1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
from umap import UMAP
from umap.umap_ import nearest_neighbors
from scipy import sparse
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import adjusted_rand_score
from sklearn.neighbors import KDTree
from scipy.spatial.distance import cdist, pdist, squareform
import pytest
import warnings
try:
# works for sklearn>=0.22
from sklearn.manifold import trustworthiness
except ImportError:
# this is to comply with requirements (scikit-learn>=0.20)
# More recent versions of sklearn have exposed trustworthiness
# in top level module API
# see: https://github.com/scikit-learn/scikit-learn/pull/15337
from sklearn.manifold.t_sne import trustworthiness
# ===================================================
# UMAP Test cases on IRIS Dataset
# ===================================================
# UMAP Trustworthiness on iris
# ----------------------------
def test_umap_trustworthiness_on_iris(iris, iris_model):
embedding = iris_model.embedding_
trust = trustworthiness(iris.data, embedding, n_neighbors=10)
assert (
trust >= 0.97
), "Insufficiently trustworthy embedding for" "iris dataset: {}".format(trust)
def test_initialized_umap_trustworthiness_on_iris(iris):
data = iris.data
embedding = UMAP(
n_neighbors=10,
min_dist=0.01,
init=data[:, 2:],
n_epochs=200,
random_state=42,
).fit_transform(data)
trust = trustworthiness(iris.data, embedding, n_neighbors=10)
assert (
trust >= 0.97
), "Insufficiently trustworthy embedding for" "iris dataset: {}".format(trust)
def test_umap_trustworthiness_on_sphere_iris(
iris,
):
data = iris.data
embedding = UMAP(
n_neighbors=10,
min_dist=0.01,
n_epochs=200,
random_state=42,
output_metric="haversine",
).fit_transform(data)
# Since trustworthiness doesn't support haversine, project onto
# a 3D embedding of the sphere and use cosine distance
r = 3
projected_embedding = np.vstack(
[
r * np.sin(embedding[:, 0]) * np.cos(embedding[:, 1]),
r * np.sin(embedding[:, 0]) * np.sin(embedding[:, 1]),
r * np.cos(embedding[:, 0]),
]
).T
trust = trustworthiness(
iris.data, projected_embedding, n_neighbors=10, metric="cosine"
)
assert (
trust >= 0.65
), "Insufficiently trustworthy spherical embedding for iris dataset: {}".format(
trust
)
# UMAP Transform on iris
# ----------------------
def test_umap_transform_on_iris(iris, iris_subset_model, iris_selection):
fitter = iris_subset_model
new_data = iris.data[~iris_selection]
embedding = fitter.transform(new_data)
trust = trustworthiness(new_data, embedding, n_neighbors=10)
assert (
trust >= 0.85
), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)
def test_umap_transform_on_iris_w_pynndescent(iris, iris_selection):
data = iris.data[iris_selection]
fitter = UMAP(
n_neighbors=10,
min_dist=0.01,
n_epochs=100,
random_state=42,
force_approximation_algorithm=True,
).fit(data)
new_data = iris.data[~iris_selection]
embedding = fitter.transform(new_data)
trust = trustworthiness(new_data, embedding, n_neighbors=10)
assert (
trust >= 0.85
), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)
def test_umap_transform_on_iris_modified_dtype(iris, iris_subset_model, iris_selection):
fitter = iris_subset_model
fitter.embedding_ = fitter.embedding_.astype(np.float64)
new_data = iris.data[~iris_selection]
embedding = fitter.transform(new_data)
trust = trustworthiness(new_data, embedding, n_neighbors=10)
assert (
trust >= 0.8
), "Insufficiently trustworthy transform for iris dataset: {}".format(trust)
def test_umap_sparse_transform_on_iris(iris, iris_selection):
data = sparse.csr_matrix(iris.data[iris_selection])
assert sparse.issparse(data)
fitter = UMAP(
n_neighbors=10,
min_dist=0.01,
random_state=42,
n_epochs=100,
# force_approximation_algorithm=True,
).fit(data)
new_data = sparse.csr_matrix(iris.data[~iris_selection])
assert sparse.issparse(new_data)
embedding = fitter.transform(new_data)
trust = trustworthiness(new_data, embedding, n_neighbors=10)
assert (
trust >= 0.80
), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)
# UMAP precomputed metric transform on iris
# ----------------------
def test_precomputed_transform_on_iris(iris, iris_selection):
data = iris.data[iris_selection]
distance_matrix = squareform(pdist(data))
fitter = UMAP(
n_neighbors=10,
min_dist=0.01,
random_state=42,
n_epochs=100,
metric="precomputed",
).fit(distance_matrix)
new_data = iris.data[~iris_selection]
new_distance_matrix = cdist(new_data, data)
embedding = fitter.transform(new_distance_matrix)
trust = trustworthiness(new_data, embedding, n_neighbors=10)
assert (
trust >= 0.85
), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)
# UMAP precomputed metric transform on iris with sparse distances
# ----------------------
def test_precomputed_sparse_transform_on_iris(iris, iris_selection):
data = iris.data[iris_selection]
distance_matrix = sparse.csr_matrix(squareform(pdist(data)))
fitter = UMAP(
n_neighbors=10,
min_dist=0.01,
random_state=42,
n_epochs=100,
metric="precomputed",
).fit(distance_matrix)
new_data = iris.data[~iris_selection]
new_distance_matrix = sparse.csr_matrix(cdist(new_data, data))
embedding = fitter.transform(new_distance_matrix)
trust = trustworthiness(new_data, embedding, n_neighbors=10)
assert (
trust >= 0.85
), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)
# UMAP Clusterability on Iris
# ---------------------------
def test_umap_clusterability_on_supervised_iris(supervised_iris_model, iris):
embedding = supervised_iris_model.embedding_
clusters = KMeans(3).fit_predict(embedding)
assert adjusted_rand_score(clusters, iris.target) >= 0.95
# UMAP Inverse transform on Iris
# ------------------------------
def test_umap_inverse_transform_on_iris(iris, iris_model):
highd_tree = KDTree(iris.data)
fitter = iris_model
lowd_tree = KDTree(fitter.embedding_)
for i in range(1, 150, 20):
query_point = fitter.embedding_[i]
near_points = lowd_tree.query([query_point], k=5, return_distance=False)
centroid = np.mean(np.squeeze(fitter.embedding_[near_points]), axis=0)
highd_centroid = fitter.inverse_transform([centroid])
highd_near_points = highd_tree.query(
highd_centroid, k=10, return_distance=False
)
assert np.intersect1d(near_points, highd_near_points[0]).shape[0] >= 3
def test_precomputed_knn_on_iris(iris, iris_selection, iris_subset_model):
# this to compare two similarity graphs which should be nearly the same
def rms(a, b):
return np.sqrt(np.mean(np.square(a - b)))
data = iris.data[iris_selection]
new_data = iris.data[~iris_selection]
knn = nearest_neighbors(
data,
n_neighbors=10,
metric="euclidean",
metric_kwds=None,
angular=False,
random_state=42,
)
# repeated UMAP arguments we don't want to mis-specify
umap_args = dict(
n_neighbors=iris_subset_model.n_neighbors,
random_state=iris_subset_model.random_state,
n_jobs=1,
min_dist=iris_subset_model.min_dist,
)
# force_approximation_algorithm parameter is ignored when a precomputed knn is used
fitter_with_precomputed_knn = UMAP(
**umap_args,
precomputed_knn=knn,
force_approximation_algorithm=False,
).fit(data)
# embeddings and similarity graph are NOT the same due to choices of nearest
# neighbor in non-exact case: similarity graph is most stable for comparing output
# threshold for similarity in graph empirically chosen by comparing the iris subset
# model with force_approximation_algorithm=True and different random seeds
assert rms(fitter_with_precomputed_knn.graph_, iris_subset_model.graph_) < 0.005
with pytest.warns(Warning, match="transforming new data") as record:
fitter_ignoring_force_approx = UMAP(
**umap_args,
precomputed_knn=(knn[0], knn[1]),
).fit(data)
assert len(record) >= 1
np.testing.assert_array_equal(
fitter_ignoring_force_approx.embedding_, fitter_with_precomputed_knn.embedding_
)
# #848 (continued): if you don't have a search index, attempting to transform
# will raise an error
with pytest.raises(NotImplementedError, match="search index"):
_ = fitter_ignoring_force_approx.transform(new_data)
# force_approximation_algorithm parameter is ignored
with pytest.warns(Warning, match="transforming new data") as record:
fitter_ignoring_force_approx_True = UMAP(
**umap_args,
precomputed_knn=(knn[0], knn[1]),
force_approximation_algorithm=True,
).fit(data)
assert len(record) >= 1
np.testing.assert_array_equal(
fitter_ignoring_force_approx_True.embedding_, fitter_ignoring_force_approx.embedding_
)
|