1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
#include "unicorn_test.h"
#include <time.h>
#include <string.h>
// We have to copy this for Android.
#ifdef _WIN32
#include "windows.h"
#define NANOSECONDS_PER_SECOND 1000000000LL
static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
union {
uint64_t ll;
struct {
uint32_t low, high;
} l;
} u, res;
uint64_t rl, rh;
u.ll = a;
rl = (uint64_t)u.l.low * (uint64_t)b;
rh = (uint64_t)u.l.high * (uint64_t)b;
rh += (rl >> 32);
res.l.high = rh / c;
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
static int64_t get_freq(void)
{
LARGE_INTEGER freq;
int ret = QueryPerformanceFrequency(&freq);
if (ret == 0) {
fprintf(stderr, "Could not calibrate ticks\n");
exit(1);
}
return freq.QuadPart;
}
static inline int64_t get_clock_realtime(void)
{
LARGE_INTEGER ti;
QueryPerformanceCounter(&ti);
return muldiv64(ti.QuadPart, NANOSECONDS_PER_SECOND, get_freq());
}
#else
#include <sys/time.h>
#include "sys/mman.h"
/* get host real time in nanosecond */
static inline int64_t get_clock_realtime(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
}
#endif
const uint64_t code_start = 0x1000;
const uint64_t code_len = 0x4000;
static void uc_common_setup(uc_engine **uc, uc_arch arch, uc_mode mode,
const char *code, uint64_t size)
{
OK(uc_open(arch, mode, uc));
OK(uc_mem_map(*uc, code_start, code_len, UC_PROT_ALL));
OK(uc_mem_write(*uc, code_start, code, size));
}
#define GEN_SIMPLE_READ_TEST(field, ctl_type, arg_type, expected) \
static void test_uc_ctl_##field(void) \
{ \
uc_engine *uc; \
arg_type arg; \
OK(uc_open(UC_ARCH_X86, UC_MODE_32, &uc)); \
OK(uc_ctl(uc, UC_CTL_READ(ctl_type, 1), &arg)); \
TEST_CHECK(arg == expected); \
OK(uc_close(uc)); \
}
GEN_SIMPLE_READ_TEST(mode, UC_CTL_UC_MODE, int, 4)
GEN_SIMPLE_READ_TEST(arch, UC_CTL_UC_ARCH, int, 4)
GEN_SIMPLE_READ_TEST(page_size, UC_CTL_UC_PAGE_SIZE, uint32_t, 4096)
GEN_SIMPLE_READ_TEST(time_out, UC_CTL_UC_TIMEOUT, uint64_t, 0)
static void test_uc_ctl_exits(void)
{
uc_engine *uc;
// cmp eax, 0;
// jg lb;
// inc eax;
// nop; <---- exit1
// lb:
// inc ebx;
// nop; <---- exit2
char code[] = "\x83\xf8\x00\x7f\x02\x40\x90\x43\x90";
int r_eax;
int r_ebx;
uint64_t exits[] = {code_start + 6, code_start + 8};
uc_common_setup(&uc, UC_ARCH_X86, UC_MODE_32, code, sizeof(code) - 1);
OK(uc_ctl_exits_enable(uc));
OK(uc_ctl_set_exits(uc, exits, 2));
r_eax = 0;
r_ebx = 0;
OK(uc_reg_write(uc, UC_X86_REG_EAX, &r_eax));
OK(uc_reg_write(uc, UC_X86_REG_EBX, &r_ebx));
// Run two times.
OK(uc_emu_start(uc, code_start, 0, 0, 0));
OK(uc_emu_start(uc, code_start, 0, 0, 0));
OK(uc_reg_read(uc, UC_X86_REG_EAX, &r_eax));
OK(uc_reg_read(uc, UC_X86_REG_EBX, &r_ebx));
TEST_CHECK(r_eax == 1);
TEST_CHECK(r_ebx == 1);
OK(uc_close(uc));
}
double time_emulation(uc_engine *uc, uint64_t start, uint64_t end)
{
int64_t t1, t2;
t1 = get_clock_realtime();
OK(uc_emu_start(uc, start, end, 0, 0));
t2 = get_clock_realtime();
return t2 - t1;
}
#define TB_COUNT (8)
#define TCG_MAX_INSNS (512) // from tcg.h
#define CODE_LEN TB_COUNT *TCG_MAX_INSNS
static void test_uc_ctl_tb_cache(void)
{
uc_engine *uc;
char code[CODE_LEN + 1];
double standard, cached, evicted;
memset(code, 0x90, CODE_LEN);
code[CODE_LEN] = 0;
uc_common_setup(&uc, UC_ARCH_X86, UC_MODE_32, code, sizeof(code) - 1);
standard = time_emulation(uc, code_start, code_start + sizeof(code) - 1);
for (int i = 0; i < TB_COUNT; i++) {
OK(uc_ctl_request_cache(uc, code_start + i * TCG_MAX_INSNS, NULL));
}
cached = time_emulation(uc, code_start, code_start + sizeof(code) - 1);
for (int i = 0; i < TB_COUNT; i++) {
OK(uc_ctl_remove_cache(uc, code_start + i * TCG_MAX_INSNS,
code_start + i * TCG_MAX_INSNS + 1));
}
evicted = time_emulation(uc, code_start, code_start + sizeof(code) - 1);
// In fact, evicted is also slightly faster than standard but we don't do
// this guarantee.
TEST_CHECK(cached < standard);
TEST_CHECK(evicted > cached);
OK(uc_close(uc));
}
// Test requires UC_ARCH_ARM.
#ifdef UNICORN_HAS_ARM
static void test_uc_ctl_change_page_size(void)
{
uc_engine *uc;
uc_engine *uc2;
OK(uc_open(UC_ARCH_ARM, UC_MODE_ARM, &uc));
OK(uc_open(UC_ARCH_ARM, UC_MODE_ARM, &uc2));
OK(uc_ctl_set_page_size(uc, 4096));
OK(uc_mem_map(uc2, 1 << 10, 1 << 10, UC_PROT_ALL));
uc_assert_err(UC_ERR_ARG, uc_mem_map(uc, 1 << 10, 1 << 10, UC_PROT_ALL));
OK(uc_close(uc));
OK(uc_close(uc2));
}
#endif
// Test requires UC_ARCH_ARM.
#ifdef UNICORN_HAS_ARM
// Copy from test_arm.c but with new API.
static void test_uc_ctl_arm_cpu(void)
{
uc_engine *uc;
int r_control, r_msp, r_psp;
OK(uc_open(UC_ARCH_ARM, UC_MODE_THUMB, &uc));
OK(uc_ctl_set_cpu_model(uc, UC_CPU_ARM_CORTEX_M7));
r_control = 0; // Make sure we are using MSP.
OK(uc_reg_write(uc, UC_ARM_REG_CONTROL, &r_control));
r_msp = 0x1000;
OK(uc_reg_write(uc, UC_ARM_REG_R13, &r_msp));
r_control = 0b10; // Make the switch.
OK(uc_reg_write(uc, UC_ARM_REG_CONTROL, &r_control));
OK(uc_reg_read(uc, UC_ARM_REG_R13, &r_psp));
TEST_CHECK(r_psp != r_msp);
r_psp = 0x2000;
OK(uc_reg_write(uc, UC_ARM_REG_R13, &r_psp));
r_control = 0; // Switch again
OK(uc_reg_write(uc, UC_ARM_REG_CONTROL, &r_control));
OK(uc_reg_read(uc, UC_ARM_REG_R13, &r_msp));
TEST_CHECK(r_psp != r_msp);
TEST_CHECK(r_msp == 0x1000);
OK(uc_close(uc));
}
#endif
static void test_uc_hook_cached_cb(uc_engine *uc, uint64_t addr, size_t size,
void *user_data)
{
// Don't add any TEST_CHECK here since we can't refer to the global variable
// here.
uint64_t *p = (uint64_t *)user_data;
(*p)++;
return;
}
static void test_uc_hook_cached_uaf(void)
{
uc_engine *uc;
// "INC ecx; DEC edx; jmp t; t: nop"
char code[] = "\x41\x4a\xeb\x00\x90";
uc_hook h;
uint64_t count = 0;
#ifndef _WIN32
// Apple Silicon does not allow RWX pages.
void *callback = mmap(NULL, 4096, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
TEST_CHECK(callback != (void *)-1);
#else
void *callback = VirtualAlloc(NULL, 4096, MEM_RESERVE | MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
TEST_CHECK(callback != NULL);
#endif
memcpy(callback, (void *)test_uc_hook_cached_cb, 4096);
#ifndef _WIN32
TEST_CHECK(mprotect(callback, 4096, PROT_READ | PROT_EXEC) == 0);
#endif
uc_common_setup(&uc, UC_ARCH_X86, UC_MODE_32, code, sizeof(code) - 1);
OK(uc_hook_add(uc, &h, UC_HOOK_CODE, (void *)callback, (void *)&count, 1,
0));
OK(uc_emu_start(uc, code_start, code_start + sizeof(code) - 1, 0, 0));
// Move the hook to the deleted hooks list.
OK(uc_hook_del(uc, h));
// This will clear deleted hooks and SHOULD clear cache.
OK(uc_emu_start(uc, code_start, code_start + sizeof(code) - 1, 0, 0));
#ifndef _WIN32
TEST_CHECK(mprotect(callback, 4096, PROT_READ | PROT_WRITE) == 0);
#endif
memset(callback, 0, 4096);
#ifndef _WIN32
TEST_CHECK(mprotect(callback, 4096, PROT_READ | PROT_EXEC) == 0);
#endif
// Now hooks are deleted and thus this will trigger a UAF
OK(uc_emu_start(uc, code_start, code_start + sizeof(code) - 1, 0, 0));
TEST_CHECK(count == 4);
OK(uc_close(uc));
#ifndef _WIN32
munmap(callback, 4096);
#else
VirtualFree(callback, 0, MEM_RELEASE);
#endif
}
TEST_LIST = {{"test_uc_ctl_mode", test_uc_ctl_mode},
{"test_uc_ctl_page_size", test_uc_ctl_page_size},
{"test_uc_ctl_arch", test_uc_ctl_arch},
{"test_uc_ctl_time_out", test_uc_ctl_time_out},
{"test_uc_ctl_exits", test_uc_ctl_exits},
{"test_uc_ctl_tb_cache", test_uc_ctl_tb_cache},
#ifdef UNICORN_HAS_ARM
{"test_uc_ctl_change_page_size", test_uc_ctl_change_page_size},
{"test_uc_ctl_arm_cpu", test_uc_ctl_arm_cpu},
#endif
#ifndef __ARM_EABI__
{"test_uc_hook_cached_uaf", test_uc_hook_cached_uaf},
#endif
{NULL, NULL}};
|