1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
% UMFPACK_TEST: test UMFPACK solve: b/A, A\b with iterative refinement
% Requires the UFsparse package for downloading matrices from the UF
% sparse matrix library.
%
% UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis.
% All Rights Reserved. Type umfpack_details for License.
index = UFget ;
f = find (index.nrows == index.ncols) ;
[ignore, i] = sort (index.nrows (f)) ;
f = f (i) ;
Control = umfpack ;
Control (1) = 0 ;
warning ('off', 'all') ;
figure (1)
clf
for i = f
fprintf ('\nmatrix: %s %s %d\n', index.Group{i}, index.Name{i}, index.nrows(i)) ;
Prob = UFget (i) ;
A = Prob.A ;
n = size (A,1) ;
b = rand (1,n) ;
c = b' ;
try
%-----------------------------------------------------------------------
% symbolic factorization
%-----------------------------------------------------------------------
[P1, Q1, Fr, Ch, Info] = umfpack (A, 'symbolic') ;
subplot (2,2,1)
spy (A)
title ('A')
subplot (2,2,2)
treeplot (Fr (1:end-1,2)') ;
title ('supercolumn etree')
%-----------------------------------------------------------------------
% P(R\A)Q = LU
%-----------------------------------------------------------------------
[L,U,P,Q,R,Info] = umfpack (A) ;
err = lu_normest (P*(R\A)*Q, L, U) ;
fprintf ('norm est PR\\AQ-LU: %g relative: %g\n', ...
err, err / norm (A,1)) ;
subplot (2,2,3)
spy (P*A*Q)
title ('PAQ') ;
cs = Info (57) ;
rs = Info (58) ;
subplot (2,2,4)
hold off
spy (L|U)
hold on
if (cs > 0)
plot ([0 cs n n 0] + .5, [0 cs cs 0 0]+.5, 'c') ;
end
if (rs > 0)
plot ([0 rs rs 0 0] + cs +.5, [cs cs+rs n n cs]+.5, 'r') ;
end
title ('LU factors')
drawnow
%-----------------------------------------------------------------------
% PAQ = LU
%-----------------------------------------------------------------------
[L,U,P,Q] = umfpack (A) ;
err = lu_normest (P*A*Q, L, U) ;
fprintf ('norm est PAQ-LU: %g relative: %g\n', ...
err, err / norm (A,1)) ;
%-----------------------------------------------------------------------
% solve
%-----------------------------------------------------------------------
x1 = b/A ;
y1 = A\c ;
m1 = norm (b-x1*A) ;
m2 = norm (A*y1-c) ;
% factor the transpose
Control (8) = 2 ;
[x, info] = umfpack (A', '\', c, Control) ;
lunz0 = info (44) + info (45) - info (67) ;
r = norm (A'*x-c) ;
fprintf (':: %8.2e matlab: %8.2e %8.2e\n', r, m1, m2) ;
% factor the original matrix and solve xA=b
for ir = 0:4
Control (8) = ir ;
[x, info] = umfpack (b, '/', A, Control) ;
r = norm (b-x*A) ;
if (ir == 0)
lunz1 = info (44) + info (45) - info (67) ;
end
fprintf ('%d: %8.2e %d %d\n', ir, r, info (81), info (82)) ;
end
% factor the original matrix and solve Ax=b
for ir = 0:4
Control (8) = ir ;
[x, info] = umfpack (A, '\', c, Control) ;
r = norm (A*x-c) ;
fprintf ('%d: %8.2e %d %d\n', ir, r, info (81), info (82)) ;
end
fprintf ('lunz trans %12d no trans: %12d trans/notrans: %10.4f\n', ...
lunz0, lunz1, lunz0 / lunz1) ;
%-----------------------------------------------------------------------
% get the determinant
%-----------------------------------------------------------------------
det1 = det (A) ;
det2 = umfpack (A, 'det') ;
[det3 dexp3] = umfpack (A, 'det') ;
err = abs (det1-det2) ;
err3 = abs (det1 - (det3 * 10^dexp3)) ;
denom = det1 ;
if (denom == 0)
denom = 1 ;
end
err = err / denom ;
err3 = err3 / denom ;
fprintf ('det: %24.16e + (%24.16e)i MATLAB\n', real(det1), imag(det1)) ;
fprintf ('det: %24.16e + (%24.16e)i umfpack\n',real(det2), imag(det2)) ;
fprintf ('det: (%24.16e + (%24.16e)i) * 10^(%g) umfpack\n', real(det3), imag(det3), dexp3) ;
fprintf ('diff %g %g\n', err, err3) ;
catch
fprintf ('failed\n') ;
end
% pause
end
|