File: umap_.py

package info (click to toggle)
umap-learn 0.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,468 kB
  • sloc: python: 9,458; sh: 87; makefile: 20
file content (3401 lines) | stat: -rw-r--r-- 128,853 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
# Author: Leland McInnes <leland.mcinnes@gmail.com>
#
# License: BSD 3 clause
from __future__ import print_function

import locale
from warnings import warn
import time

from scipy.optimize import curve_fit
from sklearn.base import BaseEstimator
from sklearn.utils import check_random_state, check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.metrics import pairwise_distances
from sklearn.preprocessing import normalize
from sklearn.neighbors import KDTree

try:
    import joblib
except ImportError:
    # sklearn.externals.joblib is deprecated in 0.21, will be removed in 0.23
    from sklearn.externals import joblib

import numpy as np
import scipy.sparse
from scipy.sparse import tril as sparse_tril, triu as sparse_triu
import scipy.sparse.csgraph
import numba

import umap.distances as dist

import umap.sparse as sparse

from umap.utils import (
    submatrix,
    ts,
    csr_unique,
    fast_knn_indices,
)
from umap.spectral import spectral_layout
from umap.layouts import (
    optimize_layout_euclidean,
    optimize_layout_generic,
    optimize_layout_inverse,
)

from pynndescent import NNDescent
from pynndescent.distances import named_distances as pynn_named_distances
from pynndescent.sparse import sparse_named_distances as pynn_sparse_named_distances

locale.setlocale(locale.LC_NUMERIC, "C")

INT32_MIN = np.iinfo(np.int32).min + 1
INT32_MAX = np.iinfo(np.int32).max - 1

SMOOTH_K_TOLERANCE = 1e-5
MIN_K_DIST_SCALE = 1e-3
NPY_INFINITY = np.inf

DISCONNECTION_DISTANCES = {
    "correlation": 2,
    "cosine": 2,
    "hellinger": 1,
    "jaccard": 1,
    "dice": 1,
}


def flatten_iter(container):
    for i in container:
        if isinstance(i, (list, tuple)):
            for j in flatten_iter(i):
                yield j
        else:
            yield i


def flattened(container):
    return tuple(flatten_iter(container))


def breadth_first_search(adjmat, start, min_vertices):
    explored = []
    queue = [start]
    levels = {}
    levels[start] = 0
    max_level = np.inf
    visited = [start]

    while queue:
        node = queue.pop(0)
        explored.append(node)
        if max_level == np.inf and len(explored) > min_vertices:
            max_level = max(levels.values())

        if levels[node] + 1 < max_level:
            neighbors = adjmat[node].indices
            for neighbour in neighbors:
                if neighbour not in visited:
                    queue.append(neighbour)
                    visited.append(neighbour)

                    levels[neighbour] = levels[node] + 1

    return np.array(explored)


def raise_disconnected_warning(
    edges_removed,
    vertices_disconnected,
    disconnection_distance,
    total_rows,
    threshold=0.1,
    verbose=False,
):
    """A simple wrapper function to avoid large amounts of code repetition."""
    if verbose & (vertices_disconnected == 0) & (edges_removed > 0):
        print(
            f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges.  "
            f"This is not a problem as no vertices were disconnected."
        )
    elif (vertices_disconnected > 0) & (
        vertices_disconnected <= threshold * total_rows
    ):
        warn(
            f"A few of your vertices were disconnected from the manifold.  This shouldn't cause problems.\n"
            f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges.\n"
            f"It has only fully disconnected {vertices_disconnected} vertices.\n"
            f"Use umap.utils.disconnected_vertices() to identify them.",
        )
    elif vertices_disconnected > threshold * total_rows:
        warn(
            f"A large number of your vertices were disconnected from the manifold.\n"
            f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges.\n"
            f"It has fully disconnected {vertices_disconnected} vertices.\n"
            f"You might consider using find_disconnected_points() to find and remove these points from your data.\n"
            f"Use umap.utils.disconnected_vertices() to identify them.",
        )


@numba.njit(
    locals={
        "psum": numba.types.float32,
        "lo": numba.types.float32,
        "mid": numba.types.float32,
        "hi": numba.types.float32,
    },
    fastmath=True,
)  # benchmarking `parallel=True` shows it to *decrease* performance
def smooth_knn_dist(distances, k, n_iter=64, local_connectivity=1.0, bandwidth=1.0):
    """Compute a continuous version of the distance to the kth nearest
    neighbor. That is, this is similar to knn-distance but allows continuous
    k values rather than requiring an integral k. In essence we are simply
    computing the distance such that the cardinality of fuzzy set we generate
    is k.

    Parameters
    ----------
    distances: array of shape (n_samples, n_neighbors)
        Distances to nearest neighbors for each samples. Each row should be a
        sorted list of distances to a given samples nearest neighbors.

    k: float
        The number of nearest neighbors to approximate for.

    n_iter: int (optional, default 64)
        We need to binary search for the correct distance value. This is the
        max number of iterations to use in such a search.

    local_connectivity: int (optional, default 1)
        The local connectivity required -- i.e. the number of nearest
        neighbors that should be assumed to be connected at a local level.
        The higher this value the more connected the manifold becomes
        locally. In practice this should be not more than the local intrinsic
        dimension of the manifold.

    bandwidth: float (optional, default 1)
        The target bandwidth of the kernel, larger values will produce
        larger return values.

    Returns
    -------
    knn_dist: array of shape (n_samples,)
        The distance to kth nearest neighbor, as suitably approximated.

    nn_dist: array of shape (n_samples,)
        The distance to the 1st nearest neighbor for each point.
    """
    target = np.log2(k) * bandwidth
    rho = np.zeros(distances.shape[0], dtype=np.float32)
    result = np.zeros(distances.shape[0], dtype=np.float32)

    mean_distances = np.mean(distances)

    for i in range(distances.shape[0]):
        lo = 0.0
        hi = NPY_INFINITY
        mid = 1.0

        # TODO: This is very inefficient, but will do for now. FIXME
        ith_distances = distances[i]
        non_zero_dists = ith_distances[ith_distances > 0.0]
        if non_zero_dists.shape[0] >= local_connectivity:
            index = int(np.floor(local_connectivity))
            interpolation = local_connectivity - index
            if index > 0:
                rho[i] = non_zero_dists[index - 1]
                if interpolation > SMOOTH_K_TOLERANCE:
                    rho[i] += interpolation * (
                        non_zero_dists[index] - non_zero_dists[index - 1]
                    )
            else:
                rho[i] = interpolation * non_zero_dists[0]
        elif non_zero_dists.shape[0] > 0:
            rho[i] = np.max(non_zero_dists)

        for n in range(n_iter):

            psum = 0.0
            for j in range(1, distances.shape[1]):
                d = distances[i, j] - rho[i]
                if d > 0:
                    psum += np.exp(-(d / mid))
                else:
                    psum += 1.0

            if np.fabs(psum - target) < SMOOTH_K_TOLERANCE:
                break

            if psum > target:
                hi = mid
                mid = (lo + hi) / 2.0
            else:
                lo = mid
                if hi == NPY_INFINITY:
                    mid *= 2
                else:
                    mid = (lo + hi) / 2.0

        result[i] = mid

        # TODO: This is very inefficient, but will do for now. FIXME
        if rho[i] > 0.0:
            mean_ith_distances = np.mean(ith_distances)
            if result[i] < MIN_K_DIST_SCALE * mean_ith_distances:
                result[i] = MIN_K_DIST_SCALE * mean_ith_distances
        else:
            if result[i] < MIN_K_DIST_SCALE * mean_distances:
                result[i] = MIN_K_DIST_SCALE * mean_distances

    return result, rho


def nearest_neighbors(
    X,
    n_neighbors,
    metric,
    metric_kwds,
    angular,
    random_state,
    low_memory=True,
    use_pynndescent=True,
    n_jobs=-1,
    verbose=False,
):
    """Compute the ``n_neighbors`` nearest points for each data point in ``X``
    under ``metric``. This may be exact, but more likely is approximated via
    nearest neighbor descent.

    Parameters
    ----------
    X: array of shape (n_samples, n_features)
        The input data to compute the k-neighbor graph of.

    n_neighbors: int
        The number of nearest neighbors to compute for each sample in ``X``.

    metric: string or callable
        The metric to use for the computation.

    metric_kwds: dict
        Any arguments to pass to the metric computation function.

    angular: bool
        Whether to use angular rp trees in NN approximation.

    random_state: np.random state
        The random state to use for approximate NN computations.

    low_memory: bool (optional, default True)
        Whether to pursue lower memory NNdescent.

    verbose: bool (optional, default False)
        Whether to print status data during the computation.

    Returns
    -------
    knn_indices: array of shape (n_samples, n_neighbors)
        The indices on the ``n_neighbors`` closest points in the dataset.

    knn_dists: array of shape (n_samples, n_neighbors)
        The distances to the ``n_neighbors`` closest points in the dataset.

    rp_forest: list of trees
        The random projection forest used for searching (if used, None otherwise)
    """
    if verbose:
        print(ts(), "Finding Nearest Neighbors")

    if metric == "precomputed":
        # Note that this does not support sparse distance matrices yet ...
        # Compute indices of n nearest neighbors
        knn_indices = fast_knn_indices(X, n_neighbors)
        # knn_indices = np.argsort(X)[:, :n_neighbors]
        # Compute the nearest neighbor distances
        #   (equivalent to np.sort(X)[:,:n_neighbors])
        knn_dists = X[np.arange(X.shape[0])[:, None], knn_indices].copy()
        # Prune any nearest neighbours that are infinite distance apart.
        disconnected_index = knn_dists == np.inf
        knn_indices[disconnected_index] = -1

        knn_search_index = None
    else:
        # TODO: Hacked values for now
        n_trees = min(64, 5 + int(round((X.shape[0]) ** 0.5 / 20.0)))
        n_iters = max(5, int(round(np.log2(X.shape[0]))))

        knn_search_index = NNDescent(
            X,
            n_neighbors=n_neighbors,
            metric=metric,
            metric_kwds=metric_kwds,
            random_state=random_state,
            n_trees=n_trees,
            n_iters=n_iters,
            max_candidates=60,
            low_memory=low_memory,
            n_jobs=n_jobs,
            verbose=verbose,
            compressed=False,
        )
        knn_indices, knn_dists = knn_search_index.neighbor_graph

    if verbose:
        print(ts(), "Finished Nearest Neighbor Search")
    return knn_indices, knn_dists, knn_search_index


@numba.njit(
    locals={
        "knn_dists": numba.types.float32[:, ::1],
        "sigmas": numba.types.float32[::1],
        "rhos": numba.types.float32[::1],
        "val": numba.types.float32,
    },
    parallel=True,
    fastmath=True,
)
def compute_membership_strengths(
    knn_indices,
    knn_dists,
    sigmas,
    rhos,
    return_dists=False,
    bipartite=False,
):
    """Construct the membership strength data for the 1-skeleton of each local
    fuzzy simplicial set -- this is formed as a sparse matrix where each row is
    a local fuzzy simplicial set, with a membership strength for the
    1-simplex to each other data point.

    Parameters
    ----------
    knn_indices: array of shape (n_samples, n_neighbors)
        The indices on the ``n_neighbors`` closest points in the dataset.

    knn_dists: array of shape (n_samples, n_neighbors)
        The distances to the ``n_neighbors`` closest points in the dataset.

    sigmas: array of shape(n_samples)
        The normalization factor derived from the metric tensor approximation.

    rhos: array of shape(n_samples)
        The local connectivity adjustment.

    return_dists: bool (optional, default False)
        Whether to return the pairwise distance associated with each edge

    bipartite: bool (optional, default False)
        Does the nearest neighbour set represent a bipartite graph?  That is are the
        nearest neighbour indices from the same point set as the row indices?

    Returns
    -------
    rows: array of shape (n_samples * n_neighbors)
        Row data for the resulting sparse matrix (coo format)

    cols: array of shape (n_samples * n_neighbors)
        Column data for the resulting sparse matrix (coo format)

    vals: array of shape (n_samples * n_neighbors)
        Entries for the resulting sparse matrix (coo format)

    dists: array of shape (n_samples * n_neighbors)
        Distance associated with each entry in the resulting sparse matrix
    """
    n_samples = knn_indices.shape[0]
    n_neighbors = knn_indices.shape[1]

    rows = np.zeros(knn_indices.size, dtype=np.int32)
    cols = np.zeros(knn_indices.size, dtype=np.int32)
    vals = np.zeros(knn_indices.size, dtype=np.float32)
    if return_dists:
        dists = np.zeros(knn_indices.size, dtype=np.float32)
    else:
        dists = None

    for i in range(n_samples):
        for j in range(n_neighbors):
            if knn_indices[i, j] == -1:
                continue  # We didn't get the full knn for i
            # If applied to an adjacency matrix points shouldn't be similar to themselves.
            # If applied to an incidence matrix (or bipartite) then the row and column indices are different.
            if (bipartite == False) & (knn_indices[i, j] == i):
                val = 0.0
            elif knn_dists[i, j] - rhos[i] <= 0.0 or sigmas[i] == 0.0:
                val = 1.0
            else:
                val = np.exp(-((knn_dists[i, j] - rhos[i]) / (sigmas[i])))

            rows[i * n_neighbors + j] = i
            cols[i * n_neighbors + j] = knn_indices[i, j]
            vals[i * n_neighbors + j] = val
            if return_dists:
                dists[i * n_neighbors + j] = knn_dists[i, j]

    return rows, cols, vals, dists


def fuzzy_simplicial_set(
    X,
    n_neighbors,
    random_state,
    metric,
    metric_kwds={},
    knn_indices=None,
    knn_dists=None,
    angular=False,
    set_op_mix_ratio=1.0,
    local_connectivity=1.0,
    apply_set_operations=True,
    verbose=False,
    return_dists=None,
):
    """Given a set of data X, a neighborhood size, and a measure of distance
    compute the fuzzy simplicial set (here represented as a fuzzy graph in
    the form of a sparse matrix) associated to the data. This is done by
    locally approximating geodesic distance at each point, creating a fuzzy
    simplicial set for each such point, and then combining all the local
    fuzzy simplicial sets into a global one via a fuzzy union.

    Parameters
    ----------
    X: array of shape (n_samples, n_features)
        The data to be modelled as a fuzzy simplicial set.

    n_neighbors: int
        The number of neighbors to use to approximate geodesic distance.
        Larger numbers induce more global estimates of the manifold that can
        miss finer detail, while smaller values will focus on fine manifold
        structure to the detriment of the larger picture.

    random_state: numpy RandomState or equivalent
        A state capable being used as a numpy random state.

    metric: string or function (optional, default 'euclidean')
        The metric to use to compute distances in high dimensional space.
        If a string is passed it must match a valid predefined metric. If
        a general metric is required a function that takes two 1d arrays and
        returns a float can be provided. For performance purposes it is
        required that this be a numba jit'd function. Valid string metrics
        include:
            * euclidean (or l2)
            * manhattan (or l1)
            * cityblock
            * braycurtis
            * canberra
            * chebyshev
            * correlation
            * cosine
            * dice
            * hamming
            * jaccard
            * kulsinski
            * ll_dirichlet
            * mahalanobis
            * matching
            * minkowski
            * rogerstanimoto
            * russellrao
            * seuclidean
            * sokalmichener
            * sokalsneath
            * sqeuclidean
            * yule
            * wminkowski

        Metrics that take arguments (such as minkowski, mahalanobis etc.)
        can have arguments passed via the metric_kwds dictionary. At this
        time care must be taken and dictionary elements must be ordered
        appropriately; this will hopefully be fixed in the future.

    metric_kwds: dict (optional, default {})
        Arguments to pass on to the metric, such as the ``p`` value for
        Minkowski distance.

    knn_indices: array of shape (n_samples, n_neighbors) (optional)
        If the k-nearest neighbors of each point has already been calculated
        you can pass them in here to save computation time. This should be
        an array with the indices of the k-nearest neighbors as a row for
        each data point.

    knn_dists: array of shape (n_samples, n_neighbors) (optional)
        If the k-nearest neighbors of each point has already been calculated
        you can pass them in here to save computation time. This should be
        an array with the distances of the k-nearest neighbors as a row for
        each data point.

    angular: bool (optional, default False)
        Whether to use angular/cosine distance for the random projection
        forest for seeding NN-descent to determine approximate nearest
        neighbors.

    set_op_mix_ratio: float (optional, default 1.0)
        Interpolate between (fuzzy) union and intersection as the set operation
        used to combine local fuzzy simplicial sets to obtain a global fuzzy
        simplicial sets. Both fuzzy set operations use the product t-norm.
        The value of this parameter should be between 0.0 and 1.0; a value of
        1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy
        intersection.

    local_connectivity: int (optional, default 1)
        The local connectivity required -- i.e. the number of nearest
        neighbors that should be assumed to be connected at a local level.
        The higher this value the more connected the manifold becomes
        locally. In practice this should be not more than the local intrinsic
        dimension of the manifold.

    verbose: bool (optional, default False)
        Whether to report information on the current progress of the algorithm.

    return_dists: bool or None (optional, default None)
        Whether to return the pairwise distance associated with each edge.

    Returns
    -------
    fuzzy_simplicial_set: coo_matrix
        A fuzzy simplicial set represented as a sparse matrix. The (i,
        j) entry of the matrix represents the membership strength of the
        1-simplex between the ith and jth sample points.
    """
    if knn_indices is None or knn_dists is None:
        knn_indices, knn_dists, _ = nearest_neighbors(
            X,
            n_neighbors,
            metric,
            metric_kwds,
            angular,
            random_state,
            verbose=verbose,
        )

    knn_dists = knn_dists.astype(np.float32)

    sigmas, rhos = smooth_knn_dist(
        knn_dists,
        float(n_neighbors),
        local_connectivity=float(local_connectivity),
    )

    rows, cols, vals, dists = compute_membership_strengths(
        knn_indices, knn_dists, sigmas, rhos, return_dists
    )

    result = scipy.sparse.coo_matrix(
        (vals, (rows, cols)), shape=(X.shape[0], X.shape[0])
    )
    result.eliminate_zeros()

    if apply_set_operations:
        transpose = result.transpose()

        prod_matrix = result.multiply(transpose)

        result = (
            set_op_mix_ratio * (result + transpose - prod_matrix)
            + (1.0 - set_op_mix_ratio) * prod_matrix
        )

    result.eliminate_zeros()

    if return_dists is None:
        return result, sigmas, rhos
    else:
        if return_dists:
            dmat = scipy.sparse.coo_matrix(
                (dists, (rows, cols)), shape=(X.shape[0], X.shape[0])
            )

            dists = dmat.maximum(dmat.transpose()).todok()
        else:
            dists = None

        return result, sigmas, rhos, dists


@numba.njit()
def fast_intersection(rows, cols, values, target, unknown_dist=1.0, far_dist=5.0):
    """Under the assumption of categorical distance for the intersecting
    simplicial set perform a fast intersection.

    Parameters
    ----------
    rows: array
        An array of the row of each non-zero in the sparse matrix
        representation.

    cols: array
        An array of the column of each non-zero in the sparse matrix
        representation.

    values: array
        An array of the value of each non-zero in the sparse matrix
        representation.

    target: array of shape (n_samples)
        The categorical labels to use in the intersection.

    unknown_dist: float (optional, default 1.0)
        The distance an unknown label (-1) is assumed to be from any point.

    far_dist float (optional, default 5.0)
        The distance between unmatched labels.

    Returns
    -------
    None
    """
    for nz in range(rows.shape[0]):
        i = rows[nz]
        j = cols[nz]
        if (target[i] == -1) or (target[j] == -1):
            values[nz] *= np.exp(-unknown_dist)
        elif target[i] != target[j]:
            values[nz] *= np.exp(-far_dist)

    return


@numba.jit()
def fast_metric_intersection(
    rows, cols, values, discrete_space, metric, metric_args, scale
):
    """Under the assumption of categorical distance for the intersecting
    simplicial set perform a fast intersection.

    Parameters
    ----------
    rows: array
        An array of the row of each non-zero in the sparse matrix
        representation.

    cols: array
        An array of the column of each non-zero in the sparse matrix
        representation.

    values: array of shape
        An array of the values of each non-zero in the sparse matrix
        representation.

    discrete_space: array of shape (n_samples, n_features)
        The vectors of categorical labels to use in the intersection.

    metric: numba function
        The function used to calculate distance over the target array.

    scale: float
        A scaling to apply to the metric.

    Returns
    -------
    None
    """
    for nz in range(rows.shape[0]):
        i = rows[nz]
        j = cols[nz]
        dist = metric(discrete_space[i], discrete_space[j], *metric_args)
        values[nz] *= np.exp(-(scale * dist))

    return


@numba.njit()
def reprocess_row(probabilities, k=15, n_iters=32):
    target = np.log2(k)

    lo = 0.0
    hi = NPY_INFINITY
    mid = 1.0

    for n in range(n_iters):

        psum = 0.0
        for j in range(probabilities.shape[0]):
            psum += pow(probabilities[j], mid)

        if np.fabs(psum - target) < SMOOTH_K_TOLERANCE:
            break

        if psum < target:
            hi = mid
            mid = (lo + hi) / 2.0
        else:
            lo = mid
            if hi == NPY_INFINITY:
                mid *= 2
            else:
                mid = (lo + hi) / 2.0

    return np.power(probabilities, mid)


@numba.njit()
def reset_local_metrics(simplicial_set_indptr, simplicial_set_data):
    for i in range(simplicial_set_indptr.shape[0] - 1):
        simplicial_set_data[
            simplicial_set_indptr[i] : simplicial_set_indptr[i + 1]
        ] = reprocess_row(
            simplicial_set_data[simplicial_set_indptr[i] : simplicial_set_indptr[i + 1]]
        )
    return


def reset_local_connectivity(simplicial_set, reset_local_metric=False):
    """Reset the local connectivity requirement -- each data sample should
    have complete confidence in at least one 1-simplex in the simplicial set.
    We can enforce this by locally rescaling confidences, and then remerging the
    different local simplicial sets together.

    Parameters
    ----------
    simplicial_set: sparse matrix
        The simplicial set for which to recalculate with respect to local
        connectivity.

    Returns
    -------
    simplicial_set: sparse_matrix
        The recalculated simplicial set, now with the local connectivity
        assumption restored.
    """
    simplicial_set = normalize(simplicial_set, norm="max")
    if reset_local_metric:
        simplicial_set = simplicial_set.tocsr()
        reset_local_metrics(simplicial_set.indptr, simplicial_set.data)
        simplicial_set = simplicial_set.tocoo()
    transpose = simplicial_set.transpose()
    prod_matrix = simplicial_set.multiply(transpose)
    simplicial_set = simplicial_set + transpose - prod_matrix
    simplicial_set.eliminate_zeros()

    return simplicial_set


def discrete_metric_simplicial_set_intersection(
    simplicial_set,
    discrete_space,
    unknown_dist=1.0,
    far_dist=5.0,
    metric=None,
    metric_kws={},
    metric_scale=1.0,
):
    """Combine a fuzzy simplicial set with another fuzzy simplicial set
    generated from discrete metric data using discrete distances. The target
    data is assumed to be categorical label data (a vector of labels),
    and this will update the fuzzy simplicial set to respect that label data.

    TODO: optional category cardinality based weighting of distance

    Parameters
    ----------
    simplicial_set: sparse matrix
        The input fuzzy simplicial set.

    discrete_space: array of shape (n_samples)
        The categorical labels to use in the intersection.

    unknown_dist: float (optional, default 1.0)
        The distance an unknown label (-1) is assumed to be from any point.

    far_dist: float (optional, default 5.0)
        The distance between unmatched labels.

    metric: str (optional, default None)
        If not None, then use this metric to determine the
        distance between values.

    metric_scale: float (optional, default 1.0)
        If using a custom metric scale the distance values by
        this value -- this controls the weighting of the
        intersection. Larger values weight more toward target.

    Returns
    -------
    simplicial_set: sparse matrix
        The resulting intersected fuzzy simplicial set.
    """
    simplicial_set = simplicial_set.tocoo()

    if metric is not None:
        # We presume target is now a 2d array, with each row being a
        # vector of target info
        if metric in dist.named_distances:
            metric_func = dist.named_distances[metric]
        else:
            raise ValueError("Discrete intersection metric is not recognized")

        fast_metric_intersection(
            simplicial_set.row,
            simplicial_set.col,
            simplicial_set.data,
            discrete_space,
            metric_func,
            tuple(metric_kws.values()),
            metric_scale,
        )
    else:
        fast_intersection(
            simplicial_set.row,
            simplicial_set.col,
            simplicial_set.data,
            discrete_space,
            unknown_dist,
            far_dist,
        )

    simplicial_set.eliminate_zeros()

    return reset_local_connectivity(simplicial_set)


def general_simplicial_set_intersection(
    simplicial_set1, simplicial_set2, weight=0.5, right_complement=False
):

    if right_complement:
        result = simplicial_set1.tocoo()
    else:
        result = (simplicial_set1 + simplicial_set2).tocoo()
    left = simplicial_set1.tocsr()
    right = simplicial_set2.tocsr()

    sparse.general_sset_intersection(
        left.indptr,
        left.indices,
        left.data,
        right.indptr,
        right.indices,
        right.data,
        result.row,
        result.col,
        result.data,
        mix_weight=weight,
        right_complement=right_complement,
    )

    return result


def general_simplicial_set_union(simplicial_set1, simplicial_set2):
    result = (simplicial_set1 + simplicial_set2).tocoo()
    left = simplicial_set1.tocsr()
    right = simplicial_set2.tocsr()

    sparse.general_sset_union(
        left.indptr,
        left.indices,
        left.data,
        right.indptr,
        right.indices,
        right.data,
        result.row,
        result.col,
        result.data,
    )

    return result


def make_epochs_per_sample(weights, n_epochs):
    """Given a set of weights and number of epochs generate the number of
    epochs per sample for each weight.

    Parameters
    ----------
    weights: array of shape (n_1_simplices)
        The weights ofhow much we wish to sample each 1-simplex.

    n_epochs: int
        The total number of epochs we want to train for.

    Returns
    -------
    An array of number of epochs per sample, one for each 1-simplex.
    """
    result = -1.0 * np.ones(weights.shape[0], dtype=np.float64)
    n_samples = n_epochs * (weights / weights.max())
    result[n_samples > 0] = float(n_epochs) / n_samples[n_samples > 0]
    return result


def simplicial_set_embedding(
    data,
    graph,
    n_components,
    initial_alpha,
    a,
    b,
    gamma,
    negative_sample_rate,
    n_epochs,
    init,
    random_state,
    metric,
    metric_kwds,
    densmap,
    densmap_kwds,
    output_dens,
    output_metric=dist.named_distances_with_gradients["euclidean"],
    output_metric_kwds={},
    euclidean_output=True,
    parallel=False,
    verbose=False,
    tqdm_kwds=None,
):
    """Perform a fuzzy simplicial set embedding, using a specified
    initialisation method and then minimizing the fuzzy set cross entropy
    between the 1-skeletons of the high and low dimensional fuzzy simplicial
    sets.

    Parameters
    ----------
    data: array of shape (n_samples, n_features)
        The source data to be embedded by UMAP.

    graph: sparse matrix
        The 1-skeleton of the high dimensional fuzzy simplicial set as
        represented by a graph for which we require a sparse matrix for the
        (weighted) adjacency matrix.

    n_components: int
        The dimensionality of the euclidean space into which to embed the data.

    initial_alpha: float
        Initial learning rate for the SGD.

    a: float
        Parameter of differentiable approximation of right adjoint functor

    b: float
        Parameter of differentiable approximation of right adjoint functor

    gamma: float
        Weight to apply to negative samples.

    negative_sample_rate: int (optional, default 5)
        The number of negative samples to select per positive sample
        in the optimization process. Increasing this value will result
        in greater repulsive force being applied, greater optimization
        cost, but slightly more accuracy.

    n_epochs: int (optional, default 0)
        The number of training epochs to be used in optimizing the
        low dimensional embedding. Larger values result in more accurate
        embeddings. If 0 is specified a value will be selected based on
        the size of the input dataset (200 for large datasets, 500 for small).

    init: string
        How to initialize the low dimensional embedding. Options are:
            * 'spectral': use a spectral embedding of the fuzzy 1-skeleton
            * 'random': assign initial embedding positions at random.
            * A numpy array of initial embedding positions.

    random_state: numpy RandomState or equivalent
        A state capable being used as a numpy random state.

    metric: string or callable
        The metric used to measure distance in high dimensional space; used if
        multiple connected components need to be layed out.

    metric_kwds: dict
        Key word arguments to be passed to the metric function; used if
        multiple connected components need to be layed out.

    densmap: bool
        Whether to use the density-augmented objective function to optimize
        the embedding according to the densMAP algorithm.

    densmap_kwds: dict
        Key word arguments to be used by the densMAP optimization.

    output_dens: bool
        Whether to output local radii in the original data and the embedding.

    output_metric: function
        Function returning the distance between two points in embedding space and
        the gradient of the distance wrt the first argument.

    output_metric_kwds: dict
        Key word arguments to be passed to the output_metric function.

    euclidean_output: bool
        Whether to use the faster code specialised for euclidean output metrics

    parallel: bool (optional, default False)
        Whether to run the computation using numba parallel.
        Running in parallel is non-deterministic, and is not used
        if a random seed has been set, to ensure reproducibility.

    verbose: bool (optional, default False)
        Whether to report information on the current progress of the algorithm.

    tqdm_kwds: dict
        Key word arguments to be used by the tqdm progress bar.

    Returns
    -------
    embedding: array of shape (n_samples, n_components)
        The optimized of ``graph`` into an ``n_components`` dimensional
        euclidean space.

    aux_data: dict
        Auxiliary output returned with the embedding. When densMAP extension
        is turned on, this dictionary includes local radii in the original
        data (``rad_orig``) and in the embedding (``rad_emb``).
    """
    graph = graph.tocoo()
    graph.sum_duplicates()
    n_vertices = graph.shape[1]

    # For smaller datasets we can use more epochs
    if graph.shape[0] <= 10000:
        default_epochs = 500
    else:
        default_epochs = 200

    # Use more epochs for densMAP
    if densmap:
        default_epochs += 200

    if n_epochs is None:
        n_epochs = default_epochs

    if n_epochs > 10:
        graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0
    else:
        graph.data[graph.data < (graph.data.max() / float(default_epochs))] = 0.0

    graph.eliminate_zeros()

    if isinstance(init, str) and init == "random":
        embedding = random_state.uniform(
            low=-10.0, high=10.0, size=(graph.shape[0], n_components)
        ).astype(np.float32)
    elif isinstance(init, str) and init == "spectral":
        # We add a little noise to avoid local minima for optimization to come
        initialisation = spectral_layout(
            data,
            graph,
            n_components,
            random_state,
            metric=metric,
            metric_kwds=metric_kwds,
        )
        expansion = 10.0 / np.abs(initialisation).max()
        embedding = (initialisation * expansion).astype(
            np.float32
        ) + random_state.normal(
            scale=0.0001, size=[graph.shape[0], n_components]
        ).astype(
            np.float32
        )
    else:
        init_data = np.array(init)
        if len(init_data.shape) == 2:
            if np.unique(init_data, axis=0).shape[0] < init_data.shape[0]:
                tree = KDTree(init_data)
                dist, ind = tree.query(init_data, k=2)
                nndist = np.mean(dist[:, 1])
                embedding = init_data + random_state.normal(
                    scale=0.001 * nndist, size=init_data.shape
                ).astype(np.float32)
            else:
                embedding = init_data

    epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs)

    head = graph.row
    tail = graph.col
    weight = graph.data

    rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

    aux_data = {}

    if densmap or output_dens:
        if verbose:
            print(ts() + " Computing original densities")

        dists = densmap_kwds["graph_dists"]

        mu_sum = np.zeros(n_vertices, dtype=np.float32)
        ro = np.zeros(n_vertices, dtype=np.float32)
        for i in range(len(head)):
            j = head[i]
            k = tail[i]

            D = dists[j, k] * dists[j, k]  # match sq-Euclidean used for embedding
            mu = graph.data[i]

            ro[j] += mu * D
            ro[k] += mu * D
            mu_sum[j] += mu
            mu_sum[k] += mu

        epsilon = 1e-8
        ro = np.log(epsilon + (ro / mu_sum))

        if densmap:
            R = (ro - np.mean(ro)) / np.std(ro)
            densmap_kwds["mu"] = graph.data
            densmap_kwds["mu_sum"] = mu_sum
            densmap_kwds["R"] = R

        if output_dens:
            aux_data["rad_orig"] = ro

    embedding = (
        10.0
        * (embedding - np.min(embedding, 0))
        / (np.max(embedding, 0) - np.min(embedding, 0))
    ).astype(np.float32, order="C")

    if euclidean_output:
        embedding = optimize_layout_euclidean(
            embedding,
            embedding,
            head,
            tail,
            n_epochs,
            n_vertices,
            epochs_per_sample,
            a,
            b,
            rng_state,
            gamma,
            initial_alpha,
            negative_sample_rate,
            parallel=parallel,
            verbose=verbose,
            densmap=densmap,
            densmap_kwds=densmap_kwds,
            tqdm_kwds=tqdm_kwds,
            move_other=True,
        )
    else:
        embedding = optimize_layout_generic(
            embedding,
            embedding,
            head,
            tail,
            n_epochs,
            n_vertices,
            epochs_per_sample,
            a,
            b,
            rng_state,
            gamma,
            initial_alpha,
            negative_sample_rate,
            output_metric,
            tuple(output_metric_kwds.values()),
            verbose=verbose,
            tqdm_kwds=tqdm_kwds,
            move_other=True,
        )
    if output_dens:
        if verbose:
            print(ts() + " Computing embedding densities")

        # Compute graph in embedding
        (knn_indices, knn_dists, rp_forest,) = nearest_neighbors(
            embedding,
            densmap_kwds["n_neighbors"],
            "euclidean",
            {},
            False,
            random_state,
            verbose=verbose,
        )

        emb_graph, emb_sigmas, emb_rhos, emb_dists = fuzzy_simplicial_set(
            embedding,
            densmap_kwds["n_neighbors"],
            random_state,
            "euclidean",
            {},
            knn_indices,
            knn_dists,
            verbose=verbose,
            return_dists=True,
        )

        emb_graph = emb_graph.tocoo()
        emb_graph.sum_duplicates()
        emb_graph.eliminate_zeros()

        n_vertices = emb_graph.shape[1]

        mu_sum = np.zeros(n_vertices, dtype=np.float32)
        re = np.zeros(n_vertices, dtype=np.float32)

        head = emb_graph.row
        tail = emb_graph.col
        for i in range(len(head)):
            j = head[i]
            k = tail[i]

            D = emb_dists[j, k]
            mu = emb_graph.data[i]

            re[j] += mu * D
            re[k] += mu * D
            mu_sum[j] += mu
            mu_sum[k] += mu

        epsilon = 1e-8
        re = np.log(epsilon + (re / mu_sum))

        aux_data["rad_emb"] = re

    return embedding, aux_data


@numba.njit()
def init_transform(indices, weights, embedding):
    """Given indices and weights and an original embeddings
    initialize the positions of new points relative to the
    indices and weights (of their neighbors in the source data).

    Parameters
    ----------
    indices: array of shape (n_new_samples, n_neighbors)
        The indices of the neighbors of each new sample

    weights: array of shape (n_new_samples, n_neighbors)
        The membership strengths of associated 1-simplices
        for each of the new samples.

    embedding: array of shape (n_samples, dim)
        The original embedding of the source data.

    Returns
    -------
    new_embedding: array of shape (n_new_samples, dim)
        An initial embedding of the new sample points.
    """
    result = np.zeros((indices.shape[0], embedding.shape[1]), dtype=np.float32)

    for i in range(indices.shape[0]):
        for j in range(indices.shape[1]):
            for d in range(embedding.shape[1]):
                result[i, d] += weights[i, j] * embedding[indices[i, j], d]

    return result


def init_graph_transform(graph, embedding):
    """Given a bipartite graph representing the 1-simplices and strengths between the
     new points and the original data set along with an embedding of the original points
    initialize the positions of new points relative to the strengths (of their neighbors in the source data).

    If a point is in our original data set it embeds at the original points coordinates.
    If a point has no neighbours in our original dataset it embeds as the np.nan vector.
    Otherwise a point is the weighted average of it's neighbours embedding locations.

    Parameters
    ----------
    graph: csr_matrix (n_new_samples, n_samples)
        A matrix indicating the the 1-simplices and their associated strengths.  These strengths should
        be values between zero and one and not normalized.  One indicating that the new point was identical
        to one of our original points.

    embedding: array of shape (n_samples, dim)
        The original embedding of the source data.

    Returns
    -------
    new_embedding: array of shape (n_new_samples, dim)
        An initial embedding of the new sample points.
    """
    result = np.zeros((graph.shape[0], embedding.shape[1]), dtype=np.float32)

    for row_index in range(graph.shape[0]):
        num_neighbours = len(graph[row_index].indices)
        if num_neighbours == 0:
            result[row_index] = np.nan
            continue
        row_sum = np.sum(graph[row_index])
        for col_index in graph[row_index].indices:
            if graph[row_index, col_index] == 1:
                result[row_index, :] = embedding[col_index, :]
                break
            for d in range(embedding.shape[1]):
                result[row_index, d] += (
                    graph[row_index, col_index] / row_sum * embedding[col_index, d]
                )

    return result


@numba.njit()
def init_update(current_init, n_original_samples, indices):
    for i in range(n_original_samples, indices.shape[0]):
        n = 0
        for j in range(indices.shape[1]):
            for d in range(current_init.shape[1]):
                if indices[i, j] < n_original_samples:
                    n += 1
                    current_init[i, d] += current_init[indices[i, j], d]
        for d in range(current_init.shape[1]):
            current_init[i, d] /= n

    return


def find_ab_params(spread, min_dist):
    """Fit a, b params for the differentiable curve used in lower
    dimensional fuzzy simplicial complex construction. We want the
    smooth curve (from a pre-defined family with simple gradient) that
    best matches an offset exponential decay.
    """

    def curve(x, a, b):
        return 1.0 / (1.0 + a * x ** (2 * b))

    xv = np.linspace(0, spread * 3, 300)
    yv = np.zeros(xv.shape)
    yv[xv < min_dist] = 1.0
    yv[xv >= min_dist] = np.exp(-(xv[xv >= min_dist] - min_dist) / spread)
    params, covar = curve_fit(curve, xv, yv)
    return params[0], params[1]


class UMAP(BaseEstimator):
    """Uniform Manifold Approximation and Projection

    Finds a low dimensional embedding of the data that approximates
    an underlying manifold.

    Parameters
    ----------
    n_neighbors: float (optional, default 15)
        The size of local neighborhood (in terms of number of neighboring
        sample points) used for manifold approximation. Larger values
        result in more global views of the manifold, while smaller
        values result in more local data being preserved. In general
        values should be in the range 2 to 100.

    n_components: int (optional, default 2)
        The dimension of the space to embed into. This defaults to 2 to
        provide easy visualization, but can reasonably be set to any
        integer value in the range 2 to 100.

    metric: string or function (optional, default 'euclidean')
        The metric to use to compute distances in high dimensional space.
        If a string is passed it must match a valid predefined metric. If
        a general metric is required a function that takes two 1d arrays and
        returns a float can be provided. For performance purposes it is
        required that this be a numba jit'd function. Valid string metrics
        include:
            * euclidean
            * manhattan
            * chebyshev
            * minkowski
            * canberra
            * braycurtis
            * mahalanobis
            * wminkowski
            * seuclidean
            * cosine
            * correlation
            * haversine
            * hamming
            * jaccard
            * dice
            * russelrao
            * kulsinski
            * ll_dirichlet
            * hellinger
            * rogerstanimoto
            * sokalmichener
            * sokalsneath
            * yule
        Metrics that take arguments (such as minkowski, mahalanobis etc.)
        can have arguments passed via the metric_kwds dictionary. At this
        time care must be taken and dictionary elements must be ordered
        appropriately; this will hopefully be fixed in the future.

    n_epochs: int (optional, default None)
        The number of training epochs to be used in optimizing the
        low dimensional embedding. Larger values result in more accurate
        embeddings. If None is specified a value will be selected based on
        the size of the input dataset (200 for large datasets, 500 for small).

    learning_rate: float (optional, default 1.0)
        The initial learning rate for the embedding optimization.

    init: string (optional, default 'spectral')
        How to initialize the low dimensional embedding. Options are:
            * 'spectral': use a spectral embedding of the fuzzy 1-skeleton
            * 'random': assign initial embedding positions at random.
            * A numpy array of initial embedding positions.

    min_dist: float (optional, default 0.1)
        The effective minimum distance between embedded points. Smaller values
        will result in a more clustered/clumped embedding where nearby points
        on the manifold are drawn closer together, while larger values will
        result on a more even dispersal of points. The value should be set
        relative to the ``spread`` value, which determines the scale at which
        embedded points will be spread out.

    spread: float (optional, default 1.0)
        The effective scale of embedded points. In combination with ``min_dist``
        this determines how clustered/clumped the embedded points are.

    low_memory: bool (optional, default True)
        For some datasets the nearest neighbor computation can consume a lot of
        memory. If you find that UMAP is failing due to memory constraints
        consider setting this option to True. This approach is more
        computationally expensive, but avoids excessive memory use.

    set_op_mix_ratio: float (optional, default 1.0)
        Interpolate between (fuzzy) union and intersection as the set operation
        used to combine local fuzzy simplicial sets to obtain a global fuzzy
        simplicial sets. Both fuzzy set operations use the product t-norm.
        The value of this parameter should be between 0.0 and 1.0; a value of
        1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy
        intersection.

    local_connectivity: int (optional, default 1)
        The local connectivity required -- i.e. the number of nearest
        neighbors that should be assumed to be connected at a local level.
        The higher this value the more connected the manifold becomes
        locally. In practice this should be not more than the local intrinsic
        dimension of the manifold.

    repulsion_strength: float (optional, default 1.0)
        Weighting applied to negative samples in low dimensional embedding
        optimization. Values higher than one will result in greater weight
        being given to negative samples.

    negative_sample_rate: int (optional, default 5)
        The number of negative samples to select per positive sample
        in the optimization process. Increasing this value will result
        in greater repulsive force being applied, greater optimization
        cost, but slightly more accuracy.

    transform_queue_size: float (optional, default 4.0)
        For transform operations (embedding new points using a trained model_
        this will control how aggressively to search for nearest neighbors.
        Larger values will result in slower performance but more accurate
        nearest neighbor evaluation.

    a: float (optional, default None)
        More specific parameters controlling the embedding. If None these
        values are set automatically as determined by ``min_dist`` and
        ``spread``.
    b: float (optional, default None)
        More specific parameters controlling the embedding. If None these
        values are set automatically as determined by ``min_dist`` and
        ``spread``.

    random_state: int, RandomState instance or None, optional (default: None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    metric_kwds: dict (optional, default None)
        Arguments to pass on to the metric, such as the ``p`` value for
        Minkowski distance. If None then no arguments are passed on.

    angular_rp_forest: bool (optional, default False)
        Whether to use an angular random projection forest to initialise
        the approximate nearest neighbor search. This can be faster, but is
        mostly on useful for metric that use an angular style distance such
        as cosine, correlation etc. In the case of those metrics angular forests
        will be chosen automatically.

    target_n_neighbors: int (optional, default -1)
        The number of nearest neighbors to use to construct the target simplcial
        set. If set to -1 use the ``n_neighbors`` value.

    target_metric: string or callable (optional, default 'categorical')
        The metric used to measure distance for a target array is using supervised
        dimension reduction. By default this is 'categorical' which will measure
        distance in terms of whether categories match or are different. Furthermore,
        if semi-supervised is required target values of -1 will be trated as
        unlabelled under the 'categorical' metric. If the target array takes
        continuous values (e.g. for a regression problem) then metric of 'l1'
        or 'l2' is probably more appropriate.

    target_metric_kwds: dict (optional, default None)
        Keyword argument to pass to the target metric when performing
        supervised dimension reduction. If None then no arguments are passed on.

    target_weight: float (optional, default 0.5)
        weighting factor between data topology and target topology. A value of
        0.0 weights predominantly on data, a value of 1.0 places a strong emphasis on
        target. The default of 0.5 balances the weighting equally between data and
        target.

    transform_seed: int (optional, default 42)
        Random seed used for the stochastic aspects of the transform operation.
        This ensures consistency in transform operations.

    verbose: bool (optional, default False)
        Controls verbosity of logging.

    tqdm_kwds: dict (optional, defaul None)
        Key word arguments to be used by the tqdm progress bar.

    unique: bool (optional, default False)
        Controls if the rows of your data should be uniqued before being
        embedded.  If you have more duplicates than you have n_neighbour
        you can have the identical data points lying in different regions of
        your space.  It also violates the definition of a metric.
        For to map from internal structures back to your data use the variable
        _unique_inverse_.

    densmap: bool (optional, default False)
        Specifies whether the density-augmented objective of densMAP
        should be used for optimization. Turning on this option generates
        an embedding where the local densities are encouraged to be correlated
        with those in the original space. Parameters below with the prefix 'dens'
        further control the behavior of this extension.

    dens_lambda: float (optional, default 2.0)
        Controls the regularization weight of the density correlation term
        in densMAP. Higher values prioritize density preservation over the
        UMAP objective, and vice versa for values closer to zero. Setting this
        parameter to zero is equivalent to running the original UMAP algorithm.

    dens_frac: float (optional, default 0.3)
        Controls the fraction of epochs (between 0 and 1) where the
        density-augmented objective is used in densMAP. The first
        (1 - dens_frac) fraction of epochs optimize the original UMAP objective
        before introducing the density correlation term.

    dens_var_shift: float (optional, default 0.1)
        A small constant added to the variance of local radii in the
        embedding when calculating the density correlation objective to
        prevent numerical instability from dividing by a small number

    output_dens: float (optional, default False)
        Determines whether the local radii of the final embedding (an inverse
        measure of local density) are computed and returned in addition to
        the embedding. If set to True, local radii of the original data
        are also included in the output for comparison; the output is a tuple
        (embedding, original local radii, embedding local radii). This option
        can also be used when densmap=False to calculate the densities for
        UMAP embeddings.

    disconnection_distance: float (optional, default np.inf or maximal value for bounded distances)
        Disconnect any vertices of distance greater than or equal to disconnection_distance when approximating the
        manifold via our k-nn graph. This is particularly useful in the case that you have a bounded metric.  The
        UMAP assumption that we have a connected manifold can be problematic when you have points that are maximally
        different from all the rest of your data.  The connected manifold assumption will make such points have perfect
        similarity to a random set of other points.  Too many such points will artificially connect your space.

    precomputed_knn: tuple (optional, default (None,None,None))
        If the k-nearest neighbors of each point has already been calculated you
        can pass them in here to save computation time. The number of nearest
        neighbors in the precomputed_knn must be greater or equal to the
        n_neighbors parameter. This should be a tuple containing the output
        of the nearest_neighbors() function or attributes from a previously fit
        UMAP object; (knn_indices, knn_dists,knn_search_index).
    """

    def __init__(
        self,
        n_neighbors=15,
        n_components=2,
        metric="euclidean",
        metric_kwds=None,
        output_metric="euclidean",
        output_metric_kwds=None,
        n_epochs=None,
        learning_rate=1.0,
        init="spectral",
        min_dist=0.1,
        spread=1.0,
        low_memory=True,
        n_jobs=-1,
        set_op_mix_ratio=1.0,
        local_connectivity=1.0,
        repulsion_strength=1.0,
        negative_sample_rate=5,
        transform_queue_size=4.0,
        a=None,
        b=None,
        random_state=None,
        angular_rp_forest=False,
        target_n_neighbors=-1,
        target_metric="categorical",
        target_metric_kwds=None,
        target_weight=0.5,
        transform_seed=42,
        transform_mode="embedding",
        force_approximation_algorithm=False,
        verbose=False,
        tqdm_kwds=None,
        unique=False,
        densmap=False,
        dens_lambda=2.0,
        dens_frac=0.3,
        dens_var_shift=0.1,
        output_dens=False,
        disconnection_distance=None,
        precomputed_knn=(None, None, None),
    ):
        self.n_neighbors = n_neighbors
        self.metric = metric
        self.output_metric = output_metric
        self.target_metric = target_metric
        self.metric_kwds = metric_kwds
        self.output_metric_kwds = output_metric_kwds
        self.n_epochs = n_epochs
        self.init = init
        self.n_components = n_components
        self.repulsion_strength = repulsion_strength
        self.learning_rate = learning_rate

        self.spread = spread
        self.min_dist = min_dist
        self.low_memory = low_memory
        self.set_op_mix_ratio = set_op_mix_ratio
        self.local_connectivity = local_connectivity
        self.negative_sample_rate = negative_sample_rate
        self.random_state = random_state
        self.angular_rp_forest = angular_rp_forest
        self.transform_queue_size = transform_queue_size
        self.target_n_neighbors = target_n_neighbors
        self.target_metric = target_metric
        self.target_metric_kwds = target_metric_kwds
        self.target_weight = target_weight
        self.transform_seed = transform_seed
        self.transform_mode = transform_mode
        self.force_approximation_algorithm = force_approximation_algorithm
        self.verbose = verbose
        self.tqdm_kwds = tqdm_kwds
        self.unique = unique

        self.densmap = densmap
        self.dens_lambda = dens_lambda
        self.dens_frac = dens_frac
        self.dens_var_shift = dens_var_shift
        self.output_dens = output_dens
        self.disconnection_distance = disconnection_distance
        self.precomputed_knn = precomputed_knn

        self.n_jobs = n_jobs

        self.a = a
        self.b = b

    def _validate_parameters(self):
        if self.set_op_mix_ratio < 0.0 or self.set_op_mix_ratio > 1.0:
            raise ValueError("set_op_mix_ratio must be between 0.0 and 1.0")
        if self.repulsion_strength < 0.0:
            raise ValueError("repulsion_strength cannot be negative")
        if self.min_dist > self.spread:
            raise ValueError("min_dist must be less than or equal to spread")
        if self.min_dist < 0.0:
            raise ValueError("min_dist cannot be negative")
        if not isinstance(self.init, str) and not isinstance(self.init, np.ndarray):
            raise ValueError("init must be a string or ndarray")
        if isinstance(self.init, str) and self.init not in (
            "spectral",
            "random",
        ):
            raise ValueError('string init values must be "spectral" or "random"')
        if (
            isinstance(self.init, np.ndarray)
            and self.init.shape[1] != self.n_components
        ):
            raise ValueError("init ndarray must match n_components value")
        if not isinstance(self.metric, str) and not callable(self.metric):
            raise ValueError("metric must be string or callable")
        if self.negative_sample_rate < 0:
            raise ValueError("negative sample rate must be positive")
        if self._initial_alpha < 0.0:
            raise ValueError("learning_rate must be positive")
        if self.n_neighbors < 2:
            raise ValueError("n_neighbors must be greater than 1")
        if self.target_n_neighbors < 2 and self.target_n_neighbors != -1:
            raise ValueError("target_n_neighbors must be greater than 1")
        if not isinstance(self.n_components, int):
            if isinstance(self.n_components, str):
                raise ValueError("n_components must be an int")
            if self.n_components % 1 != 0:
                raise ValueError("n_components must be a whole number")
            try:
                # this will convert other types of int (eg. numpy int64)
                # to Python int
                self.n_components = int(self.n_components)
            except ValueError:
                raise ValueError("n_components must be an int")
        if self.n_components < 1:
            raise ValueError("n_components must be greater than 0")
        if self.n_epochs is not None and (
            self.n_epochs < 0 or not isinstance(self.n_epochs, int)
        ):
            raise ValueError("n_epochs must be a nonnegative integer")
        if self.metric_kwds is None:
            self._metric_kwds = {}
        else:
            self._metric_kwds = self.metric_kwds
        if self.output_metric_kwds is None:
            self._output_metric_kwds = {}
        else:
            self._output_metric_kwds = self.output_metric_kwds
        if self.target_metric_kwds is None:
            self._target_metric_kwds = {}
        else:
            self._target_metric_kwds = self.target_metric_kwds
        # check sparsity of data upfront to set proper _input_distance_func &
        # save repeated checks later on
        if scipy.sparse.isspmatrix_csr(self._raw_data):
            self._sparse_data = True
        else:
            self._sparse_data = False
        # set input distance metric & inverse_transform distance metric
        if callable(self.metric):
            in_returns_grad = self._check_custom_metric(
                self.metric, self._metric_kwds, self._raw_data
            )
            if in_returns_grad:
                _m = self.metric

                @numba.njit(fastmath=True)
                def _dist_only(x, y, *kwds):
                    return _m(x, y, *kwds)[0]

                self._input_distance_func = _dist_only
                self._inverse_distance_func = self.metric
            else:
                self._input_distance_func = self.metric
                self._inverse_distance_func = None
                warn(
                    "custom distance metric does not return gradient; inverse_transform will be unavailable. "
                    "To enable using inverse_transform method, define a distance function that returns a tuple "
                    "of (distance [float], gradient [np.array])"
                )
        elif self.metric == "precomputed":
            if self.unique:
                raise ValueError("unique is poorly defined on a precomputed metric")
            warn("using precomputed metric; inverse_transform will be unavailable")
            self._input_distance_func = self.metric
            self._inverse_distance_func = None
        elif self.metric == "hellinger" and self._raw_data.min() < 0:
            raise ValueError("Metric 'hellinger' does not support negative values")
        elif self.metric in dist.named_distances:
            if self._sparse_data:
                if self.metric in sparse.sparse_named_distances:
                    self._input_distance_func = sparse.sparse_named_distances[
                        self.metric
                    ]
                else:
                    raise ValueError(
                        "Metric {} is not supported for sparse data".format(self.metric)
                    )
            else:
                self._input_distance_func = dist.named_distances[self.metric]
            try:
                self._inverse_distance_func = dist.named_distances_with_gradients[
                    self.metric
                ]
            except KeyError:
                warn(
                    "gradient function is not yet implemented for {} distance metric; "
                    "inverse_transform will be unavailable".format(self.metric)
                )
                self._inverse_distance_func = None
        elif self.metric in pynn_named_distances:
            if self._sparse_data:
                if self.metric in pynn_sparse_named_distances:
                    self._input_distance_func = pynn_sparse_named_distances[self.metric]
                else:
                    raise ValueError(
                        "Metric {} is not supported for sparse data".format(self.metric)
                    )
            else:
                self._input_distance_func = pynn_named_distances[self.metric]

            warn(
                "gradient function is not yet implemented for {} distance metric; "
                "inverse_transform will be unavailable".format(self.metric)
            )
            self._inverse_distance_func = None
        else:
            raise ValueError("metric is neither callable nor a recognised string")
        # set output distance metric
        if callable(self.output_metric):
            out_returns_grad = self._check_custom_metric(
                self.output_metric, self._output_metric_kwds
            )
            if out_returns_grad:
                self._output_distance_func = self.output_metric
            else:
                raise ValueError(
                    "custom output_metric must return a tuple of (distance [float], gradient [np.array])"
                )
        elif self.output_metric == "precomputed":
            raise ValueError("output_metric cannnot be 'precomputed'")
        elif self.output_metric in dist.named_distances_with_gradients:
            self._output_distance_func = dist.named_distances_with_gradients[
                self.output_metric
            ]
        elif self.output_metric in dist.named_distances:
            raise ValueError(
                "gradient function is not yet implemented for {}.".format(
                    self.output_metric
                )
            )
        else:
            raise ValueError(
                "output_metric is neither callable nor a recognised string"
            )
        # set angularity for NN search based on metric
        if self.metric in (
            "cosine",
            "correlation",
            "dice",
            "jaccard",
            "ll_dirichlet",
            "hellinger",
        ):
            self.angular_rp_forest = True

        if self.n_jobs < -1 or self.n_jobs == 0:
            raise ValueError("n_jobs must be a postive integer, or -1 (for all cores)")

        if self.dens_lambda < 0.0:
            raise ValueError("dens_lambda cannot be negative")
        if self.dens_frac < 0.0 or self.dens_frac > 1.0:
            raise ValueError("dens_frac must be between 0.0 and 1.0")
        if self.dens_var_shift < 0.0:
            raise ValueError("dens_var_shift cannot be negative")

        self._densmap_kwds = {
            "lambda": self.dens_lambda if self.densmap else 0.0,
            "frac": self.dens_frac if self.densmap else 0.0,
            "var_shift": self.dens_var_shift,
            "n_neighbors": self.n_neighbors,
        }

        if self.densmap:
            if self.output_metric not in ("euclidean", "l2"):
                raise ValueError(
                    "Non-Euclidean output metric not supported for densMAP."
                )

        # This will be used to prune all edges of greater than a fixed value from our knn graph.
        # We have preset defaults described in DISCONNECTION_DISTANCES for our bounded measures.
        # Otherwise a user can pass in their own value.
        if self.disconnection_distance is None:
            self._disconnection_distance = DISCONNECTION_DISTANCES.get(
                self.metric, np.inf
            )
        elif isinstance(self.disconnection_distance, int) or isinstance(
            self.disconnection_distance, float
        ):
            self._disconnection_distance = self.disconnection_distance
        else:
            raise ValueError("disconnection_distance must either be None or a numeric.")

        if self.tqdm_kwds is None:
            self.tqdm_kwds = {}
        else:
            if isinstance(self.tqdm_kwds, dict) is False:
                raise ValueError(
                    "tqdm_kwds must be a dictionary. Please provide valid tqdm "
                    "parameters as key value pairs. Valid tqdm parameters can be "
                    "found here: https://github.com/tqdm/tqdm#parameters"
                )
        if "desc" not in self.tqdm_kwds:
            self.tqdm_kwds["desc"] = "Epochs completed"
        if "bar_format" not in self.tqdm_kwds:
            bar_f = "{desc}: {percentage:3.0f}%| {bar} {n_fmt}/{total_fmt} [{elapsed}]"
            self.tqdm_kwds["bar_format"] = bar_f

        if hasattr(self, "knn_dists") and self.knn_dists is not None:
            if self.unique:
                raise ValueError(
                    "unique is not currently available for " "precomputed_knn."
                )
            if not isinstance(self.knn_indices, np.ndarray):
                raise ValueError("precomputed_knn[0] must be ndarray object.")
            if not isinstance(self.knn_dists, np.ndarray):
                raise ValueError("precomputed_knn[1] must be ndarray object.")
            if self.knn_dists.shape != self.knn_indices.shape:
                raise ValueError(
                    "precomputed_knn[0] and precomputed_knn[1]"
                    " must be numpy arrays of the same size."
                )
            if not isinstance(self.knn_search_index, NNDescent):
                raise ValueError(
                    "precomputed_knn[2] (knn_search_index)"
                    " must be an NNDescent object."
                )
            if self.knn_dists.shape[1] < self.n_neighbors:
                warn(
                    "precomputed_knn has a lower number of neighbors than "
                    "n_neighbors parameter. precomputed_knn will be ignored"
                    " and the k-nn will be computed normally."
                )
                self.knn_indices = None
                self.knn_dists = None
                self.knn_search_index = None
            elif self.knn_dists.shape[0] != self._raw_data.shape[0]:
                warn(
                    "precomputed_knn has a different number of samples than the"
                    " data you are fitting. precomputed_knn will be ignored and"
                    "the k-nn will be computed normally."
                )
                self.knn_indices = None
                self.knn_dists = None
                self.knn_search_index = None
            elif (
                self.knn_dists.shape[0] < 4096
                and not self.force_approximation_algorithm
            ):
                warn(
                    "precomputed_knn is meant for large datasets. Since your"
                    " data is small, precomputed_knn will be ignored and the"
                    " k-nn will be computed normally."
                )
            elif self.knn_dists.shape[1] > self.n_neighbors:
                # if k for precomputed_knn larger than n_neighbors we simply prune it
                self.knn_indices = self.knn_indices[:, : self.n_neighbors]
                self.knn_dists = self.knn_dists[:, : self.n_neighbors]

    def _check_custom_metric(self, metric, kwds, data=None):
        # quickly check to determine whether user-defined
        # self.metric/self.output_metric returns both distance and gradient
        if data is not None:
            # if checking the high-dimensional distance metric, test directly on
            # input data so we don't risk violating any assumptions potentially
            # hard-coded in the metric (e.g., bounded; non-negative)
            x, y = data[np.random.randint(0, data.shape[0], 2)]
        else:
            # if checking the manifold distance metric, simulate some data on a
            # reasonable interval with output dimensionality
            x, y = np.random.uniform(low=-10, high=10, size=(2, self.n_components))

        if scipy.sparse.issparse(data):
            metric_out = metric(x.indices, x.data, y.indices, y.data, **kwds)
        else:
            metric_out = metric(x, y, **kwds)
        # True if metric returns iterable of length 2, False otherwise
        return hasattr(metric_out, "__iter__") and len(metric_out) == 2

    def _populate_combined_params(self, *models):
        self.n_neighbors = flattened([m.n_neighbors for m in models])
        self.metric = flattened([m.metric for m in models])
        self.metric_kwds = flattened([m.metric_kwds for m in models])
        self.output_metric = flattened([m.output_metric for m in models])

        self.n_epochs = flattened(
            [m.n_epochs if m.n_epochs is not None else -1 for m in models]
        )
        if all([x == -1 for x in self.n_epochs]):
            self.n_epochs = None

        self.init = flattened([m.init for m in models])
        self.n_components = flattened([m.n_components for m in models])
        self.repulsion_strength = flattened([m.repulsion_strength for m in models])
        self.learning_rate = flattened([m.learning_rate for m in models])

        self.spread = flattened([m.spread for m in models])
        self.min_dist = flattened([m.min_dist for m in models])
        self.low_memory = flattened([m.low_memory for m in models])
        self.set_op_mix_ratio = flattened([m.set_op_mix_ratio for m in models])
        self.local_connectivity = flattened([m.local_connectivity for m in models])
        self.negative_sample_rate = flattened([m.negative_sample_rate for m in models])
        self.random_state = flattened([m.random_state for m in models])
        self.angular_rp_forest = flattened([m.angular_rp_forest for m in models])
        self.transform_queue_size = flattened([m.transform_queue_size for m in models])
        self.target_n_neighbors = flattened([m.target_n_neighbors for m in models])
        self.target_metric = flattened([m.target_metric for m in models])
        self.target_metric_kwds = flattened([m.target_metric_kwds for m in models])
        self.target_weight = flattened([m.target_weight for m in models])
        self.transform_seed = flattened([m.transform_seed for m in models])
        self.force_approximation_algorithm = flattened(
            [m.force_approximation_algorithm for m in models]
        )
        self.verbose = flattened([m.verbose for m in models])
        self.unique = flattened([m.unique for m in models])

        self.densmap = flattened([m.densmap for m in models])
        self.dens_lambda = flattened([m.dens_lambda for m in models])
        self.dens_frac = flattened([m.dens_frac for m in models])
        self.dens_var_shift = flattened([m.dens_var_shift for m in models])
        self.output_dens = flattened([m.output_dens for m in models])

        self.a = flattened([m.a for m in models])
        self.b = flattened([m.b for m in models])

        self._a = flattened([m._a for m in models])
        self._b = flattened([m._b for m in models])

    def __mul__(self, other):

        check_is_fitted(
            self, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
        )
        check_is_fitted(
            other, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
        )

        if self.graph_.shape[0] != other.graph_.shape[0]:
            raise ValueError("Only models with the equivalent samples can be combined")

        result = UMAP()
        result._populate_combined_params(self, other)

        result.graph_ = general_simplicial_set_intersection(
            self.graph_, other.graph_, 0.5
        )
        result.graph_ = reset_local_connectivity(result.graph_, True)

        if scipy.sparse.csgraph.connected_components(result.graph_)[0] > 1:
            warn(
                "Combined graph is not connected but multi-component layout is unsupported. "
                "Falling back to random initialization."
            )
            init = "random"
        else:
            init = "spectral"

        result.densmap = np.any(result.densmap)
        result.output_dens = np.any(result.output_dens)

        result._densmap_kwds = {
            "lambda": np.max(result.dens_lambda),
            "frac": np.max(result.dens_frac),
            "var_shift": np.max(result.dens_var_shift),
            "n_neighbors": np.max(result.n_neighbors),
        }

        if result.n_epochs is None:
            n_epochs = None
        else:
            n_epochs = np.max(result.n_epochs)

        result.embedding_, aux_data = simplicial_set_embedding(
            None,
            result.graph_,
            np.min(result.n_components),
            np.min(result.learning_rate),
            np.mean(result._a),
            np.mean(result._b),
            np.mean(result.repulsion_strength),
            np.mean(result.negative_sample_rate),
            n_epochs,
            init,
            check_random_state(42),
            "euclidean",
            {},
            result.densmap,
            result._densmap_kwds,
            result.output_dens,
            parallel=False,
            verbose=bool(np.max(result.verbose)),
            tqdm_kwds=self.tqdm_kwds,
        )

        if result.output_dens:
            result.rad_orig_ = aux_data["rad_orig"]
            result.rad_emb_ = aux_data["rad_emb"]

        return result

    def __add__(self, other):

        check_is_fitted(
            self, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
        )
        check_is_fitted(
            other, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
        )

        if self.graph_.shape[0] != other.graph_.shape[0]:
            raise ValueError("Only models with the equivalent samples can be combined")

        result = UMAP()
        result._populate_combined_params(self, other)

        result.graph_ = general_simplicial_set_union(self.graph_, other.graph_)
        result.graph_ = reset_local_connectivity(result.graph_, True)

        if scipy.sparse.csgraph.connected_components(result.graph_)[0] > 1:
            warn(
                "Combined graph is not connected but mult-component layout is unsupported. "
                "Falling back to random initialization."
            )
            init = "random"
        else:
            init = "spectral"

        result.densmap = np.any(result.densmap)
        result.output_dens = np.any(result.output_dens)

        result._densmap_kwds = {
            "lambda": np.max(result.dens_lambda),
            "frac": np.max(result.dens_frac),
            "var_shift": np.max(result.dens_var_shift),
            "n_neighbors": np.max(result.n_neighbors),
        }

        if result.n_epochs is None:
            n_epochs = None
        else:
            n_epochs = np.max(result.n_epochs)

        result.embedding_, aux_data = simplicial_set_embedding(
            None,
            result.graph_,
            np.min(result.n_components),
            np.min(result.learning_rate),
            np.mean(result._a),
            np.mean(result._b),
            np.mean(result.repulsion_strength),
            np.mean(result.negative_sample_rate),
            n_epochs,
            init,
            check_random_state(42),
            "euclidean",
            {},
            result.densmap,
            result._densmap_kwds,
            result.output_dens,
            parallel=False,
            verbose=bool(np.max(result.verbose)),
            tqdm_kwds=self.tqdm_kwds,
        )

        if result.output_dens:
            result.rad_orig_ = aux_data["rad_orig"]
            result.rad_emb_ = aux_data["rad_emb"]

        return result

    def __sub__(self, other):

        check_is_fitted(
            self, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
        )
        check_is_fitted(
            other, attributes=["graph_"], msg="Only fitted UMAP models can be combined"
        )

        if self.graph_.shape[0] != other.graph_.shape[0]:
            raise ValueError("Only models with the equivalent samples can be combined")

        result = UMAP()
        result._populate_combined_params(self, other)

        result.graph_ = general_simplicial_set_intersection(
            self.graph_, other.graph_, weight=0.5, right_complement=True
        )
        result.graph_ = reset_local_connectivity(result.graph_, False)

        if scipy.sparse.csgraph.connected_components(result.graph_)[0] > 1:
            warn(
                "Combined graph is not connected but mult-component layout is unsupported. "
                "Falling back to random initialization."
            )
            init = "random"
        else:
            init = "spectral"

        result.densmap = np.any(result.densmap)
        result.output_dens = np.any(result.output_dens)

        result._densmap_kwds = {
            "lambda": np.max(result.dens_lambda),
            "frac": np.max(result.dens_frac),
            "var_shift": np.max(result.dens_var_shift),
            "n_neighbors": np.max(result.n_neighbors),
        }

        if result.n_epochs is None:
            n_epochs = None
        else:
            n_epochs = np.max(result.n_epochs)

        result.embedding_, aux_data = simplicial_set_embedding(
            None,
            result.graph_,
            np.min(result.n_components),
            np.min(result.learning_rate),
            np.mean(result._a),
            np.mean(result._b),
            np.mean(result.repulsion_strength),
            np.mean(result.negative_sample_rate),
            n_epochs,
            init,
            check_random_state(42),
            "euclidean",
            {},
            result.densmap,
            result._densmap_kwds,
            result.output_dens,
            parallel=False,
            verbose=bool(np.max(result.verbose)),
            tqdm_kwds=self.tqdm_kwds,
        )

        if result.output_dens:
            result.rad_orig_ = aux_data["rad_orig"]
            result.rad_emb_ = aux_data["rad_emb"]

        return result

    def fit(self, X, y=None):
        """Fit X into an embedded space.

        Optionally use y for supervised dimension reduction.

        Parameters
        ----------
        X : array, shape (n_samples, n_features) or (n_samples, n_samples)
            If the metric is 'precomputed' X must be a square distance
            matrix. Otherwise it contains a sample per row. If the method
            is 'exact', X may be a sparse matrix of type 'csr', 'csc'
            or 'coo'.

        y : array, shape (n_samples)
            A target array for supervised dimension reduction. How this is
            handled is determined by parameters UMAP was instantiated with.
            The relevant attributes are ``target_metric`` and
            ``target_metric_kwds``.
        """

        X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
        self._raw_data = X

        # Handle all the optional arguments, setting default
        if self.a is None or self.b is None:
            self._a, self._b = find_ab_params(self.spread, self.min_dist)
        else:
            self._a = self.a
            self._b = self.b

        if isinstance(self.init, np.ndarray):
            init = check_array(self.init, dtype=np.float32, accept_sparse=False)
        else:
            init = self.init

        self._initial_alpha = self.learning_rate

        self.knn_indices = self.precomputed_knn[0]
        self.knn_dists = self.precomputed_knn[1]
        self.knn_search_index = self.precomputed_knn[2]

        self._validate_parameters()

        if self.verbose:
            print(str(self))

        self._original_n_threads = numba.get_num_threads()
        if self.n_jobs > 0 and self.n_jobs is not None:
            numba.set_num_threads(self.n_jobs)

        # Check if we should unique the data
        # We've already ensured that we aren't in the precomputed case
        if self.unique:
            # check if the matrix is dense
            if self._sparse_data:
                # Call a sparse unique function
                index, inverse, counts = csr_unique(X)
            else:
                index, inverse, counts = np.unique(
                    X,
                    return_index=True,
                    return_inverse=True,
                    return_counts=True,
                    axis=0,
                )[1:4]
            if self.verbose:
                print(
                    "Unique=True -> Number of data points reduced from ",
                    X.shape[0],
                    " to ",
                    X[index].shape[0],
                )
                most_common = np.argmax(counts)
                print(
                    "Most common duplicate is",
                    index[most_common],
                    " with a count of ",
                    counts[most_common],
                )
            # We'll expose an inverse map when unique=True for users to map from our internal structures to their data
            self._unique_inverse_ = inverse
        # If we aren't asking for unique use the full index.
        # This will save special cases later.
        else:
            index = list(range(X.shape[0]))
            inverse = list(range(X.shape[0]))

        # Error check n_neighbors based on data size
        if X[index].shape[0] <= self.n_neighbors:
            if X[index].shape[0] == 1:
                self.embedding_ = np.zeros(
                    (1, self.n_components)
                )  # needed to sklearn comparability
                return self

            warn(
                "n_neighbors is larger than the dataset size; truncating to "
                "X.shape[0] - 1"
            )
            self._n_neighbors = X[index].shape[0] - 1
            if self.densmap:
                self._densmap_kwds["n_neighbors"] = self._n_neighbors
        else:
            self._n_neighbors = self.n_neighbors

        # Note: unless it causes issues for setting 'index', could move this to
        # initial sparsity check above
        if self._sparse_data and not X.has_sorted_indices:
            X.sort_indices()

        random_state = check_random_state(self.random_state)

        if self.verbose:
            print(ts(), "Construct fuzzy simplicial set")

        if self.metric == "precomputed" and self._sparse_data:
            # For sparse precomputed distance matrices, we just argsort the rows to find
            # nearest neighbors. To make this easier, we expect matrices that are
            # symmetrical (so we can find neighbors by looking at rows in isolation,
            # rather than also having to consider that sample's column too).
            # print("Computing KNNs for sparse precomputed distances...")
            if sparse_tril(X).getnnz() != sparse_triu(X).getnnz():
                raise ValueError(
                    "Sparse precomputed distance matrices should be symmetrical!"
                )
            if not np.all(X.diagonal() == 0):
                raise ValueError("Non-zero distances from samples to themselves!")
            if self.knn_dists is None:
                self._knn_indices = np.zeros(
                    (X.shape[0], self.n_neighbors), dtype=int
                )
                self._knn_dists = np.zeros(self._knn_indices.shape, dtype=float)
                for row_id in range(X.shape[0]):
                    # Find KNNs row-by-row
                    row_data = X[row_id].data
                    row_indices = X[row_id].indices
                    if len(row_data) < self._n_neighbors:
                        raise ValueError(
                            "Some rows contain fewer than n_neighbors distances!"
                        )
                    row_nn_data_indices = np.argsort(row_data)[: self._n_neighbors]
                    self._knn_indices[row_id] = row_indices[row_nn_data_indices]
                    self._knn_dists[row_id] = row_data[row_nn_data_indices]
            else:
                self._knn_indices = self.knn_indices
                self._knn_dists = self.knn_dists
            # Disconnect any vertices farther apart than _disconnection_distance
            disconnected_index = self._knn_dists >= self._disconnection_distance
            self._knn_indices[disconnected_index] = -1
            self._knn_dists[disconnected_index] = np.inf
            edges_removed = disconnected_index.sum()

            (
                self.graph_,
                self._sigmas,
                self._rhos,
                self.graph_dists_,
            ) = fuzzy_simplicial_set(
                X[index],
                self.n_neighbors,
                random_state,
                "precomputed",
                self._metric_kwds,
                self._knn_indices,
                self._knn_dists,
                self.angular_rp_forest,
                self.set_op_mix_ratio,
                self.local_connectivity,
                True,
                self.verbose,
                self.densmap or self.output_dens,
            )
            # Report the number of vertices with degree 0 in our our umap.graph_
            # This ensures that they were properly disconnected.
            vertices_disconnected = np.sum(
                np.array(self.graph_.sum(axis=1)).flatten() == 0
            )
            raise_disconnected_warning(
                edges_removed,
                vertices_disconnected,
                self._disconnection_distance,
                self._raw_data.shape[0],
                verbose=self.verbose,
            )
        # Handle small cases efficiently by computing all distances
        elif X[index].shape[0] < 4096 and not self.force_approximation_algorithm:
            self._small_data = True
            try:
                # sklearn pairwise_distances fails for callable metric on sparse data
                _m = self.metric if self._sparse_data else self._input_distance_func
                dmat = pairwise_distances(X[index], metric=_m, **self._metric_kwds)
            except (ValueError, TypeError) as e:
                # metric is numba.jit'd or not supported by sklearn,
                # fallback to pairwise special

                if self._sparse_data:
                    # Get a fresh metric since we are casting to dense
                    if not callable(self.metric):
                        _m = dist.named_distances[self.metric]
                        dmat = dist.pairwise_special_metric(
                            X[index].toarray(),
                            metric=_m,
                            kwds=self._metric_kwds,
                        )
                    else:
                        dmat = dist.pairwise_special_metric(
                            X[index],
                            metric=self._input_distance_func,
                            kwds=self._metric_kwds,
                        )
                else:
                    dmat = dist.pairwise_special_metric(
                        X[index],
                        metric=self._input_distance_func,
                        kwds=self._metric_kwds,
                    )
            # set any values greater than disconnection_distance to be np.inf.
            # This will have no effect when _disconnection_distance is not set since it defaults to np.inf.
            edges_removed = np.sum(dmat >= self._disconnection_distance)
            dmat[dmat >= self._disconnection_distance] = np.inf
            (
                self.graph_,
                self._sigmas,
                self._rhos,
                self.graph_dists_,
            ) = fuzzy_simplicial_set(
                dmat,
                self._n_neighbors,
                random_state,
                "precomputed",
                self._metric_kwds,
                None,
                None,
                self.angular_rp_forest,
                self.set_op_mix_ratio,
                self.local_connectivity,
                True,
                self.verbose,
                self.densmap or self.output_dens,
            )
            # Report the number of vertices with degree 0 in our our umap.graph_
            # This ensures that they were properly disconnected.
            vertices_disconnected = np.sum(
                np.array(self.graph_.sum(axis=1)).flatten() == 0
            )
            raise_disconnected_warning(
                edges_removed,
                vertices_disconnected,
                self._disconnection_distance,
                self._raw_data.shape[0],
                verbose=self.verbose,
            )
        else:
            # Standard case
            self._small_data = False
            # Standard case
            if self._sparse_data and self.metric in pynn_sparse_named_distances:
                nn_metric = self.metric
            elif not self._sparse_data and self.metric in pynn_named_distances:
                nn_metric = self.metric
            else:
                nn_metric = self._input_distance_func
            if self.knn_dists is None:
                (
                    self._knn_indices,
                    self._knn_dists,
                    self._knn_search_index,
                ) = nearest_neighbors(
                    X[index],
                    self._n_neighbors,
                    nn_metric,
                    self._metric_kwds,
                    self.angular_rp_forest,
                    random_state,
                    self.low_memory,
                    use_pynndescent=True,
                    n_jobs=self.n_jobs,
                    verbose=self.verbose,
                )
            else:
                self._knn_indices = self.knn_indices
                self._knn_dists = self.knn_dists
                self._knn_search_index = self.knn_search_index
            # Disconnect any vertices farther apart than _disconnection_distance
            disconnected_index = self._knn_dists >= self._disconnection_distance
            self._knn_indices[disconnected_index] = -1
            self._knn_dists[disconnected_index] = np.inf
            edges_removed = disconnected_index.sum()

            (
                self.graph_,
                self._sigmas,
                self._rhos,
                self.graph_dists_,
            ) = fuzzy_simplicial_set(
                X[index],
                self.n_neighbors,
                random_state,
                nn_metric,
                self._metric_kwds,
                self._knn_indices,
                self._knn_dists,
                self.angular_rp_forest,
                self.set_op_mix_ratio,
                self.local_connectivity,
                True,
                self.verbose,
                self.densmap or self.output_dens,
            )
            # Report the number of vertices with degree 0 in our our umap.graph_
            # This ensures that they were properly disconnected.
            vertices_disconnected = np.sum(
                np.array(self.graph_.sum(axis=1)).flatten() == 0
            )
            raise_disconnected_warning(
                edges_removed,
                vertices_disconnected,
                self._disconnection_distance,
                self._raw_data.shape[0],
                verbose=self.verbose,
            )

        # Currently not checking if any duplicate points have differing labels
        # Might be worth throwing a warning...
        if y is not None:
            len_X = len(X) if not self._sparse_data else X.shape[0]
            if len_X != len(y):
                raise ValueError(
                    "Length of x = {len_x}, length of y = {len_y}, while it must be equal.".format(
                        len_x=len_X, len_y=len(y)
                    )
                )
            if self.target_metric == "string":
                y_ = y[index]
            else:
                y_ = check_array(y, ensure_2d=False)[index]
            if self.target_metric == "categorical":
                if self.target_weight < 1.0:
                    far_dist = 2.5 * (1.0 / (1.0 - self.target_weight))
                else:
                    far_dist = 1.0e12
                self.graph_ = discrete_metric_simplicial_set_intersection(
                    self.graph_, y_, far_dist=far_dist
                )
            elif self.target_metric in dist.DISCRETE_METRICS:
                if self.target_weight < 1.0:
                    scale = 2.5 * (1.0 / (1.0 - self.target_weight))
                else:
                    scale = 1.0e12
                # self.graph_ = discrete_metric_simplicial_set_intersection(
                #     self.graph_,
                #     y_,
                #     metric=self.target_metric,
                #     metric_kws=self.target_metric_kwds,
                #     metric_scale=scale
                # )

                metric_kws = dist.get_discrete_params(y_, self.target_metric)

                self.graph_ = discrete_metric_simplicial_set_intersection(
                    self.graph_,
                    y_,
                    metric=self.target_metric,
                    metric_kws=metric_kws,
                    metric_scale=scale,
                )
            else:
                if len(y_.shape) == 1:
                    y_ = y_.reshape(-1, 1)
                if self.target_n_neighbors == -1:
                    target_n_neighbors = self._n_neighbors
                else:
                    target_n_neighbors = self.target_n_neighbors

                # Handle the small case as precomputed as before
                if y.shape[0] < 4096:
                    try:
                        ydmat = pairwise_distances(
                            y_, metric=self.target_metric, **self._target_metric_kwds
                        )
                    except (TypeError, ValueError):
                        ydmat = dist.pairwise_special_metric(
                            y_,
                            metric=self.target_metric,
                            kwds=self._target_metric_kwds,
                        )

                    (target_graph, target_sigmas, target_rhos,) = fuzzy_simplicial_set(
                        ydmat,
                        target_n_neighbors,
                        random_state,
                        "precomputed",
                        self._target_metric_kwds,
                        None,
                        None,
                        False,
                        1.0,
                        1.0,
                        False,
                    )
                else:
                    # Standard case
                    (target_graph, target_sigmas, target_rhos,) = fuzzy_simplicial_set(
                        y_,
                        target_n_neighbors,
                        random_state,
                        self.target_metric,
                        self._target_metric_kwds,
                        None,
                        None,
                        False,
                        1.0,
                        1.0,
                        False,
                    )
                # product = self.graph_.multiply(target_graph)
                # # self.graph_ = 0.99 * product + 0.01 * (self.graph_ +
                # #                                        target_graph -
                # #                                        product)
                # self.graph_ = product
                self.graph_ = general_simplicial_set_intersection(
                    self.graph_, target_graph, self.target_weight
                )
                self.graph_ = reset_local_connectivity(self.graph_)
            self._supervised = True
        else:
            self._supervised = False

        if self.densmap or self.output_dens:
            self._densmap_kwds["graph_dists"] = self.graph_dists_

        if self.verbose:
            print(ts(), "Construct embedding")

        if self.transform_mode == "embedding":
            self.embedding_, aux_data = self._fit_embed_data(
                self._raw_data[index],
                self.n_epochs,
                init,
                random_state,  # JH why raw data?
            )
            # Assign any points that are fully disconnected from our manifold(s) to have embedding
            # coordinates of np.nan.  These will be filtered by our plotting functions automatically.
            # They also prevent users from being deceived a distance query to one of these points.
            # Might be worth moving this into simplicial_set_embedding or _fit_embed_data
            disconnected_vertices = np.array(self.graph_.sum(axis=1)).flatten() == 0
            if len(disconnected_vertices) > 0:
                self.embedding_[disconnected_vertices] = np.full(
                    self.n_components, np.nan
                )

            self.embedding_ = self.embedding_[inverse]
            if self.output_dens:
                self.rad_orig_ = aux_data["rad_orig"][inverse]
                self.rad_emb_ = aux_data["rad_emb"][inverse]

        if self.verbose:
            print(ts() + " Finished embedding")

        numba.set_num_threads(self._original_n_threads)
        self._input_hash = joblib.hash(self._raw_data)

        return self

    def _fit_embed_data(self, X, n_epochs, init, random_state):
        """A method wrapper for simplicial_set_embedding that can be
        replaced by subclasses.
        """
        return simplicial_set_embedding(
            X,
            self.graph_,
            self.n_components,
            self._initial_alpha,
            self._a,
            self._b,
            self.repulsion_strength,
            self.negative_sample_rate,
            n_epochs,
            init,
            random_state,
            self._input_distance_func,
            self._metric_kwds,
            self.densmap,
            self._densmap_kwds,
            self.output_dens,
            self._output_distance_func,
            self._output_metric_kwds,
            self.output_metric in ("euclidean", "l2"),
            self.random_state is None,
            self.verbose,
            tqdm_kwds=self.tqdm_kwds,
        )

    def fit_transform(self, X, y=None):
        """Fit X into an embedded space and return that transformed
        output.

        Parameters
        ----------
        X : array, shape (n_samples, n_features) or (n_samples, n_samples)
            If the metric is 'precomputed' X must be a square distance
            matrix. Otherwise it contains a sample per row.

        y : array, shape (n_samples)
            A target array for supervised dimension reduction. How this is
            handled is determined by parameters UMAP was instantiated with.
            The relevant attributes are ``target_metric`` and
            ``target_metric_kwds``.

        Returns
        -------
        X_new : array, shape (n_samples, n_components)
            Embedding of the training data in low-dimensional space.

        or a tuple (X_new, r_orig, r_emb) if ``output_dens`` flag is set,
        which additionally includes:

        r_orig: array, shape (n_samples)
            Local radii of data points in the original data space (log-transformed).

        r_emb: array, shape (n_samples)
            Local radii of data points in the embedding (log-transformed).
        """
        self.fit(X, y)
        if self.transform_mode == "embedding":
            if self.output_dens:
                return self.embedding_, self.rad_orig_, self.rad_emb_
            else:
                return self.embedding_
        elif self.transform_mode == "graph":
            return self.graph_
        else:
            raise ValueError(
                "Unrecognized transform mode {}; should be one of 'embedding' or 'graph'".format(
                    self.transform_mode
                )
            )

    def transform(self, X):
        """Transform X into the existing embedded space and return that
        transformed output.

        Parameters
        ----------
        X : array, shape (n_samples, n_features)
            New data to be transformed.

        Returns
        -------
        X_new : array, shape (n_samples, n_components)
            Embedding of the new data in low-dimensional space.
        """
        # If we fit just a single instance then error
        if self._raw_data.shape[0] == 1:
            raise ValueError(
                "Transform unavailable when model was fit with only a single data sample."
            )
        # If we just have the original input then short circuit things
        X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
        x_hash = joblib.hash(X)
        if x_hash == self._input_hash:
            if self.transform_mode == "embedding":
                return self.embedding_
            elif self.transform_mode == "graph":
                return self.graph_
            else:
                raise ValueError(
                    "Unrecognized transform mode {}; should be one of 'embedding' or 'graph'".format(
                        self.transform_mode
                    )
                )
        if self.densmap:
            raise NotImplementedError(
                "Transforming data into an existing embedding not supported for densMAP."
            )

        # X = check_array(X, dtype=np.float32, order="C", accept_sparse="csr")
        random_state = check_random_state(self.transform_seed)
        rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

        if self.metric == "precomputed":
            warn(
                "Transforming new data with precomputed metric. "
                "We are assuming the input data is a matrix of distances from the new points "
                "to the points in the training set. If the input matrix is sparse, it should "
                "contain distances from the new points to their nearest neighbours "
                "or approximate nearest neighbours in the training set."
            )
            assert X.shape[1] == self._raw_data.shape[0]
            if scipy.sparse.issparse(X):
                indices = np.full(
                    (X.shape[0], self._n_neighbors), dtype=np.int32, fill_value=-1
                )
                dists = np.full_like(indices, dtype=np.float32, fill_value=-1)
                for i in range(X.shape[0]):
                    data_indices = np.argsort(X[i].data)
                    if len(data_indices) < self._n_neighbors:
                        raise ValueError(
                            f"Need at least n_neighbors ({self.n_neighbors}) distances for each row!"
                        )
                    indices[i] = X[i].indices[data_indices[: self._n_neighbors]]
                    dists[i] = X[i].data[data_indices[: self._n_neighbors]]
            else:
                indices = np.argsort(X, axis=1)[:, : self._n_neighbors].astype(np.int32)
                dists = np.take_along_axis(X, indices, axis=1)
            assert np.min(indices) >= 0 and np.min(dists) >= 0.0
        elif self._small_data:
            try:
                # sklearn pairwise_distances fails for callable metric on sparse data
                _m = self.metric if self._sparse_data else self._input_distance_func
                dmat = pairwise_distances(
                    X, self._raw_data, metric=_m, **self._metric_kwds
                )
            except (TypeError, ValueError):
                # metric is numba.jit'd or not supported by sklearn,
                # fallback to pairwise special
                if self._sparse_data:
                    # Get a fresh metric since we are casting to dense
                    if not callable(self.metric):
                        _m = dist.named_distances[self.metric]
                        dmat = dist.pairwise_special_metric(
                            X.toarray(),
                            self._raw_data.toarray(),
                            metric=_m,
                            kwds=self._metric_kwds,
                        )
                    else:
                        dmat = dist.pairwise_special_metric(
                            X,
                            self._raw_data,
                            metric=self._input_distance_func,
                            kwds=self._metric_kwds,
                        )
                else:
                    dmat = dist.pairwise_special_metric(
                        X,
                        self._raw_data,
                        metric=self._input_distance_func,
                        kwds=self._metric_kwds,
                    )
            indices = np.argpartition(dmat, self._n_neighbors)[:, : self._n_neighbors]
            dmat_shortened = submatrix(dmat, indices, self._n_neighbors)
            indices_sorted = np.argsort(dmat_shortened)
            indices = submatrix(indices, indices_sorted, self._n_neighbors)
            dists = submatrix(dmat_shortened, indices_sorted, self._n_neighbors)
        else:
            epsilon = 0.24 if self._knn_search_index._angular_trees else 0.12
            indices, dists = self._knn_search_index.query(
                X, self.n_neighbors, epsilon=epsilon
            )

        dists = dists.astype(np.float32, order="C")
        # Remove any nearest neighbours who's distances are greater than our disconnection_distance
        indices[dists >= self._disconnection_distance] = -1
        adjusted_local_connectivity = max(0.0, self.local_connectivity - 1.0)
        sigmas, rhos = smooth_knn_dist(
            dists,
            float(self._n_neighbors),
            local_connectivity=float(adjusted_local_connectivity),
        )

        rows, cols, vals, dists = compute_membership_strengths(
            indices, dists, sigmas, rhos, bipartite=True
        )

        graph = scipy.sparse.coo_matrix(
            (vals, (rows, cols)), shape=(X.shape[0], self._raw_data.shape[0])
        )

        if self.transform_mode == "graph":
            return graph

        # This was a very specially constructed graph with constant degree.
        # That lets us do fancy unpacking by reshaping the csr matrix indices
        # and data. Doing so relies on the constant degree assumption!
        # csr_graph = normalize(graph.tocsr(), norm="l1")
        # inds = csr_graph.indices.reshape(X.shape[0], self._n_neighbors)
        # weights = csr_graph.data.reshape(X.shape[0], self._n_neighbors)
        # embedding = init_transform(inds, weights, self.embedding_)
        # This is less fast code than the above numba.jit'd code.
        # It handles the fact that our nearest neighbour graph can now contain variable numbers of vertices.
        csr_graph = graph.tocsr()
        csr_graph.eliminate_zeros()
        embedding = init_graph_transform(csr_graph, self.embedding_)

        if self.n_epochs is None:
            # For smaller datasets we can use more epochs
            if graph.shape[0] <= 10000:
                n_epochs = 100
            else:
                n_epochs = 30
        else:
            n_epochs = int(self.n_epochs // 3.0)

        graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0
        graph.eliminate_zeros()

        epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs)

        head = graph.row
        tail = graph.col
        weight = graph.data

        # optimize_layout = make_optimize_layout(
        #     self._output_distance_func,
        #     tuple(self.output_metric_kwds.values()),
        # )

        if self.output_metric == "euclidean":
            embedding = optimize_layout_euclidean(
                embedding,
                self.embedding_.astype(np.float32, copy=True),  # Fixes #179 & #217,
                head,
                tail,
                n_epochs,
                graph.shape[1],
                epochs_per_sample,
                self._a,
                self._b,
                rng_state,
                self.repulsion_strength,
                self._initial_alpha / 4.0,
                self.negative_sample_rate,
                self.random_state is None,
                verbose=self.verbose,
                tqdm_kwds=self.tqdm_kwds,
            )
        else:
            embedding = optimize_layout_generic(
                embedding,
                self.embedding_.astype(np.float32, copy=True),  # Fixes #179 & #217
                head,
                tail,
                n_epochs,
                graph.shape[1],
                epochs_per_sample,
                self._a,
                self._b,
                rng_state,
                self.repulsion_strength,
                self._initial_alpha / 4.0,
                self.negative_sample_rate,
                self._output_distance_func,
                tuple(self._output_metric_kwds.values()),
                verbose=self.verbose,
                tqdm_kwds=self.tqdm_kwds,
            )

        return embedding

    def inverse_transform(self, X):
        """Transform X in the existing embedded space back into the input
        data space and return that transformed output.

        Parameters
        ----------
        X : array, shape (n_samples, n_components)
            New points to be inverse transformed.

        Returns
        -------
        X_new : array, shape (n_samples, n_features)
            Generated data points new data in data space.
        """

        if self._sparse_data:
            raise ValueError("Inverse transform not available for sparse input.")
        elif self._inverse_distance_func is None:
            raise ValueError("Inverse transform not available for given metric.")
        elif self.densmap:
            raise ValueError("Inverse transform not available for densMAP.")
        elif self.n_components >= 8:
            warn(
                "Inverse transform works best with low dimensional embeddings."
                " Results may be poor, or this approach to inverse transform"
                " may fail altogether! If you need a high dimensional latent"
                " space and inverse transform operations consider using an"
                " autoencoder."
            )
        elif self.transform_mode == "graph":
            raise ValueError(
                "Inverse transform not available for transform_mode = 'graph'"
            )

        X = check_array(X, dtype=np.float32, order="C")
        random_state = check_random_state(self.transform_seed)
        rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

        # build Delaunay complex (Does this not assume a roughly euclidean output metric)?
        deltri = scipy.spatial.Delaunay(
            self.embedding_, incremental=True, qhull_options="QJ"
        )
        neighbors = deltri.simplices[deltri.find_simplex(X)]
        adjmat = scipy.sparse.lil_matrix(
            (self.embedding_.shape[0], self.embedding_.shape[0]), dtype=int
        )
        for i in np.arange(0, deltri.simplices.shape[0]):
            for j in deltri.simplices[i]:
                if j < self.embedding_.shape[0]:
                    idx = deltri.simplices[i][
                        deltri.simplices[i] < self.embedding_.shape[0]
                    ]
                    adjmat[j, idx] = 1
                    adjmat[idx, j] = 1

        adjmat = scipy.sparse.csr_matrix(adjmat)

        min_vertices = min(self._raw_data.shape[-1], self._raw_data.shape[0])

        neighborhood = [
            breadth_first_search(adjmat, v[0], min_vertices=min_vertices)
            for v in neighbors
        ]
        if callable(self.output_metric):
            # need to create another numba.jit-able wrapper for callable
            # output_metrics that return a tuple (already checked that it does
            # during param validation in `fit` method)
            _out_m = self.output_metric

            @numba.njit(fastmath=True)
            def _output_dist_only(x, y, *kwds):
                return _out_m(x, y, *kwds)[0]

            dist_only_func = _output_dist_only
        elif self.output_metric in dist.named_distances.keys():
            dist_only_func = dist.named_distances[self.output_metric]
        else:
            # shouldn't really ever get here because of checks already performed,
            # but works as a failsafe in case attr was altered manually after fitting
            raise ValueError(
                "Unrecognized output metric: {}".format(self.output_metric)
            )

        dist_args = tuple(self._output_metric_kwds.values())
        distances = [
            np.array(
                [
                    dist_only_func(X[i], self.embedding_[nb], *dist_args)
                    for nb in neighborhood[i]
                ]
            )
            for i in range(X.shape[0])
        ]
        idx = np.array([np.argsort(e)[:min_vertices] for e in distances])

        dists_output_space = np.array(
            [distances[i][idx[i]] for i in range(len(distances))]
        )
        indices = np.array([neighborhood[i][idx[i]] for i in range(len(neighborhood))])

        rows, cols, distances = np.array(
            [
                [i, indices[i, j], dists_output_space[i, j]]
                for i in range(indices.shape[0])
                for j in range(min_vertices)
            ]
        ).T

        # calculate membership strength of each edge
        weights = 1 / (1 + self._a * distances ** (2 * self._b))

        # compute 1-skeleton
        # convert 1-skeleton into coo_matrix adjacency matrix
        graph = scipy.sparse.coo_matrix(
            (weights, (rows, cols)), shape=(X.shape[0], self._raw_data.shape[0])
        )

        # That lets us do fancy unpacking by reshaping the csr matrix indices
        # and data. Doing so relies on the constant degree assumption!
        # csr_graph = graph.tocsr()
        csr_graph = normalize(graph.tocsr(), norm="l1")
        inds = csr_graph.indices.reshape(X.shape[0], min_vertices)
        weights = csr_graph.data.reshape(X.shape[0], min_vertices)
        inv_transformed_points = init_transform(inds, weights, self._raw_data)

        if self.n_epochs is None:
            # For smaller datasets we can use more epochs
            if graph.shape[0] <= 10000:
                n_epochs = 100
            else:
                n_epochs = 30
        else:
            n_epochs = int(self.n_epochs // 3.0)

        # graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0
        # graph.eliminate_zeros()

        epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs)

        head = graph.row
        tail = graph.col
        weight = graph.data

        inv_transformed_points = optimize_layout_inverse(
            inv_transformed_points,
            self._raw_data,
            head,
            tail,
            weight,
            self._sigmas,
            self._rhos,
            n_epochs,
            graph.shape[1],
            epochs_per_sample,
            self._a,
            self._b,
            rng_state,
            self.repulsion_strength,
            self._initial_alpha / 4.0,
            self.negative_sample_rate,
            self._inverse_distance_func,
            tuple(self._metric_kwds.values()),
            verbose=self.verbose,
            tqdm_kwds=self.tqdm_kwds,
        )

        return inv_transformed_points

    def update(self, X):
        X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
        random_state = check_random_state(self.transform_seed)
        rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

        original_size = self._raw_data.shape[0]

        if self.metric == "precomputed":
            raise ValueError("Update does not currently support precomputed metrics")
        if self._supervised:
            raise ValueError("Updating supervised models is not currently " "supported")

        if self._small_data:

            if self._sparse_data:
                self._raw_data = scipy.sparse.vstack([self._raw_data, X])
            else:
                self._raw_data = np.vstack([self._raw_data, X])

            if self._raw_data.shape[0] < 4096:
                # still small data
                try:
                    # sklearn pairwise_distances fails for callable metric on sparse data
                    _m = self.metric if self._sparse_data else self._input_distance_func
                    dmat = pairwise_distances(
                        self._raw_data, metric=_m, **self._metric_kwds
                    )
                except (ValueError, TypeError) as e:
                    # metric is numba.jit'd or not supported by sklearn,
                    # fallback to pairwise special

                    if self._sparse_data:
                        # Get a fresh metric since we are casting to dense
                        if not callable(self.metric):
                            _m = dist.named_distances[self.metric]
                            dmat = dist.pairwise_special_metric(
                                self._raw_data.toarray(),
                                metric=_m,
                                kwds=self._metric_kwds,
                            )
                        else:
                            dmat = dist.pairwise_special_metric(
                                self._raw_data,
                                metric=self._input_distance_func,
                                kwds=self._metric_kwds,
                            )
                    else:
                        dmat = dist.pairwise_special_metric(
                            self._raw_data,
                            metric=self._input_distance_func,
                            kwds=self._metric_kwds,
                        )
                self.graph_, self._sigmas, self._rhos = fuzzy_simplicial_set(
                    dmat,
                    self._n_neighbors,
                    random_state,
                    "precomputed",
                    self._metric_kwds,
                    None,
                    None,
                    self.angular_rp_forest,
                    self.set_op_mix_ratio,
                    self.local_connectivity,
                    True,
                    self.verbose,
                )
                knn_indices = np.argsort(dmat)[:, : self.n_neighbors]
            else:
                # now large data
                self._small_data = False
                if self._sparse_data and self.metric in pynn_sparse_named_distances:
                    nn_metric = self.metric
                elif not self._sparse_data and self.metric in pynn_named_distances:
                    nn_metric = self.metric
                else:
                    nn_metric = self._input_distance_func

                (
                    self._knn_indices,
                    self._knn_dists,
                    self._knn_search_index,
                ) = nearest_neighbors(
                    self._raw_data,
                    self._n_neighbors,
                    nn_metric,
                    self._metric_kwds,
                    self.angular_rp_forest,
                    random_state,
                    self.low_memory,
                    use_pynndescent=True,
                    n_jobs=self.n_jobs,
                    verbose=self.verbose,
                )

                self.graph_, self._sigmas, self._rhos = fuzzy_simplicial_set(
                    self._raw_data,
                    self.n_neighbors,
                    random_state,
                    nn_metric,
                    self._metric_kwds,
                    self._knn_indices,
                    self._knn_dists,
                    self.angular_rp_forest,
                    self.set_op_mix_ratio,
                    self.local_connectivity,
                    True,
                    self.verbose,
                )
                knn_indices = self._knn_indices

            init = np.zeros(
                (self._raw_data.shape[0], self.n_components), dtype=np.float32
            )
            init[:original_size] = self.embedding_

            init_update(init, original_size, knn_indices)
            if self.n_epochs is None:
                n_epochs = 0
            else:
                n_epochs = self.n_epochs

            self.embedding_, aux_data = simplicial_set_embedding(
                self._raw_data,
                self.graph_,
                self.n_components,
                self._initial_alpha,
                self._a,
                self._b,
                self.repulsion_strength,
                self.negative_sample_rate,
                n_epochs,
                init,
                random_state,
                self._input_distance_func,
                self._metric_kwds,
                self.densmap,
                self._densmap_kwds,
                self.output_dens,
                self._output_distance_func,
                self._output_metric_kwds,
                self.output_metric in ("euclidean", "l2"),
                self.random_state is None,
                self.verbose,
                tqdm_kwds=self.tqdm_kwds,
            )

        else:
            self._knn_search_index.prepare()
            self._knn_search_index.update(X)
            self._raw_data = self._knn_search_index._raw_data
            (
                self._knn_indices,
                self._knn_dists,
            ) = self._knn_search_index.neighbor_graph

            if self._sparse_data and self.metric in pynn_sparse_named_distances:
                nn_metric = self.metric
            elif not self._sparse_data and self.metric in pynn_named_distances:
                nn_metric = self.metric
            else:
                nn_metric = self._input_distance_func

            self.graph_, self._sigmas, self._rhos = fuzzy_simplicial_set(
                self._raw_data,
                self.n_neighbors,
                random_state,
                nn_metric,
                self._metric_kwds,
                self._knn_indices,
                self._knn_dists,
                self.angular_rp_forest,
                self.set_op_mix_ratio,
                self.local_connectivity,
                True,
                self.verbose,
            )

            init = np.zeros(
                (self._raw_data.shape[0], self.n_components), dtype=np.float32
            )
            init[:original_size] = self.embedding_
            init_update(init, original_size, self._knn_indices)

            if self.n_epochs is None:
                n_epochs = 0
            else:
                n_epochs = self.n_epochs

            self.embedding_, aux_data = simplicial_set_embedding(
                self._raw_data,
                self.graph_,
                self.n_components,
                self._initial_alpha,
                self._a,
                self._b,
                self.repulsion_strength,
                self.negative_sample_rate,
                n_epochs,
                init,
                random_state,
                self._input_distance_func,
                self._metric_kwds,
                self.densmap,
                self._densmap_kwds,
                self.output_dens,
                self._output_distance_func,
                self._output_metric_kwds,
                self.output_metric in ("euclidean", "l2"),
                self.random_state is None,
                self.verbose,
                tqdm_kwds=self.tqdm_kwds,
            )

        if self.output_dens:
            self.rad_orig_ = aux_data["rad_orig"]
            self.rad_emb_ = aux_data["rad_emb"]

    def __repr__(self):
        from sklearn.utils._pprint import _EstimatorPrettyPrinter
        import re

        pp = _EstimatorPrettyPrinter(
            compact=True,
            indent=1,
            indent_at_name=True,
            n_max_elements_to_show=50,
        )
        pp._changed_only = True
        repr_ = pp.pformat(self)
        repr_ = re.sub("tqdm_kwds={.*},", "", repr_, flags=re.S)
        # remove empty lines
        repr_ = re.sub("\n *\n", "\n", repr_, flags=re.S)
        # remove extra whitespaces after a comma
        repr_ = re.sub(", +", ", ", repr_)
        return repr_