return_dists:
dmat = scipy.sparse.coo_matrix(
(dists, (rows, cols)), shape=(X.shape[0], X.shape[0])
)
dists = dmat.maximum(dmat.transpose()).todok()
else:
dists = None
return result, sigmas, rhos, dists
@numba.njit()
def fast_intersection(rows, cols, values, target, unknown_dist=1.0, far_dist=5.0):
"""Under the assumption of categorical distance for the intersecting
simplicial set perform a fast intersection.
Parameters
----------
rows: array
An array of the row of each non-zero in the sparse matrix
representation.
cols: array
An array of the column of each non-zero in the sparse matrix
representation.
values: array
An array of the value of each non-zero in the sparse matrix
representation.
target: array of shape (n_samples)
The categorical labels to use in the intersection.
unknown_dist: float (optional, default 1.0)
The distance an unknown label (-1) is assumed to be from any point.
far_dist float (optional, default 5.0)
The distance between unmatched labels.
Returns
-------
None
"""
for nz in range(rows.shape[0]):
i = rows[nz]
j = cols[nz]
if (target[i] == -1) or (target[j] == -1):
values[nz] *= np.exp(-unknown_dist)
elif target[i] != target[j]:
values[nz] *= np.exp(-far_dist)
return
@numba.jit()
def fast_metric_intersection(
rows, cols, values, discrete_space, metric, metric_args, scale
):
"""Under the assumption of categorical distance for the intersecting
simplicial set perform a fast intersection.
Parameters
----------
rows: array
An array of the row of each non-zero in the sparse matrix
representation.
cols: array
An array of the column of each non-zero in the sparse matrix
representation.
values: array of shape
An array of the values of each non-zero in the sparse matrix
representation.
discrete_space: array of shape (n_samples, n_features)
The vectors of categorical labels to use in the intersection.
metric: numba function
The function used to calculate distance over the target array.
scale: float
A scaling to apply to the metric.
Returns
-------
None
"""
for nz in range(rows.shape[0]):
i = rows[nz]
j = cols[nz]
dist = metric(discrete_space[i], discrete_space[j], *metric_args)
values[nz] *= np.exp(-(scale * dist))
return
@numba.njit()
def reprocess_row(probabilities, k=15, n_iters=32):
target = np.log2(k)
lo = 0.0
hi = NPY_INFINITY
mid = 1.0
for n in range(n_iters):
psum = 0.0
for j in range(probabilities.shape[0]):
psum += pow(probabilities[j], mid)
if np.fabs(psum - target) < SMOOTH_K_TOLERANCE:
break
if psum < target:
hi = mid
mid = (lo + hi) / 2.0
else:
lo = mid
if hi == NPY_INFINITY:
mid *= 2
else:
mid = (lo + hi) / 2.0
return np.power(probabilities, mid)
@numba.njit()
def reset_local_metrics(simplicial_set_indptr, simplicial_set_data):
for i in range(simplicial_set_indptr.shape[0] - 1):
simplicial_set_data[
simplicial_set_indptr[i] : simplicial_set_indptr[i + 1]
] = reprocess_row(
simplicial_set_data[simplicial_set_indptr[i] : simplicial_set_indptr[i + 1]]
)
return
def reset_local_connectivity(simplicial_set, reset_local_metric=False):
"""Reset the local connectivity requirement -- each data sample should
have complete confidence in at least one 1-simplex in the simplicial set.
We can enforce this by locally rescaling confidences, and then remerging the
different local simplicial sets together.
Parameters
----------
simplicial_set: sparse matrix
The simplicial set for which to recalculate with respect to local
connectivity.
Returns
-------
simplicial_set: sparse_matrix
The recalculated simplicial set, now with the local connectivity
assumption restored.
"""
simplicial_set = normalize(simplicial_set, norm="max")
if reset_local_metric:
simplicial_set = simplicial_set.tocsr()
reset_local_metrics(simplicial_set.indptr, simplicial_set.data)
simplicial_set = simplicial_set.tocoo()
transpose = simplicial_set.transpose()
prod_matrix = simplicial_set.multiply(transpose)
simplicial_set = simplicial_set + transpose - prod_matrix
simplicial_set.eliminate_zeros()
return simplicial_set
def discrete_metric_simplicial_set_intersection(
simplicial_set,
discrete_space,
unknown_dist=1.0,
far_dist=5.0,
metric=None,
metric_kws={},
metric_scale=1.0,
):
"""Combine a fuzzy simplicial set with another fuzzy simplicial set
generated from discrete metric data using discrete distances. The target
data is assumed to be categorical label data (a vector of labels),
and this will update the fuzzy simplicial set to respect that label data.
TODO: optional category cardinality based weighting of distance
Parameters
----------
simplicial_set: sparse matrix
The input fuzzy simplicial set.
discrete_space: array of shape (n_samples)
The categorical labels to use in the intersection.
unknown_dist: float (optional, default 1.0)
The distance an unknown label (-1) is assumed to be from any point.
far_dist: float (optional, default 5.0)
The distance between unmatched labels.
metric: str (optional, default None)
If not None, then use this metric to determine the
distance between values.
metric_scale: float (optional, default 1.0)
If using a custom metric scale the distance values by
this value -- this controls the weighting of the
intersection. Larger values weight more toward target.
Returns
-------
simplicial_set: sparse matrix
The resulting intersected fuzzy simplicial set.
"""
simplicial_set = simplicial_set.tocoo()
if metric is not None:
# We presume target is now a 2d array, with each row being a
# vector of target info
if metric in dist.named_distances:
metric_func = dist.named_distances[metric]
else:
raise ValueError("Discrete intersection metric is not recognized")
fast_metric_intersection(
simplicial_set.row,
simplicial_set.col,
simplicial_set.data,
discrete_space,
metric_func,
tuple(metric_kws.values()),
metric_scale,
)
else:
fast_intersection(
simplicial_set.row,
simplicial_set.col,
simplicial_set.data,
discrete_space,
unknown_dist,
far_dist,
)
simplicial_set.eliminate_zeros()
return reset_local_connectivity(simplicial_set)
def general_simplicial_set_intersection(
simplicial_set1, simplicial_set2, weight=0.5, right_complement=False
):
if right_complement:
result = simplicial_set1.tocoo()
else:
result = (simplicial_set1 + simplicial_set2).tocoo()
left = simplicial_set1.tocsr()
right = simplicial_set2.tocsr()
sparse.general_sset_intersection(
left.indptr,
left.indices,
left.data,
right.indptr,
right.indices,
right.data,
result.row,
result.col,
result.data,
mix_weight=weight,
right_complement=right_complement,
)
return result
def general_simplicial_set_union(simplicial_set1, simplicial_set2):
result = (simplicial_set1 + simplicial_set2).tocoo()
left = simplicial_set1.tocsr()
right = simplicial_set2.tocsr()
sparse.general_sset_union(
left.indptr,
left.indices,
left.data,
right.indptr,
right.indices,
right.data,
result.row,
result.col,
result.data,
)
return result
def make_epochs_per_sample(weights, n_epochs):
"""Given a set of weights and number of epochs generate the number of
epochs per sample for each weight.
Parameters
----------
weights: array of shape (n_1_simplices)
The weights ofhow much we wish to sample each 1-simplex.
n_epochs: int
The total number of epochs we want to train for.
Returns
-------
An array of number of epochs per sample, one for each 1-simplex.
"""
result = -1.0 * np.ones(weights.shape[0], dtype=np.float64)
n_samples = n_epochs * (weights / weights.max())
result[n_samples > 0] = float(n_epochs) / n_samples[n_samples > 0]
return result
def simplicial_set_embedding(
data,
graph,
n_components,
initial_alpha,
a,
b,
gamma,
negative_sample_rate,
n_epochs,
init,
random_state,
metric,
metric_kwds,
densmap,
densmap_kwds,
output_dens,
output_metric=dist.named_distances_with_gradients["euclidean"],
output_metric_kwds={},
euclidean_output=True,
parallel=False,
verbose=False,
tqdm_kwds=None,
):
"""Perform a fuzzy simplicial set embedding, using a specified
initialisation method and then minimizing the fuzzy set cross entropy
between the 1-skeletons of the high and low dimensional fuzzy simplicial
sets.
Parameters
----------
data: array of shape (n_samples, n_features)
The source data to be embedded by UMAP.
graph: sparse matrix
The 1-skeleton of the high dimensional fuzzy simplicial set as
represented by a graph for which we require a sparse matrix for the
(weighted) adjacency matrix.
n_components: int
The dimensionality of the euclidean space into which to embed the data.
initial_alpha: float
Initial learning rate for the SGD.
a: float
Parameter of differentiable approximation of right adjoint functor
b: float
Parameter of differentiable approximation of right adjoint functor
gamma: float
Weight to apply to negative samples.
negative_sample_rate: int (optional, default 5)
The number of negative samples to select per positive sample
in the optimization process. Increasing this value will result
in greater repulsive force being applied, greater optimization
cost, but slightly more accuracy.
n_epochs: int (optional, default 0)
The number of training epochs to be used in optimizing the
low dimensional embedding. Larger values result in more accurate
embeddings. If 0 is specified a value will be selected based on
the size of the input dataset (200 for large datasets, 500 for small).
init: string
How to initialize the low dimensional embedding. Options are:
* 'spectral': use a spectral embedding of the fuzzy 1-skeleton
* 'random': assign initial embedding positions at random.
* A numpy array of initial embedding positions.
random_state: numpy RandomState or equivalent
A state capable being used as a numpy random state.
metric: string or callable
The metric used to measure distance in high dimensional space; used if
multiple connected components need to be layed out.
metric_kwds: dict
Key word arguments to be passed to the metric function; used if
multiple connected components need to be layed out.
densmap: bool
Whether to use the density-augmented objective function to optimize
the embedding according to the densMAP algorithm.
densmap_kwds: dict
Key word arguments to be used by the densMAP optimization.
output_dens: bool
Whether to output local radii in the original data and the embedding.
output_metric: function
Function returning the distance between two points in embedding space and
the gradient of the distance wrt the first argument.
output_metric_kwds: dict
Key word arguments to be passed to the output_metric function.
euclidean_output: bool
Whether to use the faster code specialised for euclidean output metrics
parallel: bool (optional, default False)
Whether to run the computation using numba parallel.
Running in parallel is non-deterministic, and is not used
if a random seed has been set, to ensure reproducibility.
verbose: bool (optional, default False)
Whether to report information on the current progress of the algorithm.
tqdm_kwds: dict
Key word arguments to be used by the tqdm progress bar.
Returns
-------
embedding: array of shape (n_samples, n_components)
The optimized of ``graph`` into an ``n_components`` dimensional
euclidean space.
aux_data: dict
Auxiliary output returned with the embedding. When densMAP extension
is turned on, this dictionary includes local radii in the original
data (``rad_orig``) and in the embedding (``rad_emb``).
"""
graph = graph.tocoo()
graph.sum_duplicates()
n_vertices = graph.shape[1]
# For smaller datasets we can use more epochs
if graph.shape[0] <= 10000:
default_epochs = 500
else:
default_epochs = 200
# Use more epochs for densMAP
if densmap:
default_epochs += 200
if n_epochs is None:
n_epochs = default_epochs
if n_epochs > 10:
graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0
else:
graph.data[graph.data < (graph.data.max() / float(default_epochs))] = 0.0
graph.eliminate_zeros()
if isinstance(init, str) and init == "random":
embedding = random_state.uniform(
low=-10.0, high=10.0, size=(graph.shape[0], n_components)
).astype(np.float32)
elif isinstance(init, str) and init == "spectral":
# We add a little noise to avoid local minima for optimization to come
initialisation = spectral_layout(
data,
graph,
n_components,
random_state,
metric=metric,
metric_kwds=metric_kwds,
)
expansion = 10.0 / np.abs(initialisation).max()
embedding = (initialisation * expansion).astype(
np.float32
) + random_state.normal(
scale=0.0001, size=[graph.shape[0], n_components]
).astype(
np.float32
)
else:
init_data = np.array(init)
if len(init_data.shape) == 2:
if np.unique(init_data, axis=0).shape[0] < init_data.shape[0]:
tree = KDTree(init_data)
dist, ind = tree.query(init_data, k=2)
nndist = np.mean(dist[:, 1])
embedding = init_data + random_state.normal(
scale=0.001 * nndist, size=init_data.shape
).astype(np.float32)
else:
embedding = init_data
epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs)
head = graph.row
tail = graph.col
weight = graph.data
rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)
aux_data = {}
if densmap or output_dens:
if verbose:
print(ts() + " Computing original densities")
dists = densmap_kwds["graph_dists"]
mu_sum = np.zeros(n_vertices, dtype=np.float32)
ro = np.zeros(n_vertices, dtype=np.float32)
for i in range(len(head)):
j = head[i]
k = tail[i]
D = dists[j, k] * dists[j, k] # match sq-Euclidean used for embedding
mu = graph.data[i]
ro[j] += mu * D
ro[k] += mu * D
mu_sum[j] += mu
mu_sum[k] += mu
epsilon = 1e-8
ro = np.log(epsilon + (ro / mu_sum))
if densmap:
R = (ro - np.mean(ro)) / np.std(ro)
densmap_kwds["mu"] = graph.data
densmap_kwds["mu_sum"] = mu_sum
densmap_kwds["R"] = R
if output_dens:
aux_data["rad_orig"] = ro
embedding = (
10.0
* (embedding - np.min(embedding, 0))
/ (np.max(embedding, 0) - np.min(embedding, 0))
).astype(np.float32, order="C")
if euclidean_output:
embedding = optimize_layout_euclidean(
embedding,
embedding,
head,
tail,
n_epochs,
n_vertices,
epochs_per_sample,
a,
b,
rng_state,
gamma,
initial_alpha,
negative_sample_rate,
parallel=parallel,
verbose=verbose,
densmap=densmap,
densmap_kwds=densmap_kwds,
tqdm_kwds=tqdm_kwds,
move_other=True,
)
else:
embedding = optimize_layout_generic(
embedding,
embedding,
head,
tail,
n_epochs,
n_vertices,
epochs_per_sample,
a,
b,
rng_state,
gamma,
initial_alpha,
negative_sample_rate,
output_metric,
tuple(output_metric_kwds.values()),
verbose=verbose,
tqdm_kwds=tqdm_kwds,
move_other=True,
)
if output_dens:
if verbose:
print(ts() + " Computing embedding densities")
# Compute graph in embedding
(knn_indices, knn_dists, rp_forest,) = nearest_neighbors(
embedding,
densmap_kwds["n_neighbors"],
"euclidean",
{},
False,
random_state,
verbose=verbose,
)
emb_graph, emb_sigmas, emb_rhos, emb_dists = fuzzy_simplicial_set(
embedding,
densmap_kwds["n_neighbors"],
random_state,
"euclidean",
{},
knn_indices,
knn_dists,
verbose=verbose,
return_dists=True,
)
emb_graph = emb_graph.tocoo()
emb_graph.sum_duplicates()
emb_graph.eliminate_zeros()
n_vertices = emb_graph.shape[1]
mu_sum = np.zeros(n_vertices, dtype=np.float32)
re = np.zeros(n_vertices, dtype=np.float32)
head = emb_graph.row
tail = emb_graph.col
for i in range(len(head)):
j = head[i]
k = tail[i]
D = emb_dists[j, k]
mu = emb_graph.data[i]
re[j] += mu * D
re[k] += mu * D
mu_sum[j] += mu
mu_sum[k] += mu
epsilon = 1e-8
re = np.log(epsilon + (re / mu_sum))
aux_data["rad_emb"] = re
return embedding, aux_data
@numba.njit()
def init_transform(indices, weights, embedding):
"""Given indices and weights and an original embeddings
initialize the positions of new points relative to the
indices and weights (of their neighbors in the source data).
Parameters
----------
indices: array of shape (n_new_samples, n_neighbors)
The indices of the neighbors of each new sample
weights: array of shape (n_new_samples, n_neighbors)
The membership strengths of associated 1-simplices
for each of the new samples.
embedding: array of shape (n_samples, dim)
The original embedding of the source data.
Returns
-------
new_embedding: array of shape (n_new_samples, dim)
An initial embedding of the new sample points.
"""
result = np.zeros((indices.shape[0], embedding.shape[1]), dtype=np.float32)
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
for d in range(embedding.shape[1]):
result[i, d] += weights[i, j] * embedding[indices[i, j], d]
return result
def init_graph_transform(graph, embedding):
"""Given a bipartite graph representing the 1-simplices and strengths between the
new points and the original data set along with an embedding of the original points
initialize the positions of new points relative to the strengths (of their neighbors in the source data).
If a point is in our original data set it embeds at the original points coordinates.
If a point has no neighbours in our original dataset it embeds as the np.nan vector.
Otherwise a point is the weighted average of it's neighbours embedding locations.
Parameters
----------
graph: csr_matrix (n_new_samples, n_samples)
A matrix indicating the the 1-simplices and their associated strengths. These strengths should
be values between zero and one and not normalized. One indicating that the new point was identical
to one of our original points.
embedding: array of shape (n_samples, dim)
The original embedding of the source data.
Returns
-------
new_embedding: array of shape (n_new_samples, dim)
An initial embedding of the new sample points.
"""
result = np.zeros((graph.shape[0], embedding.shape[1]), dtype=np.float32)
for row_index in range(graph.shape[0]):
num_neighbours = len(graph[row_index].indices)
if num_neighbours == 0:
result[row_index] = np.nan
continue
row_sum = np.sum(graph[row_index])
for col_index in graph[row_index].indices:
if graph[row_index, col_index] == 1:
result[row_index, :] = embedding[col_index, :]
break
for d in range(embedding.shape[1]):
result[row_index, d] += (
graph[row_index, col_index] / row_sum * embedding[col_index, d]
)
return result
@numba.njit()
def init_update(current_init, n_original_samples, indices):
for i in range(n_original_samples, indices.shape[0]):
n = 0
for j in range(indices.shape[1]):
for d in range(current_init.shape[1]):
if indices[i, j] < n_original_samples:
n += 1
current_init[i, d] += current_init[indices[i, j], d]
for d in range(current_init.shape[1]):
current_init[i, d] /= n
return
def find_ab_params(spread, min_dist):
"""Fit a, b params for the differentiable curve used in lower
dimensional fuzzy simplicial complex construction. We want the
smooth curve (from a pre-defined family with simple gradient) that
best matches an offset exponential decay.
"""
def curve(x, a, b):
return 1.0 / (1.0 + a * x ** (2 * b))
xv = np.linspace(0, spread * 3, 300)
yv = np.zeros(xv.shape)
yv[xv < min_dist] = 1.0
yv[xv >= min_dist] = np.exp(-(xv[xv >= min_dist] - min_dist) / spread)
params, covar = curve_fit(curve, xv, yv)
return params[0], params[1]
class UMAP(BaseEstimator):
"""Uniform Manifold Approximation and Projection
Finds a low dimensional embedding of the data that approximates
an underlying manifold.
Parameters
----------
n_neighbors: float (optional, default 15)
The size of local neighborhood (in terms of number of neighboring
sample points) used for manifold approximation. Larger values
result in more global views of the manifold, while smaller
values result in more local data being preserved. In general
values should be in the range 2 to 100.
n_components: int (optional, default 2)
The dimension of the space to embed into. This defaults to 2 to
provide easy visualization, but can reasonably be set to any
integer value in the range 2 to 100.
metric: string or function (optional, default 'euclidean')
The metric to use to compute distances in high dimensional space.
If a string is passed it must match a valid predefined metric. If
a general metric is required a function that takes two 1d arrays and
returns a float can be provided. For performance purposes it is
required that this be a numba jit'd function. Valid string metrics
include:
* euclidean
* manhattan
* chebyshev
* minkowski
* canberra
* braycurtis
* mahalanobis
* wminkowski
* seuclidean
* cosine
* correlation
* haversine
* hamming
* jaccard
* dice
* russelrao
* kulsinski
* ll_dirichlet
* hellinger
* rogerstanimoto
* sokalmichener
* sokalsneath
* yule
Metrics that take arguments (such as minkowski, mahalanobis etc.)
can have arguments passed via the metric_kwds dictionary. At this
time care must be taken and dictionary elements must be ordered
appropriately; this will hopefully be fixed in the future.
n_epochs: int (optional, default None)
The number of training epochs to be used in optimizing the
low dimensional embedding. Larger values result in more accurate
embeddings. If None is specified a value will be selected based on
the size of the input dataset (200 for large datasets, 500 for small).
learning_rate: float (optional, default 1.0)
The initial learning rate for the embedding optimization.
init: string (optional, default 'spectral')
How to initialize the low dimensional embedding. Options are:
* 'spectral': use a spectral embedding of the fuzzy 1-skeleton
* 'random': assign initial embedding positions at random.
* A numpy array of initial embedding positions.
min_dist: float (optional, default 0.1)
The effective minimum distance between embedded points. Smaller values
will result in a more clustered/clumped embedding where nearby points
on the manifold are drawn closer together, while larger values will
result on a more even dispersal of points. The value should be set
relative to the ``spread`` value, which determines the scale at which
embedded points will be spread out.
spread: float (optional, default 1.0)
The effective scale of embedded points. In combination with ``min_dist``
this determines how clustered/clumped the embedded points are.
low_memory: bool (optional, default True)
For some datasets the nearest neighbor computation can consume a lot of
memory. If you find that UMAP is failing due to memory constraints
consider setting this option to True. This approach is more
computationally expensive, but avoids excessive memory use.
set_op_mix_ratio: float (optional, default 1.0)
Interpolate between (fuzzy) union and intersection as the set operation
used to combine local fuzzy simplicial sets to obtain a global fuzzy
simplicial sets. Both fuzzy set operations use the product t-norm.
The value of this parameter should be between 0.0 and 1.0; a value of
1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy
intersection.
local_connectivity: int (optional, default 1)
The local connectivity required -- i.e. the number of nearest
neighbors that should be assumed to be connected at a local level.
The higher this value the more connected the manifold becomes
locally. In practice this should be not more than the local intrinsic
dimension of the manifold.
repulsion_strength: float (optional, default 1.0)
Weighting applied to negative samples in low dimensional embedding
optimization. Values higher than one will result in greater weight
being given to negative samples.
negative_sample_rate: int (optional, default 5)
The number of negative samples to select per positive sample
in the optimization process. Increasing this value will result
in greater repulsive force being applied, greater optimization
cost, but slightly more accuracy.
transform_queue_size: float (optional, default 4.0)
For transform operations (embedding new points using a trained model_
this will control how aggressively to search for nearest neighbors.
Larger values will result in slower performance but more accurate
nearest neighbor evaluation.
a: float (optional, default None)
More specific parameters controlling the embedding. If None these
values are set automatically as determined by ``min_dist`` and
``spread``.
b: float (optional, default None)
More specific parameters controlling the embedding. If None these
values are set automatically as determined by ``min_dist`` and
``spread``.
random_state: int, RandomState instance or None, optional (default: None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
metric_kwds: dict (optional, default None)
Arguments to pass on to the metric, such as the ``p`` value for
Minkowski distance. If None then no arguments are passed on.
angular_rp_forest: bool (optional, default False)
Whether to use an angular random projection forest to initialise
the approximate nearest neighbor search. This can be faster, but is
mostly on useful for metric that use an angular style distance such
as cosine, correlation etc. In the case of those metrics angular forests
will be chosen automatically.
target_n_neighbors: int (optional, default -1)
The number of nearest neighbors to use to construct the target simplcial
set. If set to -1 use the ``n_neighbors`` value.
target_metric: string or callable (optional, default 'categorical')
The metric used to measure distance for a target array is using supervised
dimension reduction. By default this is 'categorical' which will measure
distance in terms of whether categories match or are different. Furthermore,
if semi-supervised is required target values of -1 will be trated as
unlabelled under the 'categorical' metric. If the target array takes
continuous values (e.g. for a regression problem) then metric of 'l1'
or 'l2' is probably more appropriate.
target_metric_kwds: dict (optional, default None)
Keyword argument to pass to the target metric when performing
supervised dimension reduction. If None then no arguments are passed on.
target_weight: float (optional, default 0.5)
weighting factor between data topology and target topology. A value of
0.0 weights predominantly on data, a value of 1.0 places a strong emphasis on
target. The default of 0.5 balances the weighting equally between data and
target.
transform_seed: int (optional, default 42)
Random seed used for the stochastic aspects of the transform operation.
This ensures consistency in transform operations.
verbose: bool (optional, default False)
Controls verbosity of logging.
tqdm_kwds: dict (optional, defaul None)
Key word arguments to be used by the tqdm progress bar.
unique: bool (optional, default False)
Controls if the rows of your data should be uniqued before being
embedded. If you have more duplicates than you have n_neighbour
you can have the identical data points lying in different regions of
your space. It also violates the definition of a metric.
For to map from internal structures back to your data use the variable
_unique_inverse_.
densmap: bool (optional, default False)
Specifies whether the density-augmented objective of densMAP
should be used for optimization. Turning on this option generates
an embedding where the local densities are encouraged to be correlated
with those in the original space. Parameters below with the prefix 'dens'
further control the behavior of this extension.
dens_lambda: float (optional, default 2.0)
Controls the regularization weight of the density correlation term
in densMAP. Higher values prioritize density preservation over the
UMAP objective, and vice versa for values closer to zero. Setting this
parameter to zero is equivalent to running the original UMAP algorithm.
dens_frac: float (optional, default 0.3)
Controls the fraction of epochs (between 0 and 1) where the
density-augmented objective is used in densMAP. The first
(1 - dens_frac) fraction of epochs optimize the original UMAP objective
before introducing the density correlation term.
dens_var_shift: float (optional, default 0.1)
A small constant added to the variance of local radii in the
embedding when calculating the density correlation objective to
prevent numerical instability from dividing by a small number
output_dens: float (optional, default False)
Determines whether the local radii of the final embedding (an inverse
measure of local density) are computed and returned in addition to
the embedding. If set to True, local radii of the original data
are also included in the output for comparison; the output is a tuple
(embedding, original local radii, embedding local radii). This option
can also be used when densmap=False to calculate the densities for
UMAP embeddings.
disconnection_distance: float (optional, default np.inf or maximal value for bounded distances)
Disconnect any vertices of distance greater than or equal to disconnection_distance when approximating the
manifold via our k-nn graph. This is particularly useful in the case that you have a bounded metric. The
UMAP assumption that we have a connected manifold can be problematic when you have points that are maximally
different from all the rest of your data. The connected manifold assumption will make such points have perfect
similarity to a random set of other points. Too many such points will artificially connect your space.
precomputed_knn: tuple (optional, default (None,None,None))
If the k-nearest neighbors of each point has already been calculated you
can pass them in here to save computation time. The number of nearest
neighbors in the precomputed_knn must be greater or equal to the
n_neighbors parameter. This should be a tuple containing the output
of the nearest_neighbors() function or attributes from a previously fit
UMAP object; (knn_indices, knn_dists,knn_search_index).
"""
def __init__(
self,
n_neighbors=15,
n_components=2,
metric="euclidean",
metric_kwds=None,
output_metric="euclidean",
output_metric_kwds=None,
n_epochs=None,
learning_rate=1.0,
init="spectral",
min_dist=0.1,
spread=1.0,
low_memory=True,
n_jobs=-1,
set_op_mix_ratio=1.0,
local_connectivity=1.0,
repulsion_strength=1.0,
negative_sample_rate=5,
transform_queue_size=4.0,
a=None,
b=None,
random_state=None,
angular_rp_forest=False,
target_n_neighbors=-1,
target_metric="categorical",
target_metric_kwds=None,
target_weight=0.5,
transform_seed=42,
transform_mode="embedding",
force_approximation_algorithm=False,
verbose=False,
tqdm_kwds=None,
unique=False,
densmap=False,
dens_lambda=2.0,
dens_frac=0.3,
dens_var_shift=0.1,
output_dens=False,
disconnection_distance=None,
precomputed_knn=(None, None, None),
):
self.n_neighbors = n_neighbors
self.metric = metric
self.output_metric = output_metric
self.target_metric = target_metric
self.metric_kwds = metric_kwds
self.output_metric_kwds = output_metric_kwds
self.n_epochs = n_epochs
self.init = init
self.n_components = n_components
self.repulsion_strength = repulsion_strength
self.learning_rate = learning_rate
self.spread = spread
self.min_dist = min_dist
self.low_memory = low_memory
self.set_op_mix_ratio = set_op_mix_ratio
self.local_connectivity = local_connectivity
self.negative_sample_rate = negative_sample_rate
self.random_state = random_state
self.angular_rp_forest = angular_rp_forest
self.transform_queue_size = transform_queue_size
self.target_n_neighbors = target_n_neighbors
self.target_metric = target_metric
self.target_metric_kwds = target_metric_kwds
self.target_weight = target_weight
self.transform_seed = transform_seed
self.transform_mode = transform_mode
self.force_approximation_algorithm = force_approximation_algorithm
self.verbose = verbose
self.tqdm_kwds = tqdm_kwds
self.unique = unique
self.densmap = densmap
self.dens_lambda = dens_lambda
self.dens_frac = dens_frac
self.dens_var_shift = dens_var_shift
self.output_dens = output_dens
self.disconnection_distance = disconnection_distance
self.precomputed_knn = precomputed_knn
self.n_jobs = n_jobs
self.a = a
self.b = b
def _validate_parameters(self):
if self.set_op_mix_ratio < 0.0 or self.set_op_mix_ratio > 1.0:
raise ValueError("set_op_mix_ratio must be between 0.0 and 1.0")
if self.repulsion_strength < 0.0:
raise ValueError("repulsion_strength cannot be negative")
if self.min_dist > self.spread:
raise ValueError("min_dist must be less than or equal to spread")
if self.min_dist < 0.0:
raise ValueError("min_dist cannot be negative")
if not isinstance(self.init, str) and not isinstance(self.init, np.ndarray):
raise ValueError("init must be a string or ndarray")
if isinstance(self.init, str) and self.init not in (
"spectral",
"random",
):
raise ValueError('string init values must be "spectral" or "random"')
if (
isinstance(self.init, np.ndarray)
and self.init.shape[1] != self.n_components
):
raise ValueError("init ndarray must match n_components value")
if not isinstance(self.metric, str) and not callable(self.metric):
raise ValueError("metric must be string or callable")
if self.negative_sample_rate < 0:
raise ValueError("negative sample rate must be positive")
if self._initial_alpha < 0.0:
raise ValueError("learning_rate must be positive")
if self.n_neighbors < 2:
raise ValueError("n_neighbors must be greater than 1")
if self.target_n_neighbors < 2 and self.target_n_neighbors != -1:
raise ValueError("target_n_neighbors must be greater than 1")
if not isinstance(self.n_components, int):
if isinstance(self.n_components, str):
raise ValueError("n_components must be an int")
if self.n_components % 1 != 0:
raise ValueError("n_components must be a whole number")
try:
# this will convert other types of int (eg. numpy int64)
# to Python int
self.n_components = int(self.n_components)
except ValueError:
raise ValueError("n_components must be an int")
if self.n_components < 1:
raise ValueError("n_components must be greater than 0")
if self.n_epochs is not None and (
self.n_epochs < 0 or not isinstance(self.n_epochs, int)
):
raise ValueError("n_epochs must be a nonnegative integer")
if self.metric_kwds is None:
self._metric_kwds = {}
else:
self._metric_kwds = self.metric_kwds
if self.output_metric_kwds is None:
self._output_metric_kwds = {}
else:
self._output_metric_kwds = self.output_metric_kwds
if self.target_metric_kwds is None:
self._target_metric_kwds = {}
else:
self._target_metric_kwds = self.target_metric_kwds
# check sparsity of data upfront to set proper _input_distance_func &
# save repeated checks later on
if scipy.sparse.isspmatrix_csr(self._raw_data):
self._sparse_data = True
else:
self._sparse_data = False
# set input distance metric & inverse_transform distance metric
if callable(self.metric):
in_returns_grad = self._check_custom_metric(
self.metric, self._metric_kwds, self._raw_data
)
if in_returns_grad:
_m = self.metric
@numba.njit(fastmath=True)
def _dist_only(x, y, *kwds):
return _m(x, y, *kwds)[0]
self._input_distance_func = _dist_only
self._inverse_distance_func = self.metric
else:
self._input_distance_func = self.metric
self._inverse_distance_func = None
warn(
"custom distance metric does not return gradient; inverse_transform will be unavailable. "
"To enable using inverse_transform method, define a distance function that returns a tuple "
"of (distance [float], gradient [np.array])"
)
elif self.metric == "precomputed":
if self.unique:
raise ValueError("unique is poorly defined on a precomputed metric")
warn("using precomputed metric; inverse_transform will be unavailable")
self._input_distance_func = self.metric
self._inverse_distance_func = None
elif self.metric == "hellinger" and self._raw_data.min() < 0:
raise ValueError("Metric 'hellinger' does not support negative values")
elif self.metric in dist.named_distances:
if self._sparse_data:
if self.metric in sparse.sparse_named_distances:
self._input_distance_func = sparse.sparse_named_distances[
self.metric
]
else:
raise ValueError(
"Metric {} is not supported for sparse data".format(self.metric)
)
else:
self._input_distance_func = dist.named_distances[self.metric]
try:
self._inverse_distance_func = dist.named_distances_with_gradients[
self.metric
]
except KeyError:
warn(
"gradient function is not yet implemented for {} distance metric; "
"inverse_transform will be unavailable".format(self.metric)
)
self._inverse_distance_func = None
elif self.metric in pynn_named_distances:
if self._sparse_data:
if self.metric in pynn_sparse_named_distances:
self._input_distance_func = pynn_sparse_named_distances[self.metric]
else:
raise ValueError(
"Metric {} is not supported for sparse data".format(self.metric)
)
else:
self._input_distance_func = pynn_named_distances[self.metric]
warn(
"gradient function is not yet implemented for {} distance metric; "
"inverse_transform will be unavailable".format(self.metric)
)
self._inverse_distance_func = None
else:
raise ValueError("metric is neither callable nor a recognised string")
# set output distance metric
if callable(self.output_metric):
out_returns_grad = self._check_custom_metric(
self.output_metric, self._output_metric_kwds
)
if out_returns_grad:
self._output_distance_func = self.output_metric
else:
raise ValueError(
"custom output_metric must return a tuple of (distance [float], gradient [np.array])"
)
elif self.output_metric == "precomputed":
raise ValueError("output_metric cannnot be 'precomputed'")
elif self.output_metric in dist.named_distances_with_gradients:
self._output_distance_func = dist.named_distances_with_gradients[
self.output_metric
]
elif self.output_metric in dist.named_distances:
raise ValueError(
"gradient function is not yet implemented for {}.".format(
self.output_metric
)
)
else:
raise ValueError(
"output_metric is neither callable nor a recognised string"
)
# set angularity for NN search based on metric
if self.metric in (
"cosine",
"correlation",
"dice",
"jaccard",
"ll_dirichlet",
"hellinger",
):
self.angular_rp_forest = True
if self.n_jobs < -1 or self.n_jobs == 0:
raise ValueError("n_jobs must be a postive integer, or -1 (for all cores)")
if self.dens_lambda < 0.0:
raise ValueError("dens_lambda cannot be negative")
if self.dens_frac < 0.0 or self.dens_frac > 1.0:
raise ValueError("dens_frac must be between 0.0 and 1.0")
if self.dens_var_shift < 0.0:
raise ValueError("dens_var_shift cannot be negative")
self._densmap_kwds = {
"lambda": self.dens_lambda if self.densmap else 0.0,
"frac": self.dens_frac if self.densmap else 0.0,
"var_shift": self.dens_var_shift,
"n_neighbors": self.n_neighbors,
}
if self.densmap:
if self.output_metric not in ("euclidean", "l2"):
raise ValueError(
"Non-Euclidean output metric not supported for densMAP."
)
# This will be used to prune all edges of greater than a fixed value from our knn graph.
# We have preset defaults described in DISCONNECTION_DISTANCES for our bounded measures.
# Otherwise a user can pass in their own value.
if self.disconnection_distance is None:
self._disconnection_distance = DISCONNECTION_DISTANCES.get(
self.metric, np.inf
)
elif isinstance(self.disconnection_distance, int) or isinstance(
self.disconnection_distance, float
):
self._disconnection_distance = self.disconnection_distance
else:
raise ValueError("disconnection_distance must either be None or a numeric.")
if self.tqdm_kwds is None:
self.tqdm_kwds = {}
else:
if isinstance(self.tqdm_kwds, dict) is False:
raise ValueError(
"tqdm_kwds must be a dictionary. Please provide valid tqdm "
"parameters as key value pairs. Valid tqdm parameters can be "
"found here: https://github.com/tqdm/tqdm#parameters"
)
if "desc" not in self.tqdm_kwds:
self.tqdm_kwds["desc"] = "Epochs completed"
if "bar_format" not in self.tqdm_kwds:
bar_f = "{desc}: {percentage:3.0f}%| {bar} {n_fmt}/{total_fmt} [{elapsed}]"
self.tqdm_kwds["bar_format"] = bar_f
if hasattr(self, "knn_dists") and self.knn_dists is not None:
if self.unique:
raise ValueError(
"unique is not currently available for " "precomputed_knn."
)
if not isinstance(self.knn_indices, np.ndarray):
raise ValueError("precomputed_knn[0] must be ndarray object.")
if not isinstance(self.knn_dists, np.ndarray):
raise ValueError("precomputed_knn[1] must be ndarray object.")
if self.knn_dists.shape != self.knn_indices.shape:
raise ValueError(
"precomputed_knn[0] and precomputed_knn[1]"
" must be numpy arrays of the same size."
)
if not isinstance(self.knn_search_index, NNDescent):
raise ValueError(
"precomputed_knn[2] (knn_search_index)"
" must be an NNDescent object."
)
if self.knn_dists.shape[1] < self.n_neighbors:
warn(
"precomputed_knn has a lower number of neighbors than "
"n_neighbors parameter. precomputed_knn will be ignored"
" and the k-nn will be computed normally."
)
self.knn_indices = None
self.knn_dists = None
self.knn_search_index = None
elif self.knn_dists.shape[0] != self._raw_data.shape[0]:
warn(
"precomputed_knn has a different number of samples than the"
" data you are fitting. precomputed_knn will be ignored and"
"the k-nn will be computed normally."
)
self.knn_indices = None
self.knn_dists = None
self.knn_search_index = None
elif (
self.knn_dists.shape[0] < 4096
and not self.force_approximation_algorithm
):
warn(
"precomputed_knn is meant for large datasets. Since your"
" data is small, precomputed_knn will be ignored and the"
" k-nn will be computed normally."
)
elif self.knn_dists.shape[1] > self.n_neighbors:
# if k for precomputed_knn larger than n_neighbors we simply prune it
self.knn_indices = self.knn_indices[:, : self.n_neighbors]
self.knn_dists = self.knn_dists[:, : self.n_neighbors]
def _check_custom_metric(self, metric, kwds, data=None):
# quickly check to determine whether user-defined
# self.metric/self.output_metric returns both distance and gradient
if data is not None:
# if checking the high-dimensional distance metric, test directly on
# input data so we don't risk violating any assumptions potentially
# hard-coded in the metric (e.g., bounded; non-negative)
x, y = data[np.random.randint(0, data.shape[0], 2)]
else:
# if checking the manifold distance metric, simulate some data on a
# reasonable interval with output dimensionality
x, y = np.random.uniform(low=-10, high=10, size=(2, self.n_components))
if scipy.sparse.issparse(data):
metric_out = metric(x.indices, x.data, y.indices, y.data, **kwds)
else:
metric_out = metric(x, y, **kwds)
# True if metric returns iterable of length 2, False otherwise
return hasattr(metric_out, "__iter__") and len(metric_out) == 2
def _populate_combined_params(self, *models):
self.n_neighbors = flattened([m.n_neighbors for m in models])
self.metric = flattened([m.metric for m in models])
self.metric_kwds = flattened([m.metric_kwds for m in models])
self.output_metric = flattened([m.output_metric for m in models])
self.n_epochs = flattened(
[m.n_epochs if m.n_epochs is not None else -1 for m in models]
)
if all([x == -1 for x in self.n_epochs]):
self.n_epochs = None
self.init = flattened([m.init for m in models])
self.n_components = flattened([m.n_components for m in models])
self.repulsion_strength = flattened([m.repulsion_strength for m in models])
self.learning_rate = flattened([m.learning_rate for m in models])
self.spread = flattened([m.spread for m in models])
self.min_dist = flattened([m.min_dist for m in models])
self.low_memory = flattened([m.low_memory for m in models])
self.set_op_mix_ratio = flattened([m.set_op_mix_ratio for m in models])
self.local_connectivity = flattened([m.local_connectivity for m in models])
self.negative_sample_rate = flattened([m.negative_sample_rate for m in models])
self.random_state = flattened([m.random_state for m in models])
self.angular_rp_forest = flattened([m.angular_rp_forest for m in models])
self.transform_queue_size = flattened([m.transform_queue_size for m in models])
self.target_n_neighbors = flattened([m.target_n_neighbors for m in models])
self.target_metric = flattened([m.target_metric for m in models])
self.target_metric_kwds = flattened([m.target_metric_kwds for m in models])
self.target_weight = flattened([m.target_weight for m in models])
self.transform_seed = flattened([m.transform_seed for m in models])
self.force_approximation_algorithm = flattened(
[m.force_approximation_algorithm for m in models]
)
self.verbose = flattened([m.verbose for m in models])
self.unique = flattened([m.unique for m in models])
self.densmap = flattened([m.densmap for m in models])
self.dens_lambda = flattened([m.dens_lambda for m in models])
self.dens_frac = flattened([m.dens_frac for m in models])
self.dens_var_shift = flattened([m.dens_var_shift for m in models])
self.output_dens = flattened([m.output_dens for m in models])
self.a = flattened([m.a for m in models])
self.b = flattened([m.b for m in models])
self._a = flattened([m._a for m in models])
self._b = flattened([m._b for m in models])
def __mul__(self, other):
check_is_fitted(
self, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
)
check_is_fitted(
other, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
)
if self.graph_.shape[0] != other.graph_.shape[0]:
raise ValueError("Only models with the equivalent samples can be combined")
result = UMAP()
result._populate_combined_params(self, other)
result.graph_ = general_simplicial_set_intersection(
self.graph_, other.graph_, 0.5
)
result.graph_ = reset_local_connectivity(result.graph_, True)
if scipy.sparse.csgraph.connected_components(result.graph_)[0] > 1:
warn(
"Combined graph is not connected but multi-component layout is unsupported. "
"Falling back to random initialization."
)
init = "random"
else:
init = "spectral"
result.densmap = np.any(result.densmap)
result.output_dens = np.any(result.output_dens)
result._densmap_kwds = {
"lambda": np.max(result.dens_lambda),
"frac": np.max(result.dens_frac),
"var_shift": np.max(result.dens_var_shift),
"n_neighbors": np.max(result.n_neighbors),
}
if result.n_epochs is None:
n_epochs = None
else:
n_epochs = np.max(result.n_epochs)
result.embedding_, aux_data = simplicial_set_embedding(
None,
result.graph_,
np.min(result.n_components),
np.min(result.learning_rate),
np.mean(result._a),
np.mean(result._b),
np.mean(result.repulsion_strength),
np.mean(result.negative_sample_rate),
n_epochs,
init,
check_random_state(42),
"euclidean",
{},
result.densmap,
result._densmap_kwds,
result.output_dens,
parallel=False,
verbose=bool(np.max(result.verbose)),
tqdm_kwds=self.tqdm_kwds,
)
if result.output_dens:
result.rad_orig_ = aux_data["rad_orig"]
result.rad_emb_ = aux_data["rad_emb"]
return result
def __add__(self, other):
check_is_fitted(
self, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
)
check_is_fitted(
other, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
)
if self.graph_.shape[0] != other.graph_.shape[0]:
raise ValueError("Only models with the equivalent samples can be combined")
result = UMAP()
result._populate_combined_params(self, other)
result.graph_ = general_simplicial_set_union(self.graph_, other.graph_)
result.graph_ = reset_local_connectivity(result.graph_, True)
if scipy.sparse.csgraph.connected_components(result.graph_)[0] > 1:
warn(
"Combined graph is not connected but mult-component layout is unsupported. "
"Falling back to random initialization."
)
init = "random"
else:
init = "spectral"
result.densmap = np.any(result.densmap)
result.output_dens = np.any(result.output_dens)
result._densmap_kwds = {
"lambda": np.max(result.dens_lambda),
"frac": np.max(result.dens_frac),
"var_shift": np.max(result.dens_var_shift),
"n_neighbors": np.max(result.n_neighbors),
}
if result.n_epochs is None:
n_epochs = None
else:
n_epochs = np.max(result.n_epochs)
result.embedding_, aux_data = simplicial_set_embedding(
None,
result.graph_,
np.min(result.n_components),
np.min(result.learning_rate),
np.mean(result._a),
np.mean(result._b),
np.mean(result.repulsion_strength),
np.mean(result.negative_sample_rate),
n_epochs,
init,
check_random_state(42),
"euclidean",
{},
result.densmap,
result._densmap_kwds,
result.output_dens,
parallel=False,
verbose=bool(np.max(result.verbose)),
tqdm_kwds=self.tqdm_kwds,
)
if result.output_dens:
result.rad_orig_ = aux_data["rad_orig"]
result.rad_emb_ = aux_data["rad_emb"]
return result
def __sub__(self, other):
check_is_fitted(
self, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
)
check_is_fitted(
other, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
)
if self.graph_.shape[0] != other.graph_.shape[0]:
raise ValueError("Only models with the equivalent samples can be combined")
result = UMAP()
result._populate_combined_params(self, other)
result.graph_ = general_simplicial_set_intersection(
self.graph_, other.graph_, weight=0.5, right_complement=True
)
result.graph_ = reset_local_connectivity(result.graph_, False)
if scipy.sparse.csgraph.connected_components(result.graph_)[0] > 1:
warn(
"Combined graph is not connected but mult-component layout is unsupported. "
"Falling back to random initialization."
)
init = "random"
else:
init = "spectral"
result.densmap = np.any(result.densmap)
result.output_dens = np.any(result.output_dens)
result._densmap_kwds = {
"lambda": np.max(result.dens_lambda),
"frac": np.max(result.dens_frac),
"var_shift": np.max(result.dens_var_shift),
"n_neighbors": np.max(result.n_neighbors),
}
if result.n_epochs is None:
n_epochs = None
else:
n_epochs = np.max(result.n_epochs)
result.embedding_, aux_data = simplicial_set_embedding(
None,
result.graph_,
np.min(result.n_components),
np.min(result.learning_rate),
np.mean(result._a),
np.mean(result._b),
np.mean(result.repulsion_strength),
np.mean(result.negative_sample_rate),
n_epochs,
init,
check_random_state(42),
"euclidean",
{},
result.densmap,
result._densmap_kwds,
result.output_dens,
parallel=False,
verbose=bool(np.max(result.verbose)),
tqdm_kwds=self.tqdm_kwds,
)
if result.output_dens:
result.rad_orig_ = aux_data["rad_orig"]
result.rad_emb_ = aux_data["rad_emb"]
return result
def fit(self, X, y=None):
"""Fit X into an embedded space.
Optionally use y for supervised dimension reduction.
Parameters
----------
X : array, shape (n_samples, n_features) or (n_samples, n_samples)
If the metric is 'precomputed' X must be a square distance
matrix. Otherwise it contains a sample per row. If the method
is 'exact', X may be a sparse matrix of type 'csr', 'csc'
or 'coo'.
y : array, shape (n_samples)
A target array for supervised dimension reduction. How this is
handled is determined by parameters UMAP was instantiated with.
The relevant attributes are ``target_metric`` and
``target_metric_kwds``.
"""
X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
self._raw_data = X
# Handle all the optional arguments, setting default
if self.a is None or self.b is None:
self._a, self._b = find_ab_params(self.spread, self.min_dist)
else:
self._a = self.a
self._b = self.b
if isinstance(self.init, np.ndarray):
init = check_array(self.init, dtype=np.float32, accept_sparse=False)
else:
init = self.init
self._initial_alpha = self.learning_rate
self.knn_indices = self.precomputed_knn[0]
self.knn_dists = self.precomputed_knn[1]
self.knn_search_index = self.precomputed_knn[2]
self._validate_parameters()
if self.verbose:
print(str(self))
self._original_n_threads = numba.get_num_threads()
if self.n_jobs > 0 and self.n_jobs is not None:
numba.set_num_threads(self.n_jobs)
# Check if we should unique the data
# We've already ensured that we aren't in the precomputed case
if self.unique:
# check if the matrix is dense
if self._sparse_data:
# Call a sparse unique function
index, inverse, counts = csr_unique(X)
else:
index, inverse, counts = np.unique(
X,
return_index=True,
return_inverse=True,
return_counts=True,
axis=0,
)[1:4]
if self.verbose:
print(
"Unique=True -> Number of data points reduced from ",
X.shape[0],
" to ",
X[index].shape[0],
)
most_common = np.argmax(counts)
print(
"Most common duplicate is",
index[most_common],
" with a count of ",
counts[most_common],
)
# We'll expose an inverse map when unique=True for users to map from our internal structures to their data
self._unique_inverse_ = inverse
# If we aren't asking for unique use the full index.
# This will save special cases later.
else:
index = list(range(X.shape[0]))
inverse = list(range(X.shape[0]))
# Error check n_neighbors based on data size
if X[index].shape[0] <= self.n_neighbors:
if X[index].shape[0] == 1:
self.embedding_ = np.zeros(
(1, self.n_components)
) # needed to sklearn comparability
return self
warn(
"n_neighbors is larger than the dataset size; truncating to "
"X.shape[0] - 1"
)
self._n_neighbors = X[index].shape[0] - 1
if self.densmap:
self._densmap_kwds["n_neighbors"] = self._n_neighbors
else:
self._n_neighbors = self.n_neighbors
# Note: unless it causes issues for setting 'index', could move this to
# initial sparsity check above
if self._sparse_data and not X.has_sorted_indices:
X.sort_indices()
random_state = check_random_state(self.random_state)
if self.verbose:
print(ts(), "Construct fuzzy simplicial set")
if self.metric == "precomputed" and self._sparse_data:
# For sparse precomputed distance matrices, we just argsort the rows to find
# nearest neighbors. To make this easier, we expect matrices that are
# symmetrical (so we can find neighbors by looking at rows in isolation,
# rather than also having to consider that sample's column too).
# print("Computing KNNs for sparse precomputed distances...")
if sparse_tril(X).getnnz() != sparse_triu(X).getnnz():
raise ValueError(
"Sparse precomputed distance matrices should be symmetrical!"
)
if not np.all(X.diagonal() == 0):
raise ValueError("Non-zero distances from samples to themselves!")
if self.knn_dists is None:
self._knn_indices = np.zeros(
(X.shape[0], self.n_neighbors), dtype=int
)
self._knn_dists = np.zeros(self._knn_indices.shape, dtype=float)
for row_id in range(X.shape[0]):
# Find KNNs row-by-row
row_data = X[row_id].data
row_indices = X[row_id].indices
if len(row_data) < self._n_neighbors:
raise ValueError(
"Some rows contain fewer than n_neighbors distances!"
)
row_nn_data_indices = np.argsort(row_data)[: self._n_neighbors]
self._knn_indices[row_id] = row_indices[row_nn_data_indices]
self._knn_dists[row_id] = row_data[row_nn_data_indices]
else:
self._knn_indices = self.knn_indices
self._knn_dists = self.knn_dists
# Disconnect any vertices farther apart than _disconnection_distance
disconnected_index = self._knn_dists >= self._disconnection_distance
self._knn_indices[disconnected_index] = -1
self._knn_dists[disconnected_index] = np.inf
edges_removed = disconnected_index.sum()
(
self.graph_,
self._sigmas,
self._rhos,
self.graph_dists_,
) = fuzzy_simplicial_set(
X[index],
self.n_neighbors,
random_state,
"precomputed",
self._metric_kwds,
self._knn_indices,
self._knn_dists,
self.angular_rp_forest,
self.set_op_mix_ratio,
self.local_connectivity,
True,
self.verbose,
self.densmap or self.output_dens,
)
# Report the number of vertices with degree 0 in our our umap.graph_
# This ensures that they were properly disconnected.
vertices_disconnected = np.sum(
np.array(self.graph_.sum(axis=1)).flatten() == 0
)
raise_disconnected_warning(
edges_removed,
vertices_disconnected,
self._disconnection_distance,
self._raw_data.shape[0],
verbose=self.verbose,
)
# Handle small cases efficiently by computing all distances
elif X[index].shape[0] < 4096 and not self.force_approximation_algorithm:
self._small_data = True
try:
# sklearn pairwise_distances fails for callable metric on sparse data
_m = self.metric if self._sparse_data else self._input_distance_func
dmat = pairwise_distances(X[index], metric=_m, **self._metric_kwds)
except (ValueError, TypeError) as e:
# metric is numba.jit'd or not supported by sklearn,
# fallback to pairwise special
if self._sparse_data:
# Get a fresh metric since we are casting to dense
if not callable(self.metric):
_m = dist.named_distances[self.metric]
dmat = dist.pairwise_special_metric(
X[index].toarray(),
metric=_m,
kwds=self._metric_kwds,
)
else:
dmat = dist.pairwise_special_metric(
X[index],
metric=self._input_distance_func,
kwds=self._metric_kwds,
)
else:
dmat = dist.pairwise_special_metric(
X[index],
metric=self._input_distance_func,
kwds=self._metric_kwds,
)
# set any values greater than disconnection_distance to be np.inf.
# This will have no effect when _disconnection_distance is not set since it defaults to np.inf.
edges_removed = np.sum(dmat >= self._disconnection_distance)
dmat[dmat >= self._disconnection_distance] = np.inf
(
self.graph_,
self._sigmas,
self._rhos,
self.graph_dists_,
) = fuzzy_simplicial_set(
dmat,
self._n_neighbors,
random_state,
"precomputed",
self._metric_kwds,
None,
None,
self.angular_rp_forest,
self.set_op_mix_ratio,
self.local_connectivity,
True,
self.verbose,
self.densmap or self.output_dens,
)
# Report the number of vertices with degree 0 in our our umap.graph_
# This ensures that they were properly disconnected.
vertices_disconnected = np.sum(
np.array(self.graph_.sum(axis=1)).flatten() == 0
)
raise_disconnected_warning(
edges_removed,
vertices_disconnected,
self._disconnection_distance,
self._raw_data.shape[0],
verbose=self.verbose,
)
else:
# Standard case
self._small_data = False
# Standard case
if self._sparse_data and self.metric in pynn_sparse_named_distances:
nn_metric = self.metric
elif not self._sparse_data and self.metric in pynn_named_distances:
nn_metric = self.metric
else:
nn_metric = self._input_distance_func
if self.knn_dists is None:
(
self._knn_indices,
self._knn_dists,
self._knn_search_index,
) = nearest_neighbors(
X[index],
self._n_neighbors,
nn_metric,
self._metric_kwds,
self.angular_rp_forest,
random_state,
self.low_memory,
use_pynndescent=True,
n_jobs=self.n_jobs,
verbose=self.verbose,
)
else:
self._knn_indices = self.knn_indices
self._knn_dists = self.knn_dists
self._knn_search_index = self.knn_search_index
# Disconnect any vertices farther apart than _disconnection_distance
disconnected_index = self._knn_dists >= self._disconnection_distance
self._knn_indices[disconnected_index] = -1
self._knn_dists[disconnected_index] = np.inf
edges_removed = disconnected_index.sum()
(
self.graph_,
self._sigmas,
self._rhos,
self.graph_dists_,
) = fuzzy_simplicial_set(
X[index],
self.n_neighbors,
random_state,
nn_metric,
self._metric_kwds,
self._knn_indices,
self._knn_dists,
self.angular_rp_forest,
self.set_op_mix_ratio,
self.local_connectivity,
True,
self.verbose,
self.densmap or self.output_dens,
)
# Report the number of vertices with degree 0 in our our umap.graph_
# This ensures that they were properly disconnected.
vertices_disconnected = np.sum(
np.array(self.graph_.sum(axis=1)).flatten() == 0
)
raise_disconnected_warning(
edges_removed,
vertices_disconnected,
self._disconnection_distance,
self._raw_data.shape[0],
verbose=self.verbose,
)
# Currently not checking if any duplicate points have differing labels
# Might be worth throwing a warning...
if y is not None:
len_X = len(X) if not self._sparse_data else X.shape[0]
if len_X != len(y):
raise ValueError(
"Length of x = {len_x}, length of y = {len_y}, while it must be equal.".format(
len_x=len_X, len_y=len(y)
)
)
if self.target_metric == "string":
y_ = y[index]
else:
y_ = check_array(y, ensure_2d=False)[index]
if self.target_metric == "categorical":
if self.target_weight < 1.0:
far_dist = 2.5 * (1.0 / (1.0 - self.target_weight))
else:
far_dist = 1.0e12
self.graph_ = discrete_metric_simplicial_set_intersection(
self.graph_, y_, far_dist=far_dist
)
elif self.target_metric in dist.DISCRETE_METRICS:
if self.target_weight < 1.0:
scale = 2.5 * (1.0 / (1.0 - self.target_weight))
else:
scale = 1.0e12
# self.graph_ = discrete_metric_simplicial_set_intersection(
# self.graph_,
# y_,
# metric=self.target_metric,
# metric_kws=self.target_metric_kwds,
# metric_scale=scale
# )
metric_kws = dist.get_discrete_params(y_, self.target_metric)
self.graph_ = discrete_metric_simplicial_set_intersection(
self.graph_,
y_,
metric=self.target_metric,
metric_kws=metric_kws,
metric_scale=scale,
)
else:
if len(y_.shape) == 1:
y_ = y_.reshape(-1, 1)
if self.target_n_neighbors == -1:
target_n_neighbors = self._n_neighbors
else:
target_n_neighbors = self.target_n_neighbors
# Handle the small case as precomputed as before
if y.shape[0] < 4096:
try:
ydmat = pairwise_distances(
y_, metric=self.target_metric, **self._target_metric_kwds
)
except (TypeError, ValueError):
ydmat = dist.pairwise_special_metric(
y_,
metric=self.target_metric,
kwds=self._target_metric_kwds,
)
(target_graph, target_sigmas, target_rhos,) = fuzzy_simplicial_set(
ydmat,
target_n_neighbors,
random_state,
"precomputed",
self._target_metric_kwds,
None,
None,
False,
1.0,
1.0,
False,
)
else:
# Standard case
(target_graph, target_sigmas, target_rhos,) = fuzzy_simplicial_set(
y_,
target_n_neighbors,
random_state,
self.target_metric,
self._target_metric_kwds,
None,
None,
False,
1.0,
1.0,
False,
)
# product = self.graph_.multiply(target_graph)
# # self.graph_ = 0.99 * product + 0.01 * (self.graph_ +
# # target_graph -
# # product)
# self.graph_ = product
self.graph_ = general_simplicial_set_intersection(
self.graph_, target_graph, self.target_weight
)
self.graph_ = reset_local_connectivity(self.graph_)
self._supervised = True
else:
self._supervised = False
if self.densmap or self.output_dens:
self._densmap_kwds["graph_dists"] = self.graph_dists_
if self.verbose:
print(ts(), "Construct embedding")
if self.transform_mode == "embedding":
self.embedding_, aux_data = self._fit_embed_data(
self._raw_data[index],
self.n_epochs,
init,
random_state, # JH why raw data?
)
# Assign any points that are fully disconnected from our manifold(s) to have embedding
# coordinates of np.nan. These will be filtered by our plotting functions automatically.
# They also prevent users from being deceived a distance query to one of these points.
# Might be worth moving this into simplicial_set_embedding or _fit_embed_data
disconnected_vertices = np.array(self.graph_.sum(axis=1)).flatten() == 0
if len(disconnected_vertices) > 0:
self.embedding_[disconnected_vertices] = np.full(
self.n_components, np.nan
)
self.embedding_ = self.embedding_[inverse]
if self.output_dens:
self.rad_orig_ = aux_data["rad_orig"][inverse]
self.rad_emb_ = aux_data["rad_emb"][inverse]
if self.verbose:
print(ts() + " Finished embedding")
numba.set_num_threads(self._original_n_threads)
self._input_hash = joblib.hash(self._raw_data)
return self
def _fit_embed_data(self, X, n_epochs, init, random_state):
"""A method wrapper for simplicial_set_embedding that can be
replaced by subclasses.
"""
return simplicial_set_embedding(
X,
self.graph_,
self.n_components,
self._initial_alpha,
self._a,
self._b,
self.repulsion_strength,
self.negative_sample_rate,
n_epochs,
init,
random_state,
self._input_distance_func,
self._metric_kwds,
self.densmap,
self._densmap_kwds,
self.output_dens,
self._output_distance_func,
self._output_metric_kwds,
self.output_metric in ("euclidean", "l2"),
self.random_state is None,
self.verbose,
tqdm_kwds=self.tqdm_kwds,
)
def fit_transform(self, X, y=None):
"""Fit X into an embedded space and return that transformed
output.
Parameters
----------
X : array, shape (n_samples, n_features) or (n_samples, n_samples)
If the metric is 'precomputed' X must be a square distance
matrix. Otherwise it contains a sample per row.
y : array, shape (n_samples)
A target array for supervised dimension reduction. How this is
handled is determined by parameters UMAP was instantiated with.
The relevant attributes are ``target_metric`` and
``target_metric_kwds``.
Returns
-------
X_new : array, shape (n_samples, n_components)
Embedding of the training data in low-dimensional space.
or a tuple (X_new, r_orig, r_emb) if ``output_dens`` flag is set,
which additionally includes:
r_orig: array, shape (n_samples)
Local radii of data points in the original data space (log-transformed).
r_emb: array, shape (n_samples)
Local radii of data points in the embedding (log-transformed).
"""
self.fit(X, y)
if self.transform_mode == "embedding":
if self.output_dens:
return self.embedding_, self.rad_orig_, self.rad_emb_
else:
return self.embedding_
elif self.transform_mode == "graph":
return self.graph_
else:
raise ValueError(
"Unrecognized transform mode {}; should be one of 'embedding' or 'graph'".format(
self.transform_mode
)
)
def transform(self, X):
"""Transform X into the existing embedded space and return that
transformed output.
Parameters
----------
X : array, shape (n_samples, n_features)
New data to be transformed.
Returns
-------
X_new : array, shape (n_samples, n_components)
Embedding of the new data in low-dimensional space.
"""
# If we fit just a single instance then error
if self._raw_data.shape[0] == 1:
raise ValueError(
"Transform unavailable when model was fit with only a single data sample."
)
# If we just have the original input then short circuit things
X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
x_hash = joblib.hash(X)
if x_hash == self._input_hash:
if self.transform_mode == "embedding":
return self.embedding_
elif self.transform_mode == "graph":
return self.graph_
else:
raise ValueError(
"Unrecognized transform mode {}; should be one of 'embedding' or 'graph'".format(
self.transform_mode
)
)
if self.densmap:
raise NotImplementedError(
"Transforming data into an existing embedding not supported for densMAP."
)
# X = check_array(X, dtype=np.float32, order="C", accept_sparse="csr")
random_state = check_random_state(self.transform_seed)
rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)
if self.metric == "precomputed":
warn(
"Transforming new data with precomputed metric. "
"We are assuming the input data is a matrix of distances from the new points "
"to the points in the training set. If the input matrix is sparse, it should "
"contain distances from the new points to their nearest neighbours "
"or approximate nearest neighbours in the training set."
)
assert X.shape[1] == self._raw_data.shape[0]
if scipy.sparse.issparse(X):
indices = np.full(
(X.shape[0], self._n_neighbors), dtype=np.int32, fill_value=-1
)
dists = np.full_like(indices, dtype=np.float32, fill_value=-1)
for i in range(X.shape[0]):
data_indices = np.argsort(X[i].data)
if len(data_indices) < self._n_neighbors:
raise ValueError(
f"Need at least n_neighbors ({self.n_neighbors}) distances for each row!"
)
indices[i] = X[i].indices[data_indices[: self._n_neighbors]]
dists[i] = X[i].data[data_indices[: self._n_neighbors]]
else:
indices = np.argsort(X, axis=1)[:, : self._n_neighbors].astype(np.int32)
dists = np.take_along_axis(X, indices, axis=1)
assert np.min(indices) >= 0 and np.min(dists) >= 0.0
elif self._small_data:
try:
# sklearn pairwise_distances fails for callable metric on sparse data
_m = self.metric if self._sparse_data else self._input_distance_func
dmat = pairwise_distances(
X, self._raw_data, metric=_m, **self._metric_kwds
)
except (TypeError, ValueError):
# metric is numba.jit'd or not supported by sklearn,
# fallback to pairwise special
if self._sparse_data:
# Get a fresh metric since we are casting to dense
if not callable(self.metric):
_m = dist.named_distances[self.metric]
dmat = dist.pairwise_special_metric(
X.toarray(),
self._raw_data.toarray(),
metric=_m,
kwds=self._metric_kwds,
)
else:
dmat = dist.pairwise_special_metric(
X,
self._raw_data,
metric=self._input_distance_func,
kwds=self._metric_kwds,
)
else:
dmat = dist.pairwise_special_metric(
X,
self._raw_data,
metric=self._input_distance_func,
kwds=self._metric_kwds,
)
indices = np.argpartition(dmat, self._n_neighbors)[:, : self._n_neighbors]
dmat_shortened = submatrix(dmat, indices, self._n_neighbors)
indices_sorted = np.argsort(dmat_shortened)
indices = submatrix(indices, indices_sorted, self._n_neighbors)
dists = submatrix(dmat_shortened, indices_sorted, self._n_neighbors)
else:
epsilon = 0.24 if self._knn_search_index._angular_trees else 0.12
indices, dists = self._knn_search_index.query(
X, self.n_neighbors, epsilon=epsilon
)
dists = dists.astype(np.float32, order="C")
# Remove any nearest neighbours who's distances are greater than our disconnection_distance
indices[dists >= self._disconnection_distance] = -1
adjusted_local_connectivity = max(0.0, self.local_connectivity - 1.0)
sigmas, rhos = smooth_knn_dist(
dists,
float(self._n_neighbors),
local_connectivity=float(adjusted_local_connectivity),
)
rows, cols, vals, dists = compute_membership_strengths(
indices, dists, sigmas, rhos, bipartite=True
)
graph = scipy.sparse.coo_matrix(
(vals, (rows, cols)), shape=(X.shape[0], self._raw_data.shape[0])
)
if self.transform_mode == "graph":
return graph
# This was a very specially constructed graph with constant degree.
# That lets us do fancy unpacking by reshaping the csr matrix indices
# and data. Doing so relies on the constant degree assumption!
# csr_graph = normalize(graph.tocsr(), norm="l1")
# inds = csr_graph.indices.reshape(X.shape[0], self._n_neighbors)
# weights = csr_graph.data.reshape(X.shape[0], self._n_neighbors)
# embedding = init_transform(inds, weights, self.embedding_)
# This is less fast code than the above numba.jit'd code.
# It handles the fact that our nearest neighbour graph can now contain variable numbers of vertices.
csr_graph = graph.tocsr()
csr_graph.eliminate_zeros()
embedding = init_graph_transform(csr_graph, self.embedding_)
if self.n_epochs is None:
# For smaller datasets we can use more epochs
if graph.shape[0] <= 10000:
n_epochs = 100
else:
n_epochs = 30
else:
n_epochs = int(self.n_epochs // 3.0)
graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0
graph.eliminate_zeros()
epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs)
head = graph.row
tail = graph.col
weight = graph.data
# optimize_layout = make_optimize_layout(
# self._output_distance_func,
# tuple(self.output_metric_kwds.values()),
# )
if self.output_metric == "euclidean":
embedding = optimize_layout_euclidean(
embedding,
self.embedding_.astype(np.float32, copy=True), # Fixes #179 & #217,
head,
tail,
n_epochs,
graph.shape[1],
epochs_per_sample,
self._a,
self._b,
rng_state,
self.repulsion_strength,
self._initial_alpha / 4.0,
self.negative_sample_rate,
self.random_state is None,
verbose=self.verbose,
tqdm_kwds=self.tqdm_kwds,
)
else:
embedding = optimize_layout_generic(
embedding,
self.embedding_.astype(np.float32, copy=True), # Fixes #179 & #217
head,
tail,
n_epochs,
graph.shape[1],
epochs_per_sample,
self._a,
self._b,
rng_state,
self.repulsion_strength,
self._initial_alpha / 4.0,
self.negative_sample_rate,
self._output_distance_func,
tuple(self._output_metric_kwds.values()),
verbose=self.verbose,
tqdm_kwds=self.tqdm_kwds,
)
return embedding
def inverse_transform(self, X):
"""Transform X in the existing embedded space back into the input
data space and return that transformed output.
Parameters
----------
X : array, shape (n_samples, n_components)
New points to be inverse transformed.
Returns
-------
X_new : array, shape (n_samples, n_features)
Generated data points new data in data space.
"""
if self._sparse_data:
raise ValueError("Inverse transform not available for sparse input.")
elif self._inverse_distance_func is None:
raise ValueError("Inverse transform not available for given metric.")
elif self.densmap:
raise ValueError("Inverse transform not available for densMAP.")
elif self.n_components >= 8:
warn(
"Inverse transform works best with low dimensional embeddings."
" Results may be poor, or this approach to inverse transform"
" may fail altogether! If you need a high dimensional latent"
" space and inverse transform operations consider using an"
" autoencoder."
)
elif self.transform_mode == "graph":
raise ValueError(
"Inverse transform not available for transform_mode = 'graph'"
)
X = check_array(X, dtype=np.float32, order="C")
random_state = check_random_state(self.transform_seed)
rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)
# build Delaunay complex (Does this not assume a roughly euclidean output metric)?
deltri = scipy.spatial.Delaunay(
self.embedding_, incremental=True, qhull_options="QJ"
)
neighbors = deltri.simplices[deltri.find_simplex(X)]
adjmat = scipy.sparse.lil_matrix(
(self.embedding_.shape[0], self.embedding_.shape[0]), dtype=int
)
for i in np.arange(0, deltri.simplices.shape[0]):
for j in deltri.simplices[i]:
if j < self.embedding_.shape[0]:
idx = deltri.simplices[i][
deltri.simplices[i] < self.embedding_.shape[0]
]
adjmat[j, idx] = 1
adjmat[idx, j] = 1
adjmat = scipy.sparse.csr_matrix(adjmat)
min_vertices = min(self._raw_data.shape[-1], self._raw_data.shape[0])
neighborhood = [
breadth_first_search(adjmat, v[0], min_vertices=min_vertices)
for v in neighbors
]
if callable(self.output_metric):
# need to create another numba.jit-able wrapper for callable
# output_metrics that return a tuple (already checked that it does
# during param validation in `fit` method)
_out_m = self.output_metric
@numba.njit(fastmath=True)
def _output_dist_only(x, y, *kwds):
return _out_m(x, y, *kwds)[0]
dist_only_func = _output_dist_only
elif self.output_metric in dist.named_distances.keys():
dist_only_func = dist.named_distances[self.output_metric]
else:
# shouldn't really ever get here because of checks already performed,
# but works as a failsafe in case attr was altered manually after fitting
raise ValueError(
"Unrecognized output metric: {}".format(self.output_metric)
)
dist_args = tuple(self._output_metric_kwds.values())
distances = [
np.array(
[
dist_only_func(X[i], self.embedding_[nb], *dist_args)
for nb in neighborhood[i]
]
)
for i in range(X.shape[0])
]
idx = np.array([np.argsort(e)[:min_vertices] for e in distances])
dists_output_space = np.array(
[distances[i][idx[i]] for i in range(len(distances))]
)
indices = np.array([neighborhood[i][idx[i]] for i in range(len(neighborhood))])
rows, cols, distances = np.array(
[
[i, indices[i, j], dists_output_space[i, j]]
for i in range(indices.shape[0])
for j in range(min_vertices)
]
).T
# calculate membership strength of each edge
weights = 1 / (1 + self._a * distances ** (2 * self._b))
# compute 1-skeleton
# convert 1-skeleton into coo_matrix adjacency matrix
graph = scipy.sparse.coo_matrix(
(weights, (rows, cols)), shape=(X.shape[0], self._raw_data.shape[0])
)
# That lets us do fancy unpacking by reshaping the csr matrix indices
# and data. Doing so relies on the constant degree assumption!
# csr_graph = graph.tocsr()
csr_graph = normalize(graph.tocsr(), norm="l1")
inds = csr_graph.indices.reshape(X.shape[0], min_vertices)
weights = csr_graph.data.reshape(X.shape[0], min_vertices)
inv_transformed_points = init_transform(inds, weights, self._raw_data)
if self.n_epochs is None:
# For smaller datasets we can use more epochs
if graph.shape[0] <= 10000:
n_epochs = 100
else:
n_epochs = 30
else:
n_epochs = int(self.n_epochs // 3.0)
# graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0
# graph.eliminate_zeros()
epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs)
head = graph.row
tail = graph.col
weight = graph.data
inv_transformed_points = optimize_layout_inverse(
inv_transformed_points,
self._raw_data,
head,
tail,
weight,
self._sigmas,
self._rhos,
n_epochs,
graph.shape[1],
epochs_per_sample,
self._a,
self._b,
rng_state,
self.repulsion_strength,
self._initial_alpha / 4.0,
self.negative_sample_rate,
self._inverse_distance_func,
tuple(self._metric_kwds.values()),
verbose=self.verbose,
tqdm_kwds=self.tqdm_kwds,
)
return inv_transformed_points
def update(self, X):
X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
random_state = check_random_state(self.transform_seed)
rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)
original_size = self._raw_data.shape[0]
if self.metric == "precomputed":
raise ValueError("Update does not currently support precomputed metrics")
if self._supervised:
raise ValueError("Updating supervised models is not currently " "supported")
if self._small_data:
if self._sparse_data:
self._raw_data = scipy.sparse.vstack([self._raw_data, X])
else:
self._raw_data = np.vstack([self._raw_data, X])
if self._raw_data.shape[0] < 4096:
# still small data
try:
# sklearn pairwise_distances fails for callable metric on sparse data
_m = self.metric if self._sparse_data else self._input_distance_func
dmat = pairwise_distances(
self._raw_data, metric=_m, **self._metric_kwds
)
except (ValueError, TypeError) as e:
# metric is numba.jit'd or not supported by sklearn,
# fallback to pairwise special
if self._sparse_data:
# Get a fresh metric since we are casting to dense
if not callable(self.metric):
_m = dist.named_distances[self.metric]
dmat = dist.pairwise_special_metric(
self._raw_data.toarray(),
metric=_m,
kwds=self._metric_kwds,
)
else:
dmat = dist.pairwise_special_metric(
self._raw_data,
metric=self._input_distance_func,
kwds=self._metric_kwds,
)
else:
dmat = dist.pairwise_special_metric(
self._raw_data,
metric=self._input_distance_func,
kwds=self._metric_kwds,
)
self.graph_, self._sigmas, self._rhos = fuzzy_simplicial_set(
dmat,
self._n_neighbors,
random_state,
"precomputed",
self._metric_kwds,
None,
None,
self.angular_rp_forest,
self.set_op_mix_ratio,
self.local_connectivity,
True,
self.verbose,
)
knn_indices = np.argsort(dmat)[:, : self.n_neighbors]
else:
# now large data
self._small_data = False
if self._sparse_data and self.metric in pynn_sparse_named_distances:
nn_metric = self.metric
elif not self._sparse_data and self.metric in pynn_named_distances:
nn_metric = self.metric
else:
nn_metric = self._input_distance_func
(
self._knn_indices,
self._knn_dists,
self._knn_search_index,
) = nearest_neighbors(
self._raw_data,
self._n_neighbors,
nn_metric,
self._metric_kwds,
self.angular_rp_forest,
random_state,
self.low_memory,
use_pynndescent=True,
n_jobs=self.n_jobs,
verbose=self.verbose,
)
self.graph_, self._sigmas, self._rhos = fuzzy_simplicial_set(
self._raw_data,
self.n_neighbors,
random_state,
nn_metric,
self._metric_kwds,
self._knn_indices,
self._knn_dists,
self.angular_rp_forest,
self.set_op_mix_ratio,
self.local_connectivity,
True,
self.verbose,
)
knn_indices = self._knn_indices
init = np.zeros(
(self._raw_data.shape[0], self.n_components), dtype=np.float32
)
init[:original_size] = self.embedding_
init_update(init, original_size, knn_indices)
if self.n_epochs is None:
n_epochs = 0
else:
n_epochs = self.n_epochs
self.embedding_, aux_data = simplicial_set_embedding(
self._raw_data,
self.graph_,
self.n_components,
self._initial_alpha,
self._a,
self._b,
self.repulsion_strength,
self.negative_sample_rate,
n_epochs,
init,
random_state,
self._input_distance_func,
self._metric_kwds,
self.densmap,
self._densmap_kwds,
self.output_dens,
self._output_distance_func,
self._output_metric_kwds,
self.output_metric in ("euclidean", "l2"),
self.random_state is None,
self.verbose,
tqdm_kwds=self.tqdm_kwds,
)
else:
self._knn_search_index.prepare()
self._knn_search_index.update(X)
self._raw_data = self._knn_search_index._raw_data
(
self._knn_indices,
self._knn_dists,
) = self._knn_search_index.neighbor_graph
if self._sparse_data and self.metric in pynn_sparse_named_distances:
nn_metric = self.metric
elif not self._sparse_data and self.metric in pynn_named_distances:
nn_metric = self.metric
else:
nn_metric = self._input_distance_func
self.graph_, self._sigmas, self._rhos = fuzzy_simplicial_set(
self._raw_data,
self.n_neighbors,
random_state,
nn_metric,
self._metric_kwds,
self._knn_indices,
self._knn_dists,
self.angular_rp_forest,
self.set_op_mix_ratio,
self.local_connectivity,
True,
self.verbose,
)
init = np.zeros(
(self._raw_data.shape[0], self.n_components), dtype=np.float32
)
init[:original_size] = self.embedding_
init_update(init, original_size, self._knn_indices)
if self.n_epochs is None:
n_epochs = 0
else:
n_epochs = self.n_epochs
self.embedding_, aux_data = simplicial_set_embedding(
self._raw_data,
self.graph_,
self.n_components,
self._initial_alpha,
self._a,
self._b,
self.repulsion_strength,
self.negative_sample_rate,
n_epochs,
init,
random_state,
self._input_distance_func,
self._metric_kwds,
self.densmap,
self._densmap_kwds,
self.output_dens,
self._output_distance_func,
self._output_metric_kwds,
self.output_metric in ("euclidean", "l2"),
self.random_state is None,
self.verbose,
tqdm_kwds=self.tqdm_kwds,
)
if self.output_dens:
self.rad_orig_ = aux_data["rad_orig"]
self.rad_emb_ = aux_data["rad_emb"]
def __repr__(self):
from sklearn.utils._pprint import _EstimatorPrettyPrinter
import re
pp = _EstimatorPrettyPrinter(
compact=True,
indent=1,
indent_at_name=True,
n_max_elements_to_show=50,
)
pp._changed_only = True
repr_ = pp.pformat(self)
repr_ = re.sub("tqdm_kwds={.*},", "", repr_, flags=re.S)
# remove empty lines
repr_ = re.sub("\n *\n", "\n", repr_, flags=re.S)
# remove extra whitespaces after a comma
repr_ = re.sub(", +", ", ", repr_)
return repr_
|