File: galaxy10sdss.py

package info (click to toggle)
umap-learn 0.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,284 kB
  • sloc: python: 9,863; sh: 87; makefile: 20
file content (275 lines) | stat: -rw-r--r-- 8,586 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
UMAP on the Galaxy10SDSS dataset
---------------------------------------------------------

This is an example of using UMAP on the Galaxy10SDSS
dataset. The goal of this example is largely to
demonstrate the use of supervised learning as an
effective tool for visualizing and reducing complex data.
In addition, hdbscan is used to classify the processed
data.
"""

import numpy as np
import h5py
import matplotlib.pyplot as plt
import umap
import os

# from sklearn.model_selection import train_test_split
import math
import requests

# libraries for clustering
import hdbscan
import sklearn.cluster as cluster
from sklearn.metrics import adjusted_rand_score, adjusted_mutual_info_score

if not os.path.isfile("Galaxy10.h5"):
    url = "http://astro.utoronto.ca/~bovy/Galaxy10/Galaxy10.h5"
    r = requests.get(url, allow_redirects=True)
    open("Galaxy10.h5", "wb").write(r.content)

# To get the images and labels from file
with h5py.File("Galaxy10.h5", "r") as F:
    images = np.array(F["images"])
    labels = np.array(F["ans"])

X_train = np.empty([math.floor(len(labels) / 100), 14283], dtype=np.float64)
y_train = np.empty([math.floor(len(labels) / 100)], dtype=np.float64)
X_test = X_train
y_test = y_train
# Get a subset of the data
for i in range(math.floor(len(labels) / 100)):
    X_train[i, :] = np.array(np.ndarray.flatten(images[i, :, :, :]), dtype=np.float64)
    y_train[i] = labels[i]
    X_test[i, :] = np.array(
        np.ndarray.flatten(images[i + math.floor(len(labels) / 100), :, :, :]),
        dtype=np.float64,
    )
    y_test[i] = labels[i + math.floor(len(labels) / 100)]

# Plot distribution
classes, frequency = np.unique(y_train, return_counts=True)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.bar(classes, frequency)
plt.xlabel("Class")
plt.ylabel("Frequency")
plt.title("Data Subset")
plt.savefig("galaxy10_subset.svg")
# 2D Embedding
## UMAP
reducer = umap.UMAP(
    n_components=2, n_neighbors=20, random_state=42, transform_seed=42, verbose=False
)
reducer.fit(X_train)

galaxy10_umap = reducer.transform(X_train)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.scatter(
    galaxy10_umap[:, 0],
    galaxy10_umap[:, 1],
    c=y_train,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_train,
)
plt.colorbar(boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_2D_umap.svg")
### UMAP - Supervised
reducer = umap.UMAP(
    n_components=2, n_neighbors=15, random_state=42, transform_seed=42, verbose=False
)
reducer.fit(X_train, y_train)

galaxy10_umap_supervised = reducer.transform(X_train)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.scatter(
    galaxy10_umap_supervised[:, 0],
    galaxy10_umap_supervised[:, 1],
    c=y_train,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_train,
)
plt.colorbar(boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_2D_umap_supervised.svg")
### UMAP - Supervised prediction
galaxy10_umap_supervised_prediction = reducer.transform(X_test)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.scatter(
    galaxy10_umap_supervised_prediction[:, 0],
    galaxy10_umap_supervised_prediction[:, 1],
    c=y_test,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_test,
)
plt.colorbar(boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_2D_umap_supervised_prediction.svg")

# cluster the data
labels = hdbscan.HDBSCAN(
    min_samples=10,
    min_cluster_size=10,
).fit_predict(galaxy10_umap_supervised_prediction)
clustered = labels >= 0
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
plt.scatter(
    galaxy10_umap_supervised_prediction[~clustered, 0],
    galaxy10_umap_supervised_prediction[~clustered, 1],
    color=(0.5, 0.5, 0.5),
    alpha=0.5,
)
plt.scatter(
    galaxy10_umap_supervised_prediction[clustered, 0],
    galaxy10_umap_supervised_prediction[clustered, 1],
    c=y_test[clustered],
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_test[clustered],
)
plt.colorbar(boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_2D_umap_supervised_prediction_clustered.svg")

# Print out information on quality of clustering
print("2D Supervised Embedding with Clustering")
print(adjusted_rand_score(y_test, labels), adjusted_mutual_info_score(y_test, labels))

print(
    adjusted_rand_score(y_test[clustered], labels[clustered]),
    adjusted_mutual_info_score(y_test[clustered], labels[clustered]),
)

print(np.sum(clustered) / y_test.shape[0])

# 3D Embedding
## UMAP
reducer = umap.UMAP(
    n_components=3, n_neighbors=20, random_state=42, transform_seed=42, verbose=False
)
reducer.fit(X_train)
galaxy10_umap = reducer.transform(X_train)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
ax = fig.add_subplot(projection="3d")
p = ax.scatter(
    galaxy10_umap[:, 0],
    galaxy10_umap[:, 1],
    galaxy10_umap[:, 2],
    c=y_train,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_train,
)
fig.colorbar(p, ax=ax, boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_3D_umap.svg")
## UMAP - Supervised
reducer = umap.UMAP(
    n_components=3, n_neighbors=20, random_state=42, transform_seed=42, verbose=False
)
reducer.fit(X_train, y_train)
galaxy10_umap_supervised = reducer.transform(X_train)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
ax = fig.add_subplot(projection="3d")
p = ax.scatter(
    galaxy10_umap_supervised[:, 0],
    galaxy10_umap_supervised[:, 1],
    galaxy10_umap_supervised[:, 2],
    c=y_train,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_train,
)
fig.colorbar(p, ax=ax, boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_3D_umap_supervised.svg")
## UMAP - Supervised prediction
galaxy10_umap_supervised_prediction = reducer.transform(X_test)
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
ax = fig.add_subplot(projection="3d")
p = ax.scatter(
    galaxy10_umap_supervised_prediction[:, 0],
    galaxy10_umap_supervised_prediction[:, 1],
    galaxy10_umap_supervised_prediction[:, 2],
    c=y_test,
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_test,
)
fig.colorbar(p, ax=ax, boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_3D_umap_supervised_prediction.svg")

# cluster the data
labels = hdbscan.HDBSCAN(
    min_samples=10,
    min_cluster_size=10,
).fit_predict(galaxy10_umap_supervised_prediction)
clustered = labels >= 0
fig = plt.figure(1, figsize=(4, 4))
plt.clf()
ax = fig.add_subplot(projection="3d")
q = ax.scatter(
    galaxy10_umap_supervised_prediction[~clustered, 0],
    galaxy10_umap_supervised_prediction[~clustered, 1],
    galaxy10_umap_supervised_prediction[~clustered, 2],
    color=(0.5, 0.5, 0.5),
    alpha=0.5,
)
p = ax.scatter(
    galaxy10_umap_supervised_prediction[clustered, 0],
    galaxy10_umap_supervised_prediction[clustered, 1],
    galaxy10_umap_supervised_prediction[clustered, 2],
    c=y_test[clustered],
    cmap=plt.cm.nipy_spectral,
    edgecolor="k",
    label=y_test[clustered],
)
fig.colorbar(p, ax=ax, boundaries=np.arange(11) - 0.5).set_ticks(np.arange(10))
plt.savefig("galaxy10_3D_umap_supervised_prediction_clustered.svg")

# Print out information on quality of clustering
print("3D Supervised Embedding with Clustering")
print(adjusted_rand_score(y_test, labels), adjusted_mutual_info_score(y_test, labels))

print(
    adjusted_rand_score(y_test[clustered], labels[clustered]),
    adjusted_mutual_info_score(y_test[clustered], labels[clustered]),
)

print(np.sum(clustered) / y_test.shape[0])
# Dimensions 4 to 25
for dimensions in range(4, 26):
    reducer = umap.UMAP(
        n_components=dimensions,
        n_neighbors=20,
        random_state=42,
        transform_seed=42,
        verbose=False,
    )
    reducer.fit(X_train, y_train)
    galaxy10_umap_supervised = reducer.transform(X_train)
    # UMAP - Supervised prediction
    galaxy10_umap_supervised_prediction = reducer.transform(X_test)
    # cluster the data
    labels = hdbscan.HDBSCAN(
        min_samples=10,
        min_cluster_size=10,
    ).fit_predict(galaxy10_umap_supervised_prediction)
    clustered = labels >= 0
    # Print out information on quality of clustering
    print(str(dimensions) + "D Supervised Embedding with Clustering")
    print(
        adjusted_rand_score(y_test, labels), adjusted_mutual_info_score(y_test, labels)
    )
    print(
        adjusted_rand_score(y_test[clustered], labels[clustered]),
        adjusted_mutual_info_score(y_test[clustered], labels[clustered]),
    )
    print(np.sum(clustered) / y_test.shape[0])