1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
function umfpack_demo
% UMFPACK DEMO
%
% A demo of UMFPACK for MATLAB.
%
% See also umfpack, umfpack_make, umfpack_details, umfpack_report,
% and umfpack_simple.
% UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis.
% All Rights Reserved. Type umfpack_details for License.
%-------------------------------------------------------------------------------
% get default control parameters
%-------------------------------------------------------------------------------
control = umfpack ;
fprintf ('\nEnter the printing level for UMFPACK''s output statistics:\n') ;
fprintf ('0: none, 1: errors only, 2: statistics, 4: print some of outputs\n') ;
c = input ('5: print all output [default is 1]: ') ;
if (isempty (c))
c = 1 ;
end
control (1) = c ;
%-------------------------------------------------------------------------------
% solve a simple system
%-------------------------------------------------------------------------------
fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('Factor and solve a small system, Ax=b, using default parameters\n') ;
if (control (1) > 1)
fprintf ('(except for verbose printing enabled)\n') ;
end
load west0067
A = Problem.A ;
n = size (A, 1) ;
b = rand (n, 1) ;
fprintf ('Solving Ax=b via UMFPACK:\n') ;
[xu, info] = umfpack (A, '\', b, control) ;
x = xu ;
fprintf ('Solving Ax=b via MATLAB:\n') ;
xm = A\b ;
x = xm ;
fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ...
norm (xu - xm, Inf)) ;
%-------------------------------------------------------------------------------
% spy the results
%-------------------------------------------------------------------------------
figure (1)
clf
subplot (2,3,1)
spy (A)
title ('The matrix A') ;
subplot (2,3,2)
[P1, Q1, Fr, Ch, Info] = umfpack (A, 'symbolic') ;
treeplot (Fr (1:end-1,2)') ;
title ('Supernodal column elimination tree') ;
subplot (2,3,3)
spy (P1 * A * Q1)
title ('A, with initial row and column order') ;
subplot (2,3,4)
fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('\nFactorizing [L, U, P, Q, R] = umfpack (A)\n') ;
[L, U, P, Q, R] = umfpack (A) ;
spy (P*A*Q)
title ('A, with final row/column order') ;
fprintf ('\nP * (R\\A) * Q - L*U should be zero:\n') ;
fprintf ('norm (P*(R\\A)*Q - L*U, 1) = %g (exact) %g (estimated)\n', ...
norm (P * (R\A) * Q - L*U, 1), lu_normest (P * (R\A) * Q, L, U)) ;
fprintf ('\nSolution to Ax=b via UMFPACK factorization:\n') ;
fprintf ('x = Q * (U \\ (L \\ (P * (R \\ b))))\n') ;
xu = Q * (U \ (L \ (P * (R \ b)))) ;
x = xu ;
fprintf ('\nUMFPACK flop count: %d\n', luflop (L, U)) ;
subplot (2,3,5)
spy (spones (L) + spones (U))
title ('UMFPACK LU factors') ;
subplot (2,3,6)
fprintf ('\nFactorizing [L, U, P] = lu (A (:, q))\n') ;
fprintf ('If you are using a version of MATLAB prior to V6.0, then the\n') ;
fprintf ('following statement (q = colamd (A)) may fail. Either download\n');
fprintf ('colamd from http://www.cise.ufl.edu/research/sparse, upgrade to\n') ;
fprintf ('MATLAB V6.0 or later, or replace the statement with\n') ;
fprintf ('q = colmmd (A) ;\n') ;
try
q = colamd (A) ;
catch
fprintf ('\n *** colamd not found, using colmmd instead *** \n') ;
q = colmmd (A) ;
end
[L, U, P] = lu (A (:,q)) ;
spy (spones (L) + spones (U))
title ('MATLAB LU factors') ;
fprintf ('\nSolution to Ax=b via MATLAB factorization:\n') ;
fprintf ('x = U \\ (L \\ (P * b)) ; x (q) = x ;\n') ;
xm = U \ (L \ (P * b)) ;
xm (q) = xm ;
fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ...
norm (xu - xm, Inf)) ;
fprintf ('\nMATLAB LU flop count: %d\n', luflop (L, U)) ;
%-------------------------------------------------------------------------------
% solve A'x=b
%-------------------------------------------------------------------------------
fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('Solve A''x=b:\n') ;
fprintf ('Solving A''x=b via UMFPACK:\n') ;
[xu, info] = umfpack (b', '/', A, control) ;
xu = xu' ;
fprintf ('Solving A''x=b via MATLAB:\n') ;
xm = (b'/A)' ;
x = xm ;
fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ...
norm (xu - xm, Inf)) ;
%-------------------------------------------------------------------------------
% factor A' and then solve Ax=b using the factors of A'
%-------------------------------------------------------------------------------
fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('Compute C = A'', and compute the LU factorization of C.\n') ;
fprintf ('Factorizing A'' can sometimes be better than factorizing A itself\n');
fprintf ('(less work and memory usage). Solve C''x=b; the solution is the\n') ;
fprintf ('same as the solution to Ax=b for the original A.\n');
C = A' ;
% factorize C (P,Q) = L*U
[L, U, P, Q, R, info] = umfpack (C, control) ;
fprintf ('\nP * (R\\C) * Q - L*U should be zero:\n') ;
fprintf ('norm (P*(R\\C)*Q - L*U, 1) = %g (exact) %g (estimated)\n', ...
norm (P * (R\C) * Q - L*U, 1), lu_normest (P * (R\C) * Q, L, U)) ;
fprintf ('\nSolution to Ax=b via UMFPACK, using the factors of C:\n') ;
fprintf ('x = R \\ (P'' * (L'' \\ (U'' \\ (Q'' * b)))) ;\n') ;
xu = R \ (P' * (L' \ (U' \ (Q' * b)))) ;
x = xu ;
fprintf ('Solution to Ax=b via MATLAB:\n') ;
xm = A\b ;
x = xm ;
fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ...
norm (xu - xm, Inf)) ;
%-------------------------------------------------------------------------------
% solve Ax=B
%-------------------------------------------------------------------------------
fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('\nSolve AX=B, where B is n-by-10, and sparse\n') ;
B = sprandn (n, 10, 0.05) ;
XU = umfpack_solve (A, '\', B, control) ;
XM = A\B ;
fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ...
norm (XU - XM, Inf)) ;
fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('\nSolve AX=B, where B is n-by-10, and sparse, using umfpack_btf\n') ;
XU = umfpack_btf (A, B, control) ;
fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ...
norm (XU - XM, Inf)) ;
fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('\nSolve A''X=B, where B is n-by-10, and sparse\n') ;
XU = umfpack_solve (B', '/', A, control) ;
XM = B'/A ;
fprintf ('Difference between UMFPACK and MATLAB solution: %g\n', ...
norm (XU - XM, Inf)) ;
%-------------------------------------------------------------------------------
% compute the determinant
%-------------------------------------------------------------------------------
fprintf ('\n--------------------------------------------------------------\n') ;
fprintf ('det(A): %g UMFPACK determinant: %g\n', det (A), umfpack (A, 'det')) ;
|