1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
"""
UMAP as a Feature Extraction Technique for Classification
---------------------------------------------------------
The following script shows how UMAP can be used as a feature extraction
technique to improve the accuracy on a classification task. It also shows
how UMAP can be integrated in standard scikit-learn pipelines.
The first step is to create a dataset for a classification task, which is
performed with the function ``sklearn.datasets.make_classification``. The
dataset is then split into a training set and a test set using the
``sklearn.model_selection.train_test_split`` function.
Second, a linear SVM is fitted on the training set. To choose the best
hyperparameters automatically, a gridsearch is performed on the training set.
The performance of the model is then evaluated on the test set with the
accuracy metric.
Third, the previous step is repeated with a slight modification: UMAP is
used as a feature extraction technique. This small change results in a
substantial improvement compared to the model where raw data is used.
"""
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from umap import UMAP
# Make a toy dataset
X, y = make_classification(
n_samples=1000,
n_features=300,
n_informative=250,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=1212,
)
# Split the dataset into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Classification with a linear SVM
svc = LinearSVC(dual=False, random_state=123)
params_grid = {"C": [10 ** k for k in range(-3, 4)]}
clf = GridSearchCV(svc, params_grid)
clf.fit(X_train, y_train)
print(
"Accuracy on the test set with raw data: {:.3f}".format(clf.score(X_test, y_test))
)
# Transformation with UMAP followed by classification with a linear SVM
umap = UMAP(random_state=456)
pipeline = Pipeline([("umap", umap), ("svc", svc)])
params_grid_pipeline = {
"umap__n_neighbors": [5, 20],
"umap__n_components": [15, 25, 50],
"svc__C": [10 ** k for k in range(-3, 4)],
}
clf_pipeline = GridSearchCV(pipeline, params_grid_pipeline)
clf_pipeline.fit(X_train, y_train)
print(
"Accuracy on the test set with UMAP transformation: {:.3f}".format(
clf_pipeline.score(X_test, y_test)
)
)
|