1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
//! License: GNU GENERAL PUBLIC LICENSE Version 2
const std = @import("std");
const MIN_ZIG_VERSION: []const u8 = "0.13.0";
const MIN_ZIG_VERSION_ERR_MSG = "Please! Update zig toolchain to >= v" ++ MIN_ZIG_VERSION;
const SampleFileTypes = enum {
c,
cpp,
zig,
};
const SampleDescripton = struct {
file_type: SampleFileTypes,
root_file_path: []const u8,
};
/// Create a module for the Zig Bindings
///
/// This will also get exported as a library that other zig projects can use
/// as a dependency via the zig build system.
fn create_unicorn_sys(b: *std.Build, target: std.Build.ResolvedTarget, optimize: std.builtin.OptimizeMode) *std.Build.Module {
const unicorn_sys = b.addModule("unicorn-sys", .{
.target = target,
.optimize = optimize,
.root_source_file = b.path("bindings/zig/unicorn/unicorn.zig"),
});
// link libc
unicorn_sys.link_libc = true;
// we need the c header for the zig-bindings
unicorn_sys.addIncludePath(b.path("include"));
unicorn_sys.addLibraryPath(b.path("build"));
// Linking to the Unicorn library
if (target.result.abi == .msvc and target.result.os.tag == .windows) {
unicorn_sys.linkSystemLibrary("unicorn.dll", .{});
} else {
unicorn_sys.linkSystemLibrary("unicorn", .{});
}
return unicorn_sys;
}
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) void {
if (comptime !checkVersion())
@compileError(MIN_ZIG_VERSION_ERR_MSG);
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
// Give the user the options to perform the cmake build in parallel or not
// (eg. ci on macos will fail if parallel is enabled)
//
// flag: -Dparallel=true/false
const parallel_cmake = b.option(bool, "parallel", "Enable parallel cmake build") orelse true;
// flag: -DSamples=True/False
const samples = b.option(bool, "Samples", "Build all Samples [default: true]") orelse true;
const sample_bins = [_]SampleDescripton{
.{ .file_type = .zig, .root_file_path = "bindings/zig/sample/sample_riscv_zig.zig" },
.{ .file_type = .c, .root_file_path = "samples/sample_arm.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_arm64.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_ctl.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_batch_reg.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_m68k.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_riscv.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_sparc.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_s390x.c" },
.{ .file_type = .c, .root_file_path = "samples/shellcode.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_tricore.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_x86.c" },
.{ .file_type = .c, .root_file_path = "samples/sample_x86_32_gdt_and_seg_regs.c" },
};
// make a module for Zig Bindings
const unicorn_sys = create_unicorn_sys(b, target, optimize);
// Build Samples
if (samples) {
for (sample_bins) |sample| {
const sample_bin = buildExe(b, .{
.target = target,
.optimize = optimize,
.filetype = sample.file_type,
.filepath = sample.root_file_path,
});
// import the unicorn sys module if this is a zig build
if (sample.file_type == .zig) {
sample_bin.root_module.addImport("unicorn", unicorn_sys);
}
}
}
// CMake Build
const cmake = cmakeBuild(b, parallel_cmake);
const cmake_step = b.step("cmake", "Run cmake build");
cmake_step.dependOn(&cmake.step);
}
fn buildExe(b: *std.Build, info: BuildInfo) *std.Build.Step.Compile {
const target = info.stdTarget();
const execonfig: std.Build.ExecutableOptions = switch (info.filetype) {
.c, .cpp => .{
.name = info.filename(),
.target = info.target,
.optimize = info.optimize,
},
else => .{
.name = info.filename(),
.target = info.target,
.optimize = info.optimize,
.root_source_file = b.path(info.filepath),
},
};
const exe = b.addExecutable(execonfig);
if (info.filetype != .zig) {
exe.addCSourceFile(.{
.file = b.path(info.filepath),
.flags = &.{
"-Wall",
"-Werror",
"-fno-sanitize=all",
"-Wshadow",
},
});
// Ensure the C headers are available
exe.addIncludePath(b.path("include"));
// Ensure the C library is available
exe.addLibraryPath(b.path("build"));
// linking to OS-LibC or static-linking for:
// Musl(Linux) [e.g: -Dtarget=native-linux-musl]
// MinGW(Windows) [e.g: -Dtarget=native-windows-gnu (default)]
if (info.filetype == .cpp and target.abi != .msvc)
exe.linkLibCpp() // static-linking LLVM-libcxx (all targets) + libC
else
exe.linkLibC();
// Now link the C library
if (target.abi == .msvc and target.os.tag == .windows) {
exe.linkSystemLibrary("unicorn.dll");
} else exe.linkSystemLibrary("unicorn");
}
// Linking to the Unicorn library
if (target.abi == .msvc and target.os.tag == .windows) {
exe.want_lto = false;
}
// This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
b.installArtifact(exe);
// This *creates* a RunStep in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = b.addRunArtifact(exe);
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step(info.filename(), b.fmt("Run the {s}.", .{info.filename()}));
run_step.dependOn(&run_cmd.step);
return exe;
}
const PARALLEL_CMAKE_COMMAND = [_][]const u8{
"cmake",
"--build",
"build",
"--config",
"release",
"--parallel",
};
const SINGLE_CMAKE_COMMAND = [_][]const u8{
"cmake",
"--build",
"build",
"--config",
"release",
};
fn cmakeBuild(b: *std.Build, parallel_cmake: bool) *std.Build.Step.Run {
const preconf = b.addSystemCommand(&.{
"cmake",
"-B",
"build",
"-DZIG_BUILD=ON",
"-DUNICORN_BUILD_TESTS=OFF",
"-DUNICORN_INSTALL=OFF",
"-DCMAKE_BUILD_TYPE=Release",
});
// build in parallel if requested
const cmakebuild = b.addSystemCommand(blk: {
if (parallel_cmake) {
break :blk &PARALLEL_CMAKE_COMMAND;
} else {
break :blk &SINGLE_CMAKE_COMMAND;
}
});
cmakebuild.step.dependOn(&preconf.step);
return cmakebuild;
}
// ensures the currently in-use zig version is at least the minimum required
fn checkVersion() bool {
const builtin = @import("builtin");
if (!@hasDecl(builtin, "zig_version")) {
return false;
}
const needed_version = std.SemanticVersion.parse(MIN_ZIG_VERSION) catch unreachable;
const version = builtin.zig_version;
const order = version.order(needed_version);
return order != .lt;
}
const BuildInfo = struct {
filepath: []const u8,
filetype: SampleFileTypes,
target: std.Build.ResolvedTarget,
optimize: std.builtin.OptimizeMode,
fn filename(self: BuildInfo) []const u8 {
var split = std.mem.splitSequence(u8, std.fs.path.basename(self.filepath), ".");
return split.first();
}
fn stdTarget(self: *const BuildInfo) std.Target {
return self.target.result;
}
};
|