1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
import warnings
from warnings import warn
import numpy as np
import scipy.sparse
import scipy.sparse.csgraph
from sklearn.decomposition import TruncatedSVD
from sklearn.manifold import SpectralEmbedding
from sklearn.metrics import pairwise_distances
from sklearn.metrics.pairwise import _VALID_METRICS as SKLEARN_PAIRWISE_VALID_METRICS
from umap.distances import pairwise_special_metric, SPECIAL_METRICS
from umap.sparse import SPARSE_SPECIAL_METRICS, sparse_named_distances
def component_layout(
data,
n_components,
component_labels,
dim,
random_state,
metric="euclidean",
metric_kwds={},
):
"""Provide a layout relating the separate connected components. This is done
by taking the centroid of each component and then performing a spectral embedding
of the centroids.
Parameters
----------
data: array of shape (n_samples, n_features)
The source data -- required so we can generate centroids for each
connected component of the graph.
n_components: int
The number of distinct components to be layed out.
component_labels: array of shape (n_samples)
For each vertex in the graph the label of the component to
which the vertex belongs.
dim: int
The chosen embedding dimension.
metric: string or callable (optional, default 'euclidean')
The metric used to measure distances among the source data points.
metric_kwds: dict (optional, default {})
Keyword arguments to be passed to the metric function.
If metric is 'precomputed', 'linkage' keyword can be used to specify
'average', 'complete', or 'single' linkage. Default is 'average'
Returns
-------
component_embedding: array of shape (n_components, dim)
The ``dim``-dimensional embedding of the ``n_components``-many
connected components.
"""
if data is None:
# We don't have data to work with; just guess
return np.random.random(size=(n_components, dim)) * 10.0
component_centroids = np.empty((n_components, data.shape[1]), dtype=np.float64)
if metric == "precomputed":
# cannot compute centroids from precomputed distances
# instead, compute centroid distances using linkage
distance_matrix = np.zeros((n_components, n_components), dtype=np.float64)
linkage = metric_kwds.get("linkage", "average")
if linkage == "average":
linkage = np.mean
elif linkage == "complete":
linkage = np.max
elif linkage == "single":
linkage = np.min
else:
raise ValueError(
"Unrecognized linkage '%s'. Please choose from "
"'average', 'complete', or 'single'" % linkage
)
for c_i in range(n_components):
dm_i = data[component_labels == c_i]
for c_j in range(c_i + 1, n_components):
dist = linkage(dm_i[:, component_labels == c_j])
distance_matrix[c_i, c_j] = dist
distance_matrix[c_j, c_i] = dist
else:
for label in range(n_components):
component_centroids[label] = data[component_labels == label].mean(axis=0)
if scipy.sparse.isspmatrix(component_centroids):
warn(
"Forcing component centroids to dense; if you are running out of "
"memory then consider increasing n_neighbors."
)
component_centroids = component_centroids.toarray()
if metric in SPECIAL_METRICS:
distance_matrix = pairwise_special_metric(
component_centroids,
metric=metric,
kwds=metric_kwds,
)
elif metric in SPARSE_SPECIAL_METRICS:
distance_matrix = pairwise_special_metric(
component_centroids,
metric=SPARSE_SPECIAL_METRICS[metric],
kwds=metric_kwds,
)
else:
if callable(metric) and scipy.sparse.isspmatrix(data):
function_to_name_mapping = {
sparse_named_distances[k]: k
for k in set(SKLEARN_PAIRWISE_VALID_METRICS)
& set(sparse_named_distances.keys())
}
try:
metric_name = function_to_name_mapping[metric]
except KeyError:
raise NotImplementedError(
"Multicomponent layout for custom "
"sparse metrics is not implemented at "
"this time."
)
distance_matrix = pairwise_distances(
component_centroids, metric=metric_name, **metric_kwds
)
else:
distance_matrix = pairwise_distances(
component_centroids, metric=metric, **metric_kwds
)
affinity_matrix = np.exp(-(distance_matrix**2))
component_embedding = SpectralEmbedding(
n_components=dim, affinity="precomputed", random_state=random_state
).fit_transform(affinity_matrix)
component_embedding /= component_embedding.max()
return component_embedding
def multi_component_layout(
data,
graph,
n_components,
component_labels,
dim,
random_state,
metric="euclidean",
metric_kwds={},
init="random",
tol=0.0,
maxiter=0
):
"""Specialised layout algorithm for dealing with graphs with many connected components.
This will first find relative positions for the components by spectrally embedding
their centroids, then spectrally embed each individual connected component positioning
them according to the centroid embeddings. This provides a decent embedding of each
component while placing the components in good relative positions to one another.
Parameters
----------
data: array of shape (n_samples, n_features)
The source data -- required so we can generate centroids for each
connected component of the graph.
graph: sparse matrix
The adjacency matrix of the graph to be embedded.
n_components: int
The number of distinct components to be layed out.
component_labels: array of shape (n_samples)
For each vertex in the graph the label of the component to
which the vertex belongs.
dim: int
The chosen embedding dimension.
metric: string or callable (optional, default 'euclidean')
The metric used to measure distances among the source data points.
metric_kwds: dict (optional, default {})
Keyword arguments to be passed to the metric function.
init: string, either "random" or "tsvd"
Indicates to initialize the eigensolver. Use "random" (the default) to
use uniformly distributed random initialization; use "tsvd" to warm-start the
eigensolver with singular vectors of the Laplacian associated to the largest
singular values. This latter option also forces usage of the LOBPCG eigensolver;
with the former, ARPACK's solver ``eigsh`` will be used for smaller Laplacians.
tol: float, default chosen by implementation
Stopping tolerance for the numerical algorithm computing the embedding.
maxiter: int, default chosen by implementation
Number of iterations the numerical algorithm will go through at most as it
attempts to compute the embedding.
Returns
-------
embedding: array of shape (n_samples, dim)
The initial embedding of ``graph``.
"""
result = np.empty((graph.shape[0], dim), dtype=np.float32)
if n_components > 2 * dim:
meta_embedding = component_layout(
data,
n_components,
component_labels,
dim,
random_state,
metric=metric,
metric_kwds=metric_kwds,
)
else:
k = int(np.ceil(n_components / 2.0))
base = np.hstack([np.eye(k), np.zeros((k, dim - k))])
meta_embedding = np.vstack([base, -base])[:n_components]
for label in range(n_components):
component_graph = graph.tocsr()[component_labels == label, :].tocsc()
component_graph = component_graph[:, component_labels == label].tocoo()
distances = pairwise_distances([meta_embedding[label]], meta_embedding)
data_range = distances[distances > 0.0].min() / 2.0
if component_graph.shape[0] < 2 * dim or component_graph.shape[0] <= dim + 1:
result[component_labels == label] = (
random_state.uniform(
low=-data_range,
high=data_range,
size=(component_graph.shape[0], dim),
)
+ meta_embedding[label]
)
else:
component_embedding = _spectral_layout(
data=None,
graph=component_graph,
dim=dim,
random_state=random_state,
metric=metric,
metric_kwds=metric_kwds,
init=init,
tol=tol,
maxiter=maxiter
)
expansion = data_range / np.max(np.abs(component_embedding))
component_embedding *= expansion
result[component_labels == label] = (
component_embedding + meta_embedding[label]
)
return result
def spectral_layout(
data,
graph,
dim,
random_state,
metric="euclidean",
metric_kwds={},
tol=0.0,
maxiter=0
):
"""
Given a graph compute the spectral embedding of the graph. This is
simply the eigenvectors of the laplacian of the graph. Here we use the
normalized laplacian.
Parameters
----------
data: array of shape (n_samples, n_features)
The source data
graph: sparse matrix
The (weighted) adjacency matrix of the graph as a sparse matrix.
dim: int
The dimension of the space into which to embed.
random_state: numpy RandomState or equivalent
A state capable being used as a numpy random state.
tol: float, default chosen by implementation
Stopping tolerance for the numerical algorithm computing the embedding.
maxiter: int, default chosen by implementation
Number of iterations the numerical algorithm will go through at most as it
attempts to compute the embedding.
Returns
-------
embedding: array of shape (n_vertices, dim)
The spectral embedding of the graph.
"""
return _spectral_layout(
data=data,
graph=graph,
dim=dim,
random_state=random_state,
metric=metric,
metric_kwds=metric_kwds,
init="random",
tol=tol,
maxiter=maxiter
)
def tswspectral_layout(
data,
graph,
dim,
random_state,
metric="euclidean",
metric_kwds={},
method=None,
tol=0.0,
maxiter=0
):
"""Given a graph, compute the spectral embedding of the graph. This is
simply the eigenvectors of the Laplacian of the graph. Here we use the
normalized laplacian and a truncated SVD-based guess of the
eigenvectors to "warm" up the eigensolver. This function should
give results of similar accuracy to the spectral_layout function, but
may converge more quickly for graph Laplacians that cause
spectral_layout to take an excessive amount of time to complete.
Parameters
----------
data: array of shape (n_samples, n_features)
The source data
graph: sparse matrix
The (weighted) adjacency matrix of the graph as a sparse matrix.
dim: int
The dimension of the space into which to embed.
random_state: numpy RandomState or equivalent
A state capable being used as a numpy random state.
metric: string or callable (optional, default 'euclidean')
The metric used to measure distances among the source data points.
Used only if the multiple connected components are found in the
graph.
metric_kwds: dict (optional, default {})
Keyword arguments to be passed to the metric function.
If metric is 'precomputed', 'linkage' keyword can be used to specify
'average', 'complete', or 'single' linkage. Default is 'average'.
Used only if the multiple connected components are found in the
graph.
method: str (optional, default None, values either 'eigsh' or 'lobpcg')
Name of the eigenvalue computation method to use to compute the spectral
embedding. If left to None (or empty string), as by default, the method is
chosen from the number of vectors in play: larger vector collections are
handled with lobpcg, smaller collections with eigsh. Method names correspond
to SciPy routines in scipy.sparse.linalg.
tol: float, default chosen by implementation
Stopping tolerance for the numerical algorithm computing the embedding.
maxiter: int, default chosen by implementation
Number of iterations the numerical algorithm will go through at most as it
attempts to compute the embedding.
Returns
-------
embedding: array of shape (n_vertices, dim)
The spectral embedding of the graph.
"""
return _spectral_layout(
data=data,
graph=graph,
dim=dim,
random_state=random_state,
metric=metric,
metric_kwds=metric_kwds,
init="tsvd",
method=method,
tol=tol,
maxiter=maxiter
)
def _spectral_layout(
data,
graph,
dim,
random_state,
metric="euclidean",
metric_kwds={},
init="random",
method=None,
tol=0.0,
maxiter=0
):
"""General implementation of the spectral embedding of the graph, derived as
a subset of the eigenvectors of the normalized Laplacian of the graph. The numerical
method for computing the eigendecomposition is chosen through heuristics.
Parameters
----------
data: array of shape (n_samples, n_features)
The source data
graph: sparse matrix
The (weighted) adjacency matrix of the graph as a sparse matrix.
dim: int
The dimension of the space into which to embed.
random_state: numpy RandomState or equivalent
A state capable being used as a numpy random state.
metric: string or callable (optional, default 'euclidean')
The metric used to measure distances among the source data points.
Used only if the multiple connected components are found in the
graph.
metric_kwds: dict (optional, default {})
Keyword arguments to be passed to the metric function.
If metric is 'precomputed', 'linkage' keyword can be used to specify
'average', 'complete', or 'single' linkage. Default is 'average'.
Used only if the multiple connected components are found in the
graph.
init: string, either "random" or "tsvd"
Indicates to initialize the eigensolver. Use "random" (the default) to
use uniformly distributed random initialization; use "tsvd" to warm-start the
eigensolver with singular vectors of the Laplacian associated to the largest
singular values. This latter option also forces usage of the LOBPCG eigensolver;
with the former, ARPACK's solver ``eigsh`` will be used for smaller Laplacians.
method: string -- either "eigsh" or "lobpcg" -- or None
Name of the eigenvalue computation method to use to compute the spectral
embedding. If left to None (or empty string), as by default, the method is
chosen from the number of vectors in play: larger vector collections are
handled with lobpcg, smaller collections with eigsh. Method names correspond
to SciPy routines in scipy.sparse.linalg.
tol: float, default chosen by implementation
Stopping tolerance for the numerical algorithm computing the embedding.
maxiter: int, default chosen by implementation
Number of iterations the numerical algorithm will go through at most as it
attempts to compute the embedding.
Returns
-------
embedding: array of shape (n_vertices, dim)
The spectral embedding of the graph.
"""
n_samples = graph.shape[0]
n_components, labels = scipy.sparse.csgraph.connected_components(graph)
if n_components > 1:
return multi_component_layout(
data,
graph,
n_components,
labels,
dim,
random_state,
metric=metric,
metric_kwds=metric_kwds,
)
sqrt_deg = np.sqrt(np.asarray(graph.sum(axis=0)).squeeze())
# standard Laplacian
# D = scipy.sparse.spdiags(diag_data, 0, graph.shape[0], graph.shape[0])
# L = D - graph
# Normalized Laplacian
I = scipy.sparse.identity(graph.shape[0], dtype=np.float64)
D = scipy.sparse.spdiags(
1.0 / sqrt_deg, 0, graph.shape[0], graph.shape[0]
)
L = I - D * graph * D
if not scipy.sparse.issparse(L):
L = np.asarray(L)
k = dim + 1
num_lanczos_vectors = max(2 * k + 1, int(np.sqrt(graph.shape[0])))
gen = (
random_state
if isinstance(random_state, (np.random.Generator, np.random.RandomState))
else np.random.default_rng(seed=random_state)
)
if not method:
method = "eigsh" if L.shape[0] < 2000000 else "lobpcg"
try:
if init == "random":
X = gen.normal(size=(L.shape[0], k))
elif init == "tsvd":
X = TruncatedSVD(
n_components=k,
random_state=random_state,
# algorithm="arpack"
).fit_transform(L)
else:
raise ValueError(
"The init parameter must be either 'random' or 'tsvd': "
f"{init} is invalid."
)
# For such a normalized Laplacian, the first eigenvector is always
# proportional to sqrt(degrees). We thus replace the first t-SVD guess
# with the exact value.
X[:, 0] = sqrt_deg / np.linalg.norm(sqrt_deg)
if method == "eigsh":
eigenvalues, eigenvectors = scipy.sparse.linalg.eigsh(
L,
k,
which="SM",
ncv=num_lanczos_vectors,
tol=tol or 1e-4,
v0=np.ones(L.shape[0]),
maxiter=maxiter or graph.shape[0] * 5,
)
elif method == "lobpcg":
with warnings.catch_warnings():
warnings.filterwarnings(
category=UserWarning,
message=r"(?ms).*not reaching the requested tolerance",
action="error"
)
eigenvalues, eigenvectors = scipy.sparse.linalg.lobpcg(
L,
np.asarray(X),
largest=False,
tol=tol or 1e-4,
maxiter=maxiter or 5 * graph.shape[0]
)
else:
raise ValueError("Method should either be None, 'eigsh' or 'lobpcg'")
order = np.argsort(eigenvalues)[1:k]
return eigenvectors[:, order]
except (scipy.sparse.linalg.ArpackError, UserWarning):
warn(
"Spectral initialisation failed! The eigenvector solver\n"
"failed. This is likely due to too small an eigengap. Consider\n"
"adding some noise or jitter to your data.\n\n"
"Falling back to random initialisation!"
)
return gen.uniform(low=-10.0, high=10.0, size=(graph.shape[0], dim))
|