1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/* ========================================================================= */
/* === AMD_preprocess ====================================================== */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
/* AMD Version 1.1 (Jan. 21, 2004), Copyright (c) 2004 by Timothy A. Davis, */
/* Patrick R. Amestoy, and Iain S. Duff. See ../README for License. */
/* email: davis@cise.ufl.edu CISE Department, Univ. of Florida. */
/* web: http://www.cise.ufl.edu/research/sparse/amd */
/* ------------------------------------------------------------------------- */
/* Sorts, removes duplicate entries, and transposes from the nonzero pattern of
* a column-form matrix A, to obtain the matrix R.
* See amd.h for a complete description of AMD_preprocess
*/
#include "amd_internal.h"
GLOBAL Int AMD_preprocess /* returns AMD_OK if input is OK, AMD_INVALID
* if the matrix is invalid, or AMD_OUT_OF_MEMORY
* if out of memory for the 2n workspace. */
(
Int n, /* input matrix: A is n-by-n */
const Int Ap [ ], /* size n+1 */
const Int Ai [ ], /* size nz = Ap [n] */
/* output matrix R: */
Int Rp [ ], /* size n+1 */
Int Ri [ ] /* size nz (or less, if duplicates present) */
)
{
/* --------------------------------------------------------------------- */
/* local variables */
/* --------------------------------------------------------------------- */
Int *Flag, *W ;
/* --------------------------------------------------------------------- */
/* check inputs (note: fewer restrictions than AMD_order) */
/* --------------------------------------------------------------------- */
if (!AMD_preprocess_valid (n, Ap, Ai) || !Ri || !Rp)
{
return (AMD_INVALID) ;
}
/* --------------------------------------------------------------------- */
/* allocate workspace */
/* --------------------------------------------------------------------- */
W = (Int *) ALLOCATE (MAX (n,1) * sizeof (Int)) ;
if (!W)
{
return (AMD_OUT_OF_MEMORY) ;
}
Flag = (Int *) ALLOCATE (MAX (n,1) * sizeof (Int)) ;
if (!Flag)
{
FREE (W) ;
return (AMD_OUT_OF_MEMORY) ;
}
/* --------------------------------------------------------------------- */
/* preprocess the matrix: sort, remove duplicates, and transpose */
/* --------------------------------------------------------------------- */
AMD_wpreprocess (n, Ap, Ai, Rp, Ri, W, Flag) ;
/* --------------------------------------------------------------------- */
/* free the workspace */
/* --------------------------------------------------------------------- */
FREE (W) ;
FREE (Flag) ;
return (AMD_OK) ;
}
/* ========================================================================= */
/* === AMD_wpreprocess ===================================================== */
/* ========================================================================= */
/* The AMD_wpreprocess routine is not user-callable. It does not check its
* input for errors or allocate workspace (that is done by the user-callable
* AMD_preprocess routine). It does handle the n=0 case. */
GLOBAL void AMD_wpreprocess
(
Int n, /* input matrix: A is n-by-n */
const Int Ap [ ], /* size n+1 */
const Int Ai [ ], /* size nz = Ap [n] */
/* output matrix R: */
Int Rp [ ], /* size n+1 */
Int Ri [ ], /* size nz (or less, if duplicates present) */
Int W [ ], /* workspace of size n */
Int Flag [ ] /* workspace of size n */
)
{
/* --------------------------------------------------------------------- */
/* local variables */
/* --------------------------------------------------------------------- */
Int i, j, p, p2 ;
/* --------------------------------------------------------------------- */
/* count the entries in each row of A (excluding duplicates) */
/* --------------------------------------------------------------------- */
for (i = 0 ; i < n ; i++)
{
W [i] = 0 ; /* # of nonzeros in row i (excl duplicates) */
Flag [i] = EMPTY ; /* Flag [i] = j if i appears in column j */
}
for (j = 0 ; j < n ; j++)
{
p2 = Ap [j+1] ;
for (p = Ap [j] ; p < p2 ; p++)
{
i = Ai [p] ;
if (Flag [i] != j)
{
/* row index i has not yet appeared in column j */
W [i]++ ; /* one more entry in row i */
Flag [i] = j ; /* flag row index i as appearing in col j*/
}
}
}
/* --------------------------------------------------------------------- */
/* compute the row pointers for R */
/* --------------------------------------------------------------------- */
Rp [0] = 0 ;
for (i = 0 ; i < n ; i++)
{
Rp [i+1] = Rp [i] + W [i] ;
}
for (i = 0 ; i < n ; i++)
{
W [i] = Rp [i] ;
Flag [i] = EMPTY ;
}
/* --------------------------------------------------------------------- */
/* construct the row form matrix R */
/* --------------------------------------------------------------------- */
/* R = row form of pattern of A */
for (j = 0 ; j < n ; j++)
{
p2 = Ap [j+1] ;
for (p = Ap [j] ; p < p2 ; p++)
{
i = Ai [p] ;
if (Flag [i] != j)
{
/* row index i has not yet appeared in column j */
Ri [W [i]++] = j ; /* put col j in row i */
Flag [i] = j ; /* flag row index i as appearing in col j*/
}
}
}
#ifndef NDEBUG
for (j = 0 ; j < n ; j++)
{
ASSERT (W [j] == Rp [j+1]) ;
}
ASSERT (AMD_valid (n, n, Rp, Ri)) ;
#endif
}
/* ========================================================================= */
/* === AMD_preprocess_valid ================================================ */
/* ========================================================================= */
/* Not user-callable. Checks a matrix and returns TRUE if it is valid as input
* to AMD_wpreprocess, FALSE otherwise. */
GLOBAL Int AMD_preprocess_valid
(
Int n,
const Int Ap [ ],
const Int Ai [ ]
)
{
Int i, j, p, nz ;
if (n < 0 || !Ai || !Ap)
{
return (FALSE) ;
}
nz = Ap [n] ;
if (Ap [0] != 0 || nz < 0)
{
/* column pointers must start at Ap [0] = 0, and Ap [n] must be >= 0 */
AMD_DEBUG0 (("column 0 pointer bad or nz < 0\n")) ;
return (FALSE) ;
}
for (j = 0 ; j < n ; j++)
{
if (Ap [j] > Ap [j+1])
{
/* column pointers must be ascending */
AMD_DEBUG0 (("column "ID" pointer bad\n", j)) ;
return (FALSE) ;
}
}
for (p = 0 ; p < nz ; p++)
{
i = Ai [p] ;
AMD_DEBUG3 (("row: "ID"\n", i)) ;
if (i < 0 || i >= n)
{
/* row index out of range */
AMD_DEBUG0 (("index out of range, col "ID" row "ID"\n", j, i)) ;
return (FALSE) ;
}
}
return (TRUE) ;
}
|