File: user_guide.rst

package info (click to toggle)
uncertainties 2.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 1,232 kB
  • ctags: 916
  • sloc: python: 3,931; makefile: 86
file content (647 lines) | stat: -rw-r--r-- 20,207 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
.. index:: user guide
.. _user guide:

==========
User Guide
==========


Basic setup
===========

Basic mathematical operations involving numbers with uncertainties
only require a simple import:

>>> from uncertainties import ufloat

The :func:`ufloat` function creates numbers with uncertainties. Existing 
calculation code can usually run with no or little modification and 
automatically produce results with uncertainties.

.. The "import uncertainties" is put here because some examples requires
   uncertainties to have been imported (and not only ufloat).

The :mod:`uncertainties` module contains other features, which can be
made accessible through

>>> import uncertainties

The :mod:`uncertainties` package also contains sub-modules for
:ref:`advanced mathematical functions <advanced math operations>`, and
:doc:`arrays and matrices <numpy_guide>`.

.. index::
   pair: number with uncertainty; creation

Creating numbers with uncertainties
===================================

Numbers with uncertainties can be input either numerically, or through
one of many string representations, so that files containing numbers
with uncertainties can easily be parsed.  Thus, x = 0.20±0.01 can be
expressed in many convenient ways, including:

>>> x = ufloat(0.20, 0.01)  # x = 0.20+/-0.01

>>> from uncertainties import ufloat_fromstr
>>> x = ufloat_fromstr("0.20+/-0.01")
>>> x = ufloat_fromstr("(2+/-0.1)e-01")  # Factored exponent
>>> x = ufloat_fromstr("0.20(1)")  # Short-hand notation
>>> x = ufloat_fromstr("20(1)e-2")  # Exponent notation
>>> x = ufloat_fromstr(u"0.20±0.01")  # Pretty-print form
>>> x = ufloat_fromstr("0.20")  # Automatic uncertainty of +/-1 on last digit

More information can be obtained with ``pydoc uncertainties.ufloat``
and ``pydoc uncertainties.ufloat_fromstr`` ("20(1)×10\ :sup:`-2`\ " is
also recognized, etc.).


Basic math
==========

Calculations can be performed directly, as with regular real numbers:

>>> square = x**2
>>> print square
0.040+/-0.004


.. index:: mathematical operation; on a scalar, umath

.. _advanced math operations:

Mathematical operations
=======================

Besides being able to apply basic mathematical operations to numbers
with uncertainty, this package provides generalizations of **most of
the functions from the standard** :mod:`math` **module**.  These
mathematical functions are found in the :mod:`uncertainties.umath`
module:

>>> from uncertainties.umath import *  # Imports sin(), etc.
>>> sin(x**2)
0.03998933418663417+/-0.003996800426643912

The list of available mathematical functions can be obtained with the
``pydoc uncertainties.umath`` command.

.. index:: arrays; simple use, matrices; simple use

.. _simple_array_use:

Arrays of numbers with uncertainties
====================================

It is possible to put numbers with uncertainties in NumPy_ arrays and
matrices:

>>> arr = numpy.array([ufloat(1, 0.01), ufloat(2, 0.1)])
>>> 2*arr
[2.0+/-0.02 4.0+/-0.2]
>>> print arr.sum()
3.00+/-0.10

Thus, usual operations on NumPy arrays can be performed transparently
even when these arrays contain numbers with uncertainties.

:doc:`More complex operations on NumPy arrays and matrices 
<numpy_guide>` can be
performed through the dedicated :mod:`uncertainties.unumpy` module.

.. index:: correlations; detailed example


Correlated variables
====================

Correlations between variables are **automatically handled** whatever
the number of variables involved, and whatever the complexity of the
calculation. For example, when :data:`x` is the number with
uncertainty defined above,

>>> square = x**2
>>> print square
0.040+/-0.004
>>> square - x*x
0.0+/-0
>>> y = x*x + 1
>>> y - square
1.0+/-0

The last two printed results above have a zero uncertainty despite the
fact that :data:`x`, :data:`y` and :data:`square` have a non-zero uncertainty: the
calculated functions give the same value for all samples of the random
variable :data:`x`.

Thanks to the automatic correlation handling, calculations can be
performed in as many steps as necessary, exactly as with simple
floats.  When various quantities are combined through mathematical
operations, the result is calculated by taking into account all the
correlations between the quantities involved.  All of this is done
completely **transparently**.

.. index::
   printing
   formatting

Printing
========

.. Overview:

Numbers with uncertainties can be printed conveniently:

>>> print x
0.200+/-0.010

The resulting form can generally be parsed back with
:func:`ufloat_fromstr` (except for the LaTeχ form).

.. Precision matching:

The nominal value and the uncertainty always have the **same
precision**.

.. Formatting method:

More **control over the format** can be obtained (in Python 2.6+)
through the usual :func:`format` method of strings:

>>> print 'Result = {:10.2f}'.format(x)
Result =       0.20+/-      0.01

(Python 2.6 requires ``'{0:10.2f}'`` instead, with the usual explicit
index. In Python 2.5 and earlier versions, :func:`str.format` is not
available, but one can use the :func:`format` method of numbers with
uncertainties instead: ``'Result = %s' % x.format('10.2f')``.)

.. Legacy formats and base syntax of the format specification:

**All the float format specifications** are accepted, except those
with the ``n`` format type. In particular, a fill character, an
alignment option, a sign or zero option, a width, or the ``%`` format
type are all supported.

.. Precision control:

It is possible to control the **number of significant digits of the
uncertainty** by adding the precision modifier ``u`` after the
precision (and before any valid float format type like ``f``, ``e``,
the empty format type, etc.):

>>> print '1 significant digit on the uncertainty: {:.1u}'.format(x)
1 significant digit on the uncertainty: 0.20+/-0.01
>>> print '3 significant digits on the uncertainty: {:.3u}'.format(x)
3 significant digits on the uncertainty: 0.2000+/-0.0100
>>> print '1 digit for the uncertainty, exponent notation: {:.1ue}'.format(x)
1 significant digit, exponent notation: (2.0+/-0.1)e-01
>>> print '1 digit for the uncertainty, percentage: {:.1u%}'.format(x)
1 significant digit, percentage: (20+/-1)%

The usual **float formats with a precision** retain their original
meaning (e.g. ``.2e`` uses two digits after the decimal point): code
that works with floats produces similar results when running with
numbers with uncertainties.

When **no explicit precision** is given, the number of significant digits
on the uncertainty is defined with the `Particle Data Group
<http://PDG.lbl.gov/2010/reviews/rpp2010-rev-rpp-intro.pdf>`_ rounding
rules (these rules keep the number of digits small, while preventing the
uncertainty from being displayed with a large relative error):

>>> print 'Automatic number of digits on the uncertainty: {}'.format(x)
Automatic number of digits on the uncertainty: 0.200+/-0.010

.. Common exponent:

A **common exponent** is automatically calculated if an exponent is
needed for the larger of the nominal value (in absolute value) and the
uncertainty (the rule is the same as for floats). The exponent is
generally **factored**, for increased legibility:

>>> print x*1e7
(2.00+/-0.10)e+06

When a *format width* is used, the common exponent is not factored:

>>> print 'Result = {:10.1e}'.format(x*1e-10)
Result =    2.0e-11+/-   0.1e-11

(Using a (minimal) width of 1 is thus a way of forcing exponents to not 
be factored.) Thanks to this feature, each part (nominal value and 
standard deviation) is correctly aligned across multiple lines, while the 
relative magnitude of the error can still be readily estimated thanks to 
the common exponent.

.. Options:

Formatting options can be added at the end of the format string: ``S``
for the **shorthand notation**, ``L`` for a **LaTeχ** output, ``P``
for **pretty-printing**:

>>> print '{:+.1uS}'.format(x)  # Sign, 1 digit for the uncertainty, shorthand
+0.20(1)
>>> print '{:L}'.format(x*1e7)  # Automatic exponent form, LaTeχ
\left(2.00 \pm 0.10\right) \times 10^{6}

The pretty-printing mode uses "±" and superscript exponents: the
default output is such that ``print '{:.2e}'.format(x)`` yields
"(2.00+/-0.10)e-01", whereas the pretty-printing mode in ``print
u'{:.2eP}'.format(x)`` yields "(2.00±0.10)×10\ :sup:`-1`\ ". Note that
the pretty-printing mode implies using Unicode format strings
(``u'…'`` in Python 2, but simply ``'…'`` in Python 3).

These formatting options can be combined (when meaningful).

.. Special cases:

An uncertainty which is *exactly* **zero** is always formatted as an
integer:

>>> print ufloat(3.1415, 0)
3.1415+/-0
>>> print ufloat(3.1415e10, 0)
(3.1415+/-0)e+10
>>> print ufloat(3.1415, 0.0005)
3.1415+/-0.0005
>>> print '{:.2f}'.format(ufloat(3.14, 0.001))
3.14+/-0.00
>>> print '{:.2f}'.format(ufloat(3.14, 0.00))
3.14+/-0

**All the digits** of a number with uncertainty are given in its
representation:

>>> y = ufloat(1.23456789012345, 0.123456789)
>>> print y
1.23+/-0.12
>>> print repr(y)
1.23456789012345+/-0.123456789
>>> y
1.23456789012345+/-0.123456789

**More information** on formatting can be obtained with ``pydoc
uncertainties.UFloat.__format__`` (customization of the LaTeχ output,
etc.).

Global formatting
-----------------

It is sometimes useful to have a **consistent formatting** across
multiple parts of a program. Python's `string.Formatter class
<http://docs.python.org/2/library/string.html#string-formatting>`_
allows one to do just that. Here is how it can be used to consistently
use the shorthand notation for numbers with uncertainties:

.. code-block:: python

   class ShorthandFormatter(string.Formatter):

       def format_field(self, value, format_spec):
           if isinstance(value, uncertainties.UFloat):
               return value.format(format_spec+'S')  # Shorthand option added
           # Special formatting for other types can be added here (floats, etc.)
           else:
               # Usual formatting:
               return super(ShorthandFormatter, self).format_field(
                   value, format_spec)

   frmtr = ShorthandFormatter()

   print frmtr.format("Result = {0:.1u}", x)  # 1-digit uncertainty

prints with the shorthand notation: ``Result = 0.20(1)``.


.. index::
   pair: nominal value; of scalar
   pair: uncertainty; of scalar

Access to the uncertainty and to the nominal value
==================================================

The nominal value and the uncertainty (standard deviation) can also be
accessed independently:

>>> print square
0.040+/-0.004
>>> print square.nominal_value
0.04
>>> print square.n  # Abbreviation
0.04
>>> print square.std_dev
0.004
>>> print square.s  # Abbreviation
0.004

Access to the individual sources of uncertainty
===============================================

The various contributions to an uncertainty can be obtained through
the :func:`error_components` method, which maps the **independent
variables a quantity depends on** to their **contribution to the total
uncertainty**. According to the :ref:`linear error propagation theory
<linear_method>` implemented in :mod:`uncertainties`, the sum of the
squares of these contributions is the squared uncertainty.

The individual contributions to the uncertainty are more easily usable
when the variables are **tagged**:

>>> u = ufloat(1, 0.1, "u variable")  # Tag
>>> v = ufloat(10, 0.1, "v variable")
>>> sum_value = u+2*v
>>> sum_value
21.0+/-0.223606797749979
>>> for (var, error) in sum_value.error_components().items():
...     print "{}: {}".format(var.tag, error)
...
u variable: 0.1
v variable: 0.2

The variance (i.e. squared uncertainty) of the result
(:data:`sum_value`) is the quadratic sum of these independent
uncertainties, as it should be (``0.1**2 + 0.2**2``).

The tags *do not have to be distinct*. For instance, *multiple* random
variables can be tagged as ``"systematic"``, and their contribution to
the total uncertainty of :data:`result` can simply be obtained as:

>>> syst_error = math.sqrt(sum(  # Error from *all* systematic errors
...     error**2
...     for (var, error) in result.error_components().items()
...     if var.tag == "systematic"))

The remaining contribution to the uncertainty is:

>>> other_error = math.sqrt(result.std_dev**2 - syst_error**2)

The variance of :data:`result` is in fact simply the quadratic sum of
these two errors, since the variables from
:func:`result.error_components` are independent.

.. index:: comparison operators

Comparison operators
====================

Comparison operators behave in a natural way:

>>> print x
0.200+/-0.010
>>> y = x + 0.0001
>>> y
0.2001+/-0.01
>>> y > x
True
>>> y > 0
True

One important concept to keep in mind is that :func:`ufloat` creates a
random variable, so that two numbers with the same nominal value and
standard deviation are generally different:

>>> y = ufloat(1, 0.1)
>>> z = ufloat(1, 0.1)
>>> print y
1.00+/-0.10
>>> print z
1.00+/-0.10
>>> y == y
True
>>> y == z
False

In physical terms, two rods of the same nominal length and uncertainty
on their length are generally of different sizes: :data:`y` is different
from :data:`z`.

More detailed information on the semantics of comparison operators for
numbers with uncertainties can be found in the :ref:`Technical Guide
<comparison_operators>`.


.. index:: covariance matrix

Covariance and correlation matrices
===================================

Covariance matrix
-----------------

The covariance matrix between various variables or calculated
quantities can be simply obtained:

>>> sum_value = u+2*v
>>> cov_matrix = uncertainties.covariance_matrix([u, v, sum_value])

has value

::

  [[0.01, 0.0,  0.01],
   [0.0,  0.01, 0.02],
   [0.01, 0.02, 0.05]]

In this matrix, the zero covariances indicate that :data:`u` and :data:`v` are
independent from each other; the last column shows that :data:`sum_value`
does depend on these variables.  The :mod:`uncertainties` package
keeps track at all times of all correlations between quantities
(variables and functions):

>>> sum_value - (u+2*v)
0.0+/-0

Correlation matrix
------------------

If the NumPy_ package is available, the correlation matrix can be
obtained as well:

>>> corr_matrix = uncertainties.correlation_matrix([u, v, sum_value])
>>> corr_matrix
array([[ 1.        ,  0.        ,  0.4472136 ],
       [ 0.        ,  1.        ,  0.89442719],
       [ 0.4472136 ,  0.89442719,  1.        ]])

.. index:: correlations; correlated variables

Correlated variables
====================

Reciprocally, **correlated variables can be created** transparently,
provided that the NumPy_ package is available.

Use of a covariance matrix
--------------------------

Correlated variables can be obtained through the *covariance* matrix:

>>> (u2, v2, sum2) = uncertainties.correlated_values([1, 10, 21], cov_matrix)

creates three new variables with the listed nominal values, and the given
covariance matrix:

>>> sum_value
21.0+/-0.223606797749979
>>> sum2
21.0+/-0.223606797749979
>>> sum2 - (u2+2*v2)
0.0+/-3.83371856862256e-09

The theoretical value of the last expression is exactly zero, like for
``sum - (u+2*v)``, but numerical errors yield a small uncertainty
(3e-9 is indeed very small compared to the uncertainty on :data:`sum2`:
correlations should in fact cancel the uncertainty on :data:`sum2`).

The covariance matrix is the desired one:

>>> uncertainties.covariance_matrix([u2, v2, sum2])

reproduces the original covariance matrix :data:`cov_matrix` (up to
rounding errors).

Use of a correlation matrix
---------------------------

Alternatively, correlated values can be defined through a
*correlation* matrix (the correlation matrix is the covariance matrix
normalized with individual standard deviations; it has ones on its
diagonal), along with a list of nominal values and standard deviations:

>>> (u3, v3, sum3) = uncertainties.correlated_values_norm(
...     [(1, 0.1), (10, 0.1), (21, 0.22360679774997899)], corr_matrix)
>>> print u3
1.00+/-0.10

The three returned numbers with uncertainties have the correct
uncertainties and correlations (:data:`corr_matrix` can be recovered
through :func:`correlation_matrix`).

.. index::
   single: C code; wrapping
   single: Fortran code; wrapping
   single: wrapping (C, Fortran,…) functions

Making custom functions accept numbers with uncertainties
=========================================================

This package allows **code which is not meant to be used with numbers
with uncertainties to handle them anyway**. This is for instance
useful when calling external functions (which are out of the user's
control), including functions written in C or Fortran.  Similarly,
**functions that do not have a simple analytical form** can be
automatically wrapped so as to also work with arguments that contain
uncertainties.

It is thus possible to take a function :func:`f` *that returns a
single float*, and to automatically generalize it so that it also
works with numbers with uncertainties:

>>> wrapped_f = uncertainties.wrap(f)

The new function :func:`wrapped_f` *accepts numbers with uncertainties*
as arguments *wherever a Python float is used* for :func:`f`.
:func:`wrapped_f` returns the same values as :func:`f`, but with
uncertainties.

With a simple wrapping call like above, uncertainties in the function
result are automatically calculated numerically. **Analytical
uncertainty calculations can be performed** if derivatives are
provided to :func:`wrap`.

More details are available in the documentation string of :func:`wrap`
(accessible through the ``pydoc`` command, or Python's :func:`help`
shell function).

Miscellaneous utilities
=======================

.. index:: standard deviation; on the fly modification

It is sometimes useful to modify the error on certain parameters so as
to study its impact on a final result.  With this package, the
**uncertainty of a variable can be changed** on the fly:

>>> sum_value = u+2*v
>>> sum_value
21.0+/-0.223606797749979
>>> prev_uncert = u.std_dev
>>> u.std_dev = 10
>>> sum_value
21.0+/-10.00199980003999
>>> u.std_dev = prev_uncert

The relevant concept is that :data:`sum_value` does depend on the
variables :data:`u` and :data:`v`: the :mod:`uncertainties` package keeps
track of this fact, as detailed in the :ref:`Technical Guide
<variable_tracking>`, and uncertainties can thus be updated at any time.

.. index::
   pair: nominal value; uniform access (scalar)
   pair: uncertainty; uniform access (scalar)
   pair: standard deviation; uniform access (scalar)

When manipulating ensembles of numbers, *some* of which contain
uncertainties while others are simple floats, it can be useful to
access the **nominal value and uncertainty of all numbers in a uniform
manner**.  This is what the :func:`nominal_value` and
:func:`std_dev` functions do:

>>> print uncertainties.nominal_value(x)
0.2
>>> print uncertainties.std_dev(x)
0.01
>>> uncertainties.nominal_value(3)
3
>>> uncertainties.std_dev(3)
0.0

Finally, a utility method is provided that directly yields the
`standard score <http://en.wikipedia.org/wiki/Standard_score>`_
(number of standard deviations) between a number and a result with
uncertainty: with :data:`x` equal to 0.20±0.01,

>>> x.std_score(0.17)
-3.0

.. index:: derivatives

.. _derivatives:

Derivatives
===========

Since the application of :ref:`linear error propagation theory
<linear_method>` involves the calculation of **derivatives**, this
package automatically performs such calculations; users can thus
easily get the derivative of an expression with respect to any of its
variables:

>>> u = ufloat(1, 0.1)
>>> v = ufloat(10, 0.1)
>>> sum_value = u+2*v
>>> sum_value.derivatives[u]
1.0
>>> sum_value.derivatives[v]
2.0

These values are obtained with a :ref:`fast differentiation algorithm
<differentiation method>`.

Additional information
======================

The capabilities of the :mod:`uncertainties` package in terms of array
handling are detailed in :doc:`numpy_guide`.

Details about the theory behind this package and implementation 
information are given in the
:doc:`tech_guide`.

.. _NumPy: http://numpy.scipy.org/

.. |minus2html| raw:: html

   <sup>-2</sup>