File: test_umap_on_iris.py

package info (click to toggle)
umap-learn 0.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,284 kB
  • sloc: python: 9,863; sh: 87; makefile: 20
file content (285 lines) | stat: -rw-r--r-- 9,590 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from umap import UMAP
from umap.umap_ import nearest_neighbors
from scipy import sparse
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import adjusted_rand_score
from sklearn.neighbors import KDTree
from scipy.spatial.distance import cdist, pdist, squareform
import pytest
import warnings

try:
    # works for sklearn>=0.22
    from sklearn.manifold import trustworthiness
except ImportError:
    # this is to comply with requirements (scikit-learn>=0.20)
    # More recent versions of sklearn have exposed trustworthiness
    # in top level module API
    # see: https://github.com/scikit-learn/scikit-learn/pull/15337
    from sklearn.manifold.t_sne import trustworthiness

# ===================================================
#  UMAP Test cases on IRIS Dataset
# ===================================================

# UMAP Trustworthiness on iris
# ----------------------------
def test_umap_trustworthiness_on_iris(iris, iris_model):
    embedding = iris_model.embedding_
    trust = trustworthiness(iris.data, embedding, n_neighbors=10)
    assert (
        trust >= 0.97
    ), "Insufficiently trustworthy embedding for" "iris dataset: {}".format(trust)


def test_initialized_umap_trustworthiness_on_iris(iris):
    data = iris.data
    embedding = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        init=data[:, 2:],
        n_epochs=200,
        random_state=42,
    ).fit_transform(data)
    trust = trustworthiness(iris.data, embedding, n_neighbors=10)
    assert (
        trust >= 0.97
    ), "Insufficiently trustworthy embedding for" "iris dataset: {}".format(trust)


def test_umap_trustworthiness_on_sphere_iris(
    iris,
):
    data = iris.data
    embedding = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        n_epochs=200,
        random_state=42,
        output_metric="haversine",
    ).fit_transform(data)
    # Since trustworthiness doesn't support haversine, project onto
    # a 3D embedding of the sphere and use cosine distance
    r = 3
    projected_embedding = np.vstack(
        [
            r * np.sin(embedding[:, 0]) * np.cos(embedding[:, 1]),
            r * np.sin(embedding[:, 0]) * np.sin(embedding[:, 1]),
            r * np.cos(embedding[:, 0]),
        ]
    ).T
    trust = trustworthiness(
        iris.data, projected_embedding, n_neighbors=10, metric="cosine"
    )
    assert (
        trust >= 0.65
    ), "Insufficiently trustworthy spherical embedding for iris dataset: {}".format(
        trust
    )


# UMAP Transform on iris
# ----------------------
def test_umap_transform_on_iris(iris, iris_subset_model, iris_selection):
    fitter = iris_subset_model

    new_data = iris.data[~iris_selection]
    embedding = fitter.transform(new_data)

    trust = trustworthiness(new_data, embedding, n_neighbors=10)
    assert (
        trust >= 0.85
    ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)


def test_umap_transform_on_iris_w_pynndescent(iris, iris_selection):
    data = iris.data[iris_selection]
    fitter = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        n_epochs=100,
        random_state=42,
        force_approximation_algorithm=True,
    ).fit(data)

    new_data = iris.data[~iris_selection]
    embedding = fitter.transform(new_data)

    trust = trustworthiness(new_data, embedding, n_neighbors=10)
    assert (
        trust >= 0.85
    ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)


def test_umap_transform_on_iris_modified_dtype(iris, iris_subset_model, iris_selection):
    fitter = iris_subset_model
    fitter.embedding_ = fitter.embedding_.astype(np.float64)

    new_data = iris.data[~iris_selection]
    embedding = fitter.transform(new_data)

    trust = trustworthiness(new_data, embedding, n_neighbors=10)
    assert (
        trust >= 0.8
    ), "Insufficiently trustworthy transform for iris dataset: {}".format(trust)


def test_umap_sparse_transform_on_iris(iris, iris_selection):
    data = sparse.csr_matrix(iris.data[iris_selection])
    assert sparse.issparse(data)
    fitter = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        random_state=42,
        n_epochs=100,
        # force_approximation_algorithm=True,
    ).fit(data)

    new_data = sparse.csr_matrix(iris.data[~iris_selection])
    assert sparse.issparse(new_data)
    embedding = fitter.transform(new_data)

    trust = trustworthiness(new_data, embedding, n_neighbors=10)
    assert (
        trust >= 0.80
    ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)


# UMAP precomputed metric transform on iris
# ----------------------
def test_precomputed_transform_on_iris(iris, iris_selection):
    data = iris.data[iris_selection]
    distance_matrix = squareform(pdist(data))

    fitter = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        random_state=42,
        n_epochs=100,
        metric="precomputed",
    ).fit(distance_matrix)

    new_data = iris.data[~iris_selection]
    new_distance_matrix = cdist(new_data, data)
    embedding = fitter.transform(new_distance_matrix)

    trust = trustworthiness(new_data, embedding, n_neighbors=10)
    assert (
        trust >= 0.85
    ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)


# UMAP precomputed metric transform on iris with sparse distances
# ----------------------
def test_precomputed_sparse_transform_on_iris(iris, iris_selection):
    data = iris.data[iris_selection]
    distance_matrix = sparse.csr_matrix(squareform(pdist(data)))

    fitter = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        random_state=42,
        n_epochs=100,
        metric="precomputed",
    ).fit(distance_matrix)

    new_data = iris.data[~iris_selection]
    new_distance_matrix = sparse.csr_matrix(cdist(new_data, data))
    embedding = fitter.transform(new_distance_matrix)

    trust = trustworthiness(new_data, embedding, n_neighbors=10)
    assert (
        trust >= 0.85
    ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust)


# UMAP Clusterability on Iris
# ---------------------------
def test_umap_clusterability_on_supervised_iris(supervised_iris_model, iris):
    embedding = supervised_iris_model.embedding_
    clusters = KMeans(3).fit_predict(embedding)
    assert adjusted_rand_score(clusters, iris.target) >= 0.95


# UMAP Inverse transform on Iris
# ------------------------------
def test_umap_inverse_transform_on_iris(iris, iris_model):
    highd_tree = KDTree(iris.data)
    fitter = iris_model
    lowd_tree = KDTree(fitter.embedding_)
    for i in range(1, 150, 20):
        query_point = fitter.embedding_[i]
        near_points = lowd_tree.query([query_point], k=5, return_distance=False)
        centroid = np.mean(np.squeeze(fitter.embedding_[near_points]), axis=0)
        highd_centroid = fitter.inverse_transform([centroid])
        highd_near_points = highd_tree.query(
            highd_centroid, k=10, return_distance=False
        )
        assert np.intersect1d(near_points, highd_near_points[0]).shape[0] >= 3


def test_precomputed_knn_on_iris(iris, iris_selection, iris_subset_model):
    # this to compare two similarity graphs which should be nearly the same
    def rms(a, b):
        return np.sqrt(np.mean(np.square(a - b)))

    data = iris.data[iris_selection]
    new_data = iris.data[~iris_selection]

    knn = nearest_neighbors(
        data,
        n_neighbors=10,
        metric="euclidean",
        metric_kwds=None,
        angular=False,
        random_state=42,
    )

    # repeated UMAP arguments we don't want to mis-specify
    umap_args = dict(
        n_neighbors=iris_subset_model.n_neighbors,
        random_state=iris_subset_model.random_state,
        n_jobs=1,
        min_dist=iris_subset_model.min_dist,
    )

    # force_approximation_algorithm parameter is ignored when a precomputed knn is used
    fitter_with_precomputed_knn = UMAP(
        **umap_args,
        precomputed_knn=knn,
        force_approximation_algorithm=False,
    ).fit(data)

    # embeddings and similarity graph are NOT the same due to choices of nearest
    # neighbor in non-exact case: similarity graph is most stable for comparing output
    # threshold for similarity in graph empirically chosen by comparing the iris subset
    # model with force_approximation_algorithm=True and different random seeds
    assert rms(fitter_with_precomputed_knn.graph_, iris_subset_model.graph_) < 0.005

    with pytest.warns(Warning, match="transforming new data") as record:
        fitter_ignoring_force_approx = UMAP(
            **umap_args,
            precomputed_knn=(knn[0], knn[1]),
        ).fit(data)
        assert len(record) >= 1
    np.testing.assert_array_equal(
        fitter_ignoring_force_approx.embedding_, fitter_with_precomputed_knn.embedding_
    )

    # #848 (continued): if you don't have a search index, attempting to transform
    # will raise an error
    with pytest.raises(NotImplementedError, match="search index"):
        _ = fitter_ignoring_force_approx.transform(new_data)

    # force_approximation_algorithm parameter is ignored
    with pytest.warns(Warning, match="transforming new data") as record:
        fitter_ignoring_force_approx_True = UMAP(
            **umap_args,
            precomputed_knn=(knn[0], knn[1]),
            force_approximation_algorithm=True,
        ).fit(data)
        assert len(record) >= 1
    np.testing.assert_array_equal(
        fitter_ignoring_force_approx_True.embedding_, fitter_ignoring_force_approx.embedding_
    )