File: test_umap_trustworthiness.py

package info (click to toggle)
umap-learn 0.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,284 kB
  • sloc: python: 9,863; sh: 87; makefile: 20
file content (158 lines) | stat: -rw-r--r-- 5,423 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from umap import UMAP
from sklearn.datasets import make_blobs
from sklearn.metrics import pairwise_distances
import numpy as np
import scipy.sparse

try:
    # works for sklearn>=0.22
    from sklearn.manifold import trustworthiness
except ImportError:
    # this is to comply with requirements (scikit-learn>=0.20)
    # More recent versions of sklearn have exposed trustworthiness
    # in top level module API
    # see: https://github.com/scikit-learn/scikit-learn/pull/15337
    from sklearn.manifold.t_sne import trustworthiness

# ===================================================
#  UMAP Trustworthiness Test cases
# ===================================================


def test_umap_sparse_trustworthiness(sparse_test_data):
    embedding = UMAP(n_neighbors=10, n_epochs=100).fit_transform(sparse_test_data[:100])
    trust = trustworthiness(sparse_test_data[:100].toarray(), embedding, n_neighbors=10)
    assert (
        trust >= 0.88
    ), "Insufficiently trustworthy embedding for sparse test dataset: {}".format(trust)


def test_umap_trustworthiness_fast_approx(nn_data):
    data = nn_data[:50]
    embedding = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        random_state=42,
        n_epochs=100,
        force_approximation_algorithm=True,
    ).fit_transform(data)
    trust = trustworthiness(data, embedding, n_neighbors=10)
    assert (
        trust >= 0.8
    ), "Insufficiently trustworthy embedding for" "nn dataset: {}".format(trust)


def test_umap_trustworthiness_random_init(nn_data):
    data = nn_data[:50]
    embedding = UMAP(
        n_neighbors=10, min_dist=0.01, random_state=42, n_epochs=100, init="random"
    ).fit_transform(data)
    trust = trustworthiness(data, embedding, n_neighbors=10)
    assert (
        trust >= 0.8
    ), "Insufficiently trustworthy embedding for" "nn dataset: {}".format(trust)


def test_supervised_umap_trustworthiness():
    data, labels = make_blobs(50, cluster_std=0.5, random_state=42)
    embedding = UMAP(
        n_neighbors=10, min_dist=0.01, random_state=42, n_epochs=100
    ).fit_transform(data, labels)
    trust = trustworthiness(data, embedding, n_neighbors=10)
    assert (
        trust >= 0.95
    ), "Insufficiently trustworthy embedding for" "blobs dataset: {}".format(trust)


def test_semisupervised_umap_trustworthiness():
    data, labels = make_blobs(50, cluster_std=0.5, random_state=42)
    labels[10:30] = -1
    embedding = UMAP(
        n_neighbors=10, min_dist=0.01, random_state=42, n_epochs=100
    ).fit_transform(data, labels)
    trust = trustworthiness(data, embedding, n_neighbors=10)
    assert (
        trust >= 0.95
    ), "Insufficiently trustworthy embedding for" "blobs dataset: {}".format(trust)


def test_metric_supervised_umap_trustworthiness():
    data, labels = make_blobs(50, cluster_std=0.5, random_state=42)
    embedding = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        target_metric="l1",
        target_weight=0.8,
        n_epochs=100,
        random_state=42,
    ).fit_transform(data, labels)
    trust = trustworthiness(data, embedding, n_neighbors=10)
    assert (
        trust >= 0.95
    ), "Insufficiently trustworthy embedding for" "blobs dataset: {}".format(trust)


def test_string_metric_supervised_umap_trustworthiness():
    data, labels = make_blobs(50, cluster_std=0.5, random_state=42)
    labels = np.array(["this", "that", "other"])[labels]
    embedding = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        target_metric="string",
        target_weight=0.8,
        n_epochs=100,
        random_state=42,
    ).fit_transform(data, labels)
    trust = trustworthiness(data, embedding, n_neighbors=10)
    assert (
        trust >= 0.95
    ), "Insufficiently trustworthy embedding for" "blobs dataset: {}".format(trust)


def test_discrete_metric_supervised_umap_trustworthiness():
    data, labels = make_blobs(50, cluster_std=0.5, random_state=42)
    embedding = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        target_metric="ordinal",
        target_weight=0.8,
        n_epochs=100,
        random_state=42,
    ).fit_transform(data, labels)
    trust = trustworthiness(data, embedding, n_neighbors=10)
    assert (
        trust >= 0.95
    ), "Insufficiently trustworthy embedding for" "blobs dataset: {}".format(trust)


def test_count_metric_supervised_umap_trustworthiness():
    data, labels = make_blobs(50, cluster_std=0.5, random_state=42)
    labels = (labels ** 2) + 2 * labels
    embedding = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        target_metric="count",
        target_weight=0.8,
        n_epochs=100,
        random_state=42,
    ).fit_transform(data, labels)
    trust = trustworthiness(data, embedding, n_neighbors=10)
    assert (
        trust >= 0.95
    ), "Insufficiently trustworthy embedding for" "blobs dataset: {}".format(trust)


def test_sparse_precomputed_metric_umap_trustworthiness():
    data, labels = make_blobs(50, cluster_std=0.5, random_state=42)
    dmat = scipy.sparse.csr_matrix(pairwise_distances(data))
    embedding = UMAP(
        n_neighbors=10,
        min_dist=0.01,
        random_state=42,
        n_epochs=100,
        metric="precomputed",
    ).fit_transform(dmat)
    trust = trustworthiness(data, embedding, n_neighbors=10)
    assert (
        trust >= 0.75
    ), "Insufficiently trustworthy embedding for" "nn dataset: {}".format(trust)