File: units.h

package info (click to toggle)
units-cpp 2.3.4%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 724 kB
  • sloc: cpp: 5,269; makefile: 3
file content (4969 lines) | stat: -rw-r--r-- 240,948 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
//--------------------------------------------------------------------------------------------------
//
//	Units: A compile-time c++14 unit conversion library with no dependencies
//
//--------------------------------------------------------------------------------------------------
//
// The MIT License (MIT)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software
// and associated documentation files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//--------------------------------------------------------------------------------------------------
//
// Copyright (c) 2016 Nic Holthaus
//
//--------------------------------------------------------------------------------------------------
//
// ATTRIBUTION:
// Parts of this work have been adapted from:
// http://stackoverflow.com/questions/35069778/create-comparison-trait-for-template-classes-whose-parameters-are-in-a-different
// http://stackoverflow.com/questions/28253399/check-traits-for-all-variadic-template-arguments/28253503
// http://stackoverflow.com/questions/36321295/rational-approximation-of-square-root-of-stdratio-at-compile-time?noredirect=1#comment60266601_36321295
//
//--------------------------------------------------------------------------------------------------
//
/// @file	units.h
/// @brief	Complete implementation of `units` - a compile-time, header-only, unit conversion
///			library built on c++14 with no dependencies.
//
//--------------------------------------------------------------------------------------------------

#pragma once

#ifndef units_h__
#define units_h__

#ifdef _MSC_VER
#	pragma push_macro("pascal")
#	undef pascal
#	if _MSC_VER <= 1800
#		define _ALLOW_KEYWORD_MACROS
#		pragma warning(push)
#		pragma warning(disable : 4520)
#		pragma push_macro("constexpr")
#		define constexpr /*constexpr*/
#		pragma push_macro("noexcept")
#		define noexcept throw()
#	endif // _MSC_VER < 1800
#endif // _MSC_VER

#if defined(__MINGW64__) || defined(__MINGW32__)
#	pragma push_macro("pascal")
#	undef pascal
#endif // __MINGW64__ or __MINGW32__

#if !defined(_MSC_VER) || _MSC_VER > 1800
#   define UNIT_HAS_LITERAL_SUPPORT
#   define UNIT_HAS_VARIADIC_TEMPLATE_SUPPORT
#endif

#ifndef UNIT_LIB_DEFAULT_TYPE
#   define UNIT_LIB_DEFAULT_TYPE double
#endif

//--------------------
//	INCLUDES
//--------------------

#include <chrono>
#include <cstddef>
#include <ratio>
#include <type_traits>
#include <cstdint>
#include <cmath>
#include <limits>

#if !defined(UNIT_LIB_DISABLE_IOSTREAM)
	#include <iostream>
	#include <string>
	#include <locale>

	//------------------------------
	//	STRING FORMATTER
	//------------------------------

	namespace units
	{
		namespace detail
		{
			template <typename T> std::string to_string(const T& t)
			{
				std::string str{ std::to_string(t) };
				int offset{ 1 };

				// remove trailing decimal points for integer value units. Locale aware!
				struct lconv * lc;
				lc = localeconv();
				char decimalPoint = *lc->decimal_point;
				if (str.find_last_not_of('0') == str.find(decimalPoint)) { offset = 0; }
				str.erase(str.find_last_not_of('0') + offset, std::string::npos);
				return str;
			}
		}
	}
#endif

namespace units
{
	template<typename T> inline constexpr const char* name(const T&);
	template<typename T> inline constexpr const char* name_plural(const T&);
	template<typename T> inline constexpr const char* abbreviation(const T&);
}

//------------------------------
//	MACROS
//------------------------------

/**
 * @def			UNIT_ADD_UNIT_TAGS(namespaceName,nameSingular, namePlural, abbreviation, definition)
 * @brief		Helper macro for generating the boiler-plate code generating the tags of a new unit.
 * @details		The macro generates singular, plural, and abbreviated forms
 *				of the unit definition (e.g. `meter`, `meters`, and `m`), as aliases for the
 *				unit tag.
 * @param		namespaceName namespace in which the new units will be encapsulated.
 * @param		nameSingular singular version of the unit name, e.g. 'meter'
 * @param		namePlural - plural version of the unit name, e.g. 'meters'
 * @param		abbreviation - abbreviated unit name, e.g. 'm'
 * @param		definition - the variadic parameter is used for the definition of the unit
 *				(e.g. `unit<std::ratio<1>, units::category::length_unit>`)
 * @note		a variadic template is used for the definition to allow templates with
 *				commas to be easily expanded. All the variadic 'arguments' should together
 *				comprise the unit definition.
 */
#define UNIT_ADD_UNIT_TAGS(namespaceName,nameSingular, namePlural, abbreviation, /*definition*/...)\
	namespace namespaceName\
	{\
	/** @name Units (full names plural) */ /** @{ */ typedef __VA_ARGS__ namePlural; /** @} */\
	/** @name Units (full names singular) */ /** @{ */ typedef namePlural nameSingular; /** @} */\
	/** @name Units (abbreviated) */ /** @{ */ typedef namePlural abbreviation; /** @} */\
	}

/**
 * @def			UNIT_ADD_UNIT_DEFINITION(namespaceName,nameSingular)
 * @brief		Macro for generating the boiler-plate code for the unit_t type definition.
 * @details		The macro generates the definition of the unit container types, e.g. `meter_t`
 * @param		namespaceName namespace in which the new units will be encapsulated.
 * @param		nameSingular singular version of the unit name, e.g. 'meter'
 */
#define UNIT_ADD_UNIT_DEFINITION(namespaceName,nameSingular)\
	namespace namespaceName\
	{\
		/** @name Unit Containers */ /** @{ */ typedef unit_t<nameSingular> nameSingular ## _t; /** @} */\
	}

/**
 * @def			UNIT_ADD_CUSTOM_TYPE_UNIT_DEFINITION(namespaceName,nameSingular,underlyingType)
 * @brief		Macro for generating the boiler-plate code for a unit_t type definition with a non-default underlying type.
 * @details		The macro generates the definition of the unit container types, e.g. `meter_t`
 * @param		namespaceName namespace in which the new units will be encapsulated.
 * @param		nameSingular singular version of the unit name, e.g. 'meter'
 * @param		underlyingType the underlying type
 */
#define UNIT_ADD_CUSTOM_TYPE_UNIT_DEFINITION(namespaceName,nameSingular, underlyingType)\
	namespace namespaceName\
	{\
	/** @name Unit Containers */ /** @{ */ typedef unit_t<nameSingular,underlyingType> nameSingular ## _t; /** @} */\
	}
/**
 * @def			UNIT_ADD_IO(namespaceName,nameSingular, abbreviation)
 * @brief		Macro for generating the boiler-plate code needed for I/O for a new unit.
 * @details		The macro generates the code to insert units into an ostream. It
 *				prints both the value and abbreviation of the unit when invoked.
 * @param		namespaceName namespace in which the new units will be encapsulated.
 * @param		nameSingular singular version of the unit name, e.g. 'meter'
 * @param		abbrev - abbreviated unit name, e.g. 'm'
 * @note		When UNIT_LIB_DISABLE_IOSTREAM is defined, the macro does not generate any code
 */
#if defined(UNIT_LIB_DISABLE_IOSTREAM)
	#define UNIT_ADD_IO(namespaceName, nameSingular, abbrev)
#else
	#define UNIT_ADD_IO(namespaceName, nameSingular, abbrev)\
	namespace namespaceName\
	{\
		inline std::ostream& operator<<(std::ostream& os, const nameSingular ## _t& obj) \
		{\
			os << obj() << " "#abbrev; return os; \
		}\
		inline std::string to_string(const nameSingular ## _t& obj)\
		{\
			return units::detail::to_string(obj()) + std::string(" "#abbrev);\
		}\
	}
#endif

 /**
  * @def		UNIT_ADD_NAME(namespaceName,nameSingular,namePlural,abbreviation)
  * @brief		Macro for generating constexpr names/abbreviations for units.
  * @details	The macro generates names for units. E.g. name() of 1_m would be "meter", and
  *				abbreviation would be "m".
  * @param		namespaceName namespace in which the new units will be encapsulated. All literal values
  *				are placed in the `units::literals` namespace.
  * @param		nameSingular singular version of the unit name, e.g. 'meter'
  * @param		namePlural plural version of the unit name, e.g. 'meters'
  * @param		abbreviation - abbreviated unit name, e.g. 'm'
  */
#define UNIT_ADD_NAME(namespaceName, nameSingular, namePlural, abbrev)\
template<> inline constexpr const char* name(const namespaceName::nameSingular ## _t&)\
{\
	return #nameSingular;\
}\
template<> inline constexpr const char* abbreviation(const namespaceName::nameSingular ## _t&)\
{\
	return #abbrev;\
}\
template<> inline constexpr const char* name_plural(const namespaceName::nameSingular ## _t&)\
{\
	return #namePlural;\
}

/**
 * @def			UNIT_ADD_LITERALS(namespaceName,nameSingular,abbreviation)
 * @brief		Macro for generating user-defined literals for units.
 * @details		The macro generates user-defined literals for units. A literal suffix is created
 *				using the abbreviation (e.g. `10.0_m`).
 * @param		namespaceName namespace in which the new units will be encapsulated. All literal values
 *				are placed in the `units::literals` namespace.
 * @param		nameSingular singular version of the unit name, e.g. 'meter'
 * @param		abbreviation - abbreviated unit name, e.g. 'm'
 * @note		When UNIT_HAS_LITERAL_SUPPORT is not defined, the macro does not generate any code
 */
#if defined(UNIT_HAS_LITERAL_SUPPORT)
	#define UNIT_ADD_LITERALS(namespaceName, nameSingular, abbreviation)\
	namespace literals\
	{\
		inline constexpr namespaceName::nameSingular ## _t operator""_ ## abbreviation(long double d)\
		{\
			return namespaceName::nameSingular ## _t(static_cast<namespaceName::nameSingular ## _t::underlying_type>(d));\
		}\
		inline constexpr namespaceName::nameSingular ## _t operator""_ ## abbreviation (unsigned long long d)\
		{\
			return namespaceName::nameSingular ## _t(static_cast<namespaceName::nameSingular ## _t::underlying_type>(d));\
		}\
	}
#else
	#define UNIT_ADD_LITERALS(namespaceName, nameSingular, abbreviation)
#endif

/**
 * @def			UNIT_ADD(namespaceName,nameSingular, namePlural, abbreviation, definition)
 * @brief		Macro for generating the boiler-plate code needed for a new unit.
 * @details		The macro generates singular, plural, and abbreviated forms
 *				of the unit definition (e.g. `meter`, `meters`, and `m`), as well as the
 *				appropriately named unit container (e.g. `meter_t`). A literal suffix is created
 *				using the abbreviation (e.g. `10.0_m`). It also defines a class-specific
 *				cout function which prints both the value and abbreviation of the unit when invoked.
 * @param		namespaceName namespace in which the new units will be encapsulated. All literal values
 *				are placed in the `units::literals` namespace.
 * @param		nameSingular singular version of the unit name, e.g. 'meter'
 * @param		namePlural - plural version of the unit name, e.g. 'meters'
 * @param		abbreviation - abbreviated unit name, e.g. 'm'
 * @param		definition - the variadic parameter is used for the definition of the unit
 *				(e.g. `unit<std::ratio<1>, units::category::length_unit>`)
 * @note		a variadic template is used for the definition to allow templates with
 *				commas to be easily expanded. All the variadic 'arguments' should together
 *				comprise the unit definition.
 */
#define UNIT_ADD(namespaceName, nameSingular, namePlural, abbreviation, /*definition*/...)\
	UNIT_ADD_UNIT_TAGS(namespaceName,nameSingular, namePlural, abbreviation, __VA_ARGS__)\
	UNIT_ADD_UNIT_DEFINITION(namespaceName,nameSingular)\
	UNIT_ADD_NAME(namespaceName,nameSingular,namePlural, abbreviation)\
	UNIT_ADD_IO(namespaceName,nameSingular, abbreviation)\
	UNIT_ADD_LITERALS(namespaceName,nameSingular, abbreviation)

/**
 * @def			UNIT_ADD_WITH_CUSTOM_TYPE(namespaceName,nameSingular, namePlural, abbreviation, underlyingType, definition)
 * @brief		Macro for generating the boiler-plate code needed for a new unit with a non-default underlying type.
 * @details		The macro generates singular, plural, and abbreviated forms
 *				of the unit definition (e.g. `meter`, `meters`, and `m`), as well as the
 *				appropriately named unit container (e.g. `meter_t`). A literal suffix is created
 *				using the abbreviation (e.g. `10.0_m`). It also defines a class-specific
 *				cout function which prints both the value and abbreviation of the unit when invoked.
 * @param		namespaceName namespace in which the new units will be encapsulated. All literal values
 *				are placed in the `units::literals` namespace.
 * @param		nameSingular singular version of the unit name, e.g. 'meter'
 * @param		namePlural - plural version of the unit name, e.g. 'meters'
 * @param		abbreviation - abbreviated unit name, e.g. 'm'
 * @param		underlyingType - the underlying type, e.g. 'int' or 'float'
 * @param		definition - the variadic parameter is used for the definition of the unit
 *				(e.g. `unit<std::ratio<1>, units::category::length_unit>`)
 * @note		a variadic template is used for the definition to allow templates with
 *				commas to be easily expanded. All the variadic 'arguments' should together
 *				comprise the unit definition.
 */
#define UNIT_ADD_WITH_CUSTOM_TYPE(namespaceName, nameSingular, namePlural, abbreviation, underlyingType, /*definition*/...)\
	UNIT_ADD_UNIT_TAGS(namespaceName,nameSingular, namePlural, abbreviation, __VA_ARGS__)\
	UNIT_ADD_CUSTOM_TYPE_UNIT_DEFINITION(namespaceName,nameSingular,underlyingType)\
	UNIT_ADD_IO(namespaceName,nameSingular, abbreviation)\
	UNIT_ADD_LITERALS(namespaceName,nameSingular, abbreviation)

/**
 * @def			UNIT_ADD_DECIBEL(namespaceName, nameSingular, abbreviation)
 * @brief		Macro to create decibel container and literals for an existing unit type.
 * @details		This macro generates the decibel unit container, cout overload, and literal definitions.
 * @param		namespaceName namespace in which the new units will be encapsulated. All literal values
 *				are placed in the `units::literals` namespace.
 * @param		nameSingular singular version of the base unit name, e.g. 'watt'
 * @param		abbreviation - abbreviated decibel unit name, e.g. 'dBW'
 */
#define UNIT_ADD_DECIBEL(namespaceName, nameSingular, abbreviation)\
	namespace namespaceName\
	{\
		/** @name Unit Containers */ /** @{ */ typedef unit_t<nameSingular, UNIT_LIB_DEFAULT_TYPE, units::decibel_scale> abbreviation ## _t; /** @} */\
	}\
	UNIT_ADD_IO(namespaceName, abbreviation, abbreviation)\
	UNIT_ADD_LITERALS(namespaceName, abbreviation, abbreviation)

/**
 * @def			UNIT_ADD_CATEGORY_TRAIT(unitCategory, baseUnit)
 * @brief		Macro to create the `is_category_unit` type trait.
 * @details		This trait allows users to test whether a given type matches
 *				an intended category. This macro comprises all the boiler-plate
 *				code necessary to do so.
 * @param		unitCategory The name of the category of unit, e.g. length or mass.
 */

#define UNIT_ADD_CATEGORY_TRAIT_DETAIL(unitCategory)\
	namespace traits\
	{\
		/** @cond */\
		namespace detail\
		{\
			template<typename T> struct is_ ## unitCategory ## _unit_impl : std::false_type {};\
			template<typename C, typename U, typename P, typename T>\
			struct is_ ## unitCategory ## _unit_impl<units::unit<C, U, P, T>> : std::is_same<units::traits::base_unit_of<typename units::traits::unit_traits<units::unit<C, U, P, T>>::base_unit_type>, units::category::unitCategory ## _unit>::type {};\
			template<typename U, typename S, template<typename> class N>\
			struct is_ ## unitCategory ## _unit_impl<units::unit_t<U, S, N>> : std::is_same<units::traits::base_unit_of<typename units::traits::unit_t_traits<units::unit_t<U, S, N>>::unit_type>, units::category::unitCategory ## _unit>::type {};\
		}\
		/** @endcond */\
	}

#if defined(UNIT_HAS_VARIADIC_TEMPLATE_SUPPORT)
#define UNIT_ADD_IS_UNIT_CATEGORY_TRAIT(unitCategory)\
	namespace traits\
	{\
		template<typename... T> struct is_ ## unitCategory ## _unit : std::integral_constant<bool, units::all_true<units::traits::detail::is_ ## unitCategory ## _unit_impl<std::decay_t<T>>::value...>::value> {};\
	}
#else
#define UNIT_ADD_IS_UNIT_CATEGORY_TRAIT(unitCategory)\
	namespace traits\
	{\
			template<typename T1, typename T2 = T1, typename T3 = T1>\
			struct is_ ## unitCategory ## _unit : std::integral_constant<bool, units::traits::detail::is_ ## unitCategory ## _unit_impl<typename std::decay<T1>::type>::value &&\
				units::traits::detail::is_ ## unitCategory ## _unit_impl<typename std::decay<T2>::type>::value &&\
				units::traits::detail::is_ ## unitCategory ## _unit_impl<typename std::decay<T3>::type>::value>{};\
	}
#endif

#define UNIT_ADD_CATEGORY_TRAIT(unitCategory)\
	UNIT_ADD_CATEGORY_TRAIT_DETAIL(unitCategory)\
    /** @ingroup	TypeTraits*/\
	/** @brief		Trait which tests whether a type represents a unit of unitCategory*/\
	/** @details	Inherits from `std::true_type` or `std::false_type`. Use `is_ ## unitCategory ## _unit<T>::value` to test the unit represents a unitCategory quantity.*/\
	/** @tparam		T	one or more types to test*/\
	UNIT_ADD_IS_UNIT_CATEGORY_TRAIT(unitCategory)

/**
 * @def			UNIT_ADD_WITH_METRIC_PREFIXES(nameSingular, namePlural, abbreviation, definition)
 * @brief		Macro for generating the boiler-plate code needed for a new unit, including its metric
 *				prefixes from femto to peta.
 * @details		See UNIT_ADD. In addition to generating the unit definition and containers '(e.g. `meters` and 'meter_t',
 *				it also creates corresponding units with metric suffixes such as `millimeters`, and `millimeter_t`), as well as the
 *				literal suffixes (e.g. `10.0_mm`).
 * @param		namespaceName namespace in which the new units will be encapsulated. All literal values
 *				are placed in the `units::literals` namespace.
 * @param		nameSingular singular version of the unit name, e.g. 'meter'
 * @param		namePlural - plural version of the unit name, e.g. 'meters'
 * @param		abbreviation - abbreviated unit name, e.g. 'm'
 * @param		definition - the variadic parameter is used for the definition of the unit
 *				(e.g. `unit<std::ratio<1>, units::category::length_unit>`)
 * @note		a variadic template is used for the definition to allow templates with
 *				commas to be easily expanded. All the variadic 'arguments' should together
 *				comprise the unit definition.
 */
#define UNIT_ADD_WITH_METRIC_PREFIXES(namespaceName, nameSingular, namePlural, abbreviation, /*definition*/...)\
	UNIT_ADD(namespaceName, nameSingular, namePlural, abbreviation, __VA_ARGS__)\
	UNIT_ADD(namespaceName, femto ## nameSingular, femto ## namePlural, f ## abbreviation, femto<namePlural>)\
	UNIT_ADD(namespaceName, pico ## nameSingular, pico ## namePlural, p ## abbreviation, pico<namePlural>)\
	UNIT_ADD(namespaceName, nano ## nameSingular, nano ## namePlural, n ## abbreviation, nano<namePlural>)\
	UNIT_ADD(namespaceName, micro ## nameSingular, micro ## namePlural, u ## abbreviation, micro<namePlural>)\
	UNIT_ADD(namespaceName, milli ## nameSingular, milli ## namePlural, m ## abbreviation, milli<namePlural>)\
	UNIT_ADD(namespaceName, centi ## nameSingular, centi ## namePlural, c ## abbreviation, centi<namePlural>)\
	UNIT_ADD(namespaceName, deci ## nameSingular, deci ## namePlural, d ## abbreviation, deci<namePlural>)\
	UNIT_ADD(namespaceName, deca ## nameSingular, deca ## namePlural, da ## abbreviation, deca<namePlural>)\
	UNIT_ADD(namespaceName, hecto ## nameSingular, hecto ## namePlural, h ## abbreviation, hecto<namePlural>)\
	UNIT_ADD(namespaceName, kilo ## nameSingular, kilo ## namePlural, k ## abbreviation, kilo<namePlural>)\
	UNIT_ADD(namespaceName, mega ## nameSingular, mega ## namePlural, M ## abbreviation, mega<namePlural>)\
	UNIT_ADD(namespaceName, giga ## nameSingular, giga ## namePlural, G ## abbreviation, giga<namePlural>)\
	UNIT_ADD(namespaceName, tera ## nameSingular, tera ## namePlural, T ## abbreviation, tera<namePlural>)\
	UNIT_ADD(namespaceName, peta ## nameSingular, peta ## namePlural, P ## abbreviation, peta<namePlural>)\

 /**
  * @def		UNIT_ADD_WITH_METRIC_AND_BINARY_PREFIXES(nameSingular, namePlural, abbreviation, definition)
  * @brief		Macro for generating the boiler-plate code needed for a new unit, including its metric
  *				prefixes from femto to peta, and binary prefixes from kibi to exbi.
  * @details	See UNIT_ADD. In addition to generating the unit definition and containers '(e.g. `bytes` and 'byte_t',
  *				it also creates corresponding units with metric suffixes such as `millimeters`, and `millimeter_t`), as well as the
  *				literal suffixes (e.g. `10.0_B`).
  * @param		namespaceName namespace in which the new units will be encapsulated. All literal values
  *				are placed in the `units::literals` namespace.
  * @param		nameSingular singular version of the unit name, e.g. 'byte'
  * @param		namePlural - plural version of the unit name, e.g. 'bytes'
  * @param		abbreviation - abbreviated unit name, e.g. 'B'
  * @param		definition - the variadic parameter is used for the definition of the unit
  *				(e.g. `unit<std::ratio<1>, units::category::data_unit>`)
  * @note		a variadic template is used for the definition to allow templates with
  *				commas to be easily expanded. All the variadic 'arguments' should together
  *				comprise the unit definition.
  */
#define UNIT_ADD_WITH_METRIC_AND_BINARY_PREFIXES(namespaceName, nameSingular, namePlural, abbreviation, /*definition*/...)\
	UNIT_ADD_WITH_METRIC_PREFIXES(namespaceName, nameSingular, namePlural, abbreviation, __VA_ARGS__)\
	UNIT_ADD(namespaceName, kibi ## nameSingular, kibi ## namePlural, Ki ## abbreviation, kibi<namePlural>)\
	UNIT_ADD(namespaceName, mebi ## nameSingular, mebi ## namePlural, Mi ## abbreviation, mebi<namePlural>)\
	UNIT_ADD(namespaceName, gibi ## nameSingular, gibi ## namePlural, Gi ## abbreviation, gibi<namePlural>)\
	UNIT_ADD(namespaceName, tebi ## nameSingular, tebi ## namePlural, Ti ## abbreviation, tebi<namePlural>)\
	UNIT_ADD(namespaceName, pebi ## nameSingular, pebi ## namePlural, Pi ## abbreviation, pebi<namePlural>)\
	UNIT_ADD(namespaceName, exbi ## nameSingular, exbi ## namePlural, Ei ## abbreviation, exbi<namePlural>)

//--------------------
//	UNITS NAMESPACE
//--------------------

/**
 * @namespace units
 * @brief Unit Conversion Library namespace
 */
namespace units
{
	//----------------------------------
	//	DOXYGEN
	//----------------------------------

	/**
	 * @defgroup	UnitContainers Unit Containers
	 * @brief		Defines a series of classes which contain dimensioned values. Unit containers
	 *				store a value, and support various arithmetic operations.
	 */

	/**
	 * @defgroup	UnitTypes Unit Types
	 * @brief		Defines a series of classes which represent units. These types are tags used by
	 *				the conversion function, to create compound units, or to create `unit_t` types.
	 *				By themselves, they are not containers and have no stored value.
	 */

	/**
	 * @defgroup	UnitManipulators Unit Manipulators
	 * @brief		Defines a series of classes used to manipulate unit types, such as `inverse<>`, `squared<>`, and metric prefixes.
	 *				Unit manipulators can be chained together, e.g. `inverse<squared<pico<time::seconds>>>` to
	 *				represent picoseconds^-2.
	 */

	 /**
	  * @defgroup	CompileTimeUnitManipulators Compile-time Unit Manipulators
	  * @brief		Defines a series of classes used to manipulate `unit_value_t` types at compile-time, such as `unit_value_add<>`, `unit_value_sqrt<>`, etc.
	  *				Compile-time manipulators can be chained together, e.g. `unit_value_sqrt<unit_value_add<unit_value_power<a, 2>, unit_value_power<b, 2>>>` to
	  *				represent `c = sqrt(a^2 + b^2).
	  */

	 /**
	 * @defgroup	UnitMath Unit Math
	 * @brief		Defines a collection of unit-enabled, strongly-typed versions of `<cmath>` functions.
	 * @details		Includes most c++11 extensions.
	 */

	/**
	 * @defgroup	Conversion Explicit Conversion
	 * @brief		Functions used to convert values of one logical type to another.
	 */

	/**
	 * @defgroup	TypeTraits Type Traits
	 * @brief		Defines a series of classes to obtain unit type information at compile-time.
	 */

	//------------------------------
	//	FORWARD DECLARATIONS
	//------------------------------

	/** @cond */	// DOXYGEN IGNORE
	namespace constants
	{
		namespace detail
		{
			static constexpr const UNIT_LIB_DEFAULT_TYPE PI_VAL = 3.14159265358979323846264338327950288419716939937510;
		}
	}
	/** @endcond */	// END DOXYGEN IGNORE

	//------------------------------
	//	RATIO TRAITS
	//------------------------------

	/**
	 * @ingroup TypeTraits
	 * @{
	 */

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/// has_num implementation.
		template<class T>
		struct has_num_impl
		{
			template<class U>
			static constexpr auto test(U*)->std::is_integral<decltype(U::num)> {return std::is_integral<decltype(U::num)>{}; }
			template<typename>
			static constexpr std::false_type test(...) { return std::false_type{}; }

			using type = decltype(test<T>(0));
		};
	}

	/**
	 * @brief		Trait which checks for the existence of a static numerator.
	 * @details		Inherits from `std::true_type` or `std::false_type`. Use `has_num<T>::value` to test
	 *				whether `class T` has a numerator static member.
	 */
	template<class T>
	struct has_num : units::detail::has_num_impl<T>::type {};

	namespace detail
	{
		/// has_den implementation.
		template<class T>
		struct has_den_impl
		{
			template<class U>
			static constexpr auto test(U*)->std::is_integral<decltype(U::den)> { return std::is_integral<decltype(U::den)>{}; }
			template<typename>
			static constexpr std::false_type test(...) { return std::false_type{}; }

			using type = decltype(test<T>(0));
		};
	}

	/**
	 * @brief		Trait which checks for the existence of a static denominator.
	 * @details		Inherits from `std::true_type` or `std::false_type`. Use `has_den<T>::value` to test
	 *				whether `class T` has a denominator static member.
	 */
	template<class T>
	struct has_den : units::detail::has_den_impl<T>::type {};

	/** @endcond */	// END DOXYGEN IGNORE

	namespace traits
	{
		/**
		 * @brief		Trait that tests whether a type represents a std::ratio.
		 * @details		Inherits from `std::true_type` or `std::false_type`. Use `is_ratio<T>::value` to test
		 *				whether `class T` implements a std::ratio.
		 */
		template<class T>
		struct is_ratio : std::integral_constant<bool,
			has_num<T>::value &&
			has_den<T>::value>
		{};
	}

	//------------------------------
	//	UNIT TRAITS
	//------------------------------

	/** @cond */	// DOXYGEN IGNORE
	/**
	 * @brief		void type.
	 * @details		Helper class for creating type traits.
	 */
	template<class ...>
	struct void_t { typedef void type; };

	/**
	 * @brief		parameter pack for boolean arguments.
	 */
	template<bool...> struct bool_pack {};

	/**
	 * @brief		Trait which tests that a set of other traits are all true.
	 */
	template<bool... Args>
	struct all_true : std::is_same<units::bool_pack<true, Args...>, units::bool_pack<Args..., true>> {};
	/** @endcond */	// DOXYGEN IGNORE

	/**
	 * @brief namespace representing type traits which can access the properties of types provided by the units library.
	 */
	namespace traits
	{
#ifdef FOR_DOXYGEN_PURPOSES_ONLY
		/**
		 * @ingroup		TypeTraits
		 * @brief		Traits class defining the properties of units.
		 * @details		The units library determines certain properties of the units passed to
		 *				them and what they represent by using the members of the corresponding
		 *				unit_traits instantiation.
		 */
		template<class T>
		struct unit_traits
		{
			typedef typename T::base_unit_type base_unit_type;											///< Unit type that the unit was derived from. May be a `base_unit` or another `unit`. Use the `base_unit_of` trait to find the SI base unit type. This will be `void` if type `T` is not a unit.
			typedef typename T::conversion_ratio conversion_ratio;										///< `std::ratio` representing the conversion factor to the `base_unit_type`. This will be `void` if type `T` is not a unit.
			typedef typename T::pi_exponent_ratio pi_exponent_ratio;									///< `std::ratio` representing the exponent of pi to be used in the conversion. This will be `void` if type `T` is not a unit.
			typedef typename T::translation_ratio translation_ratio;									///< `std::ratio` representing a datum translation to the base unit (i.e. degrees C to degrees F conversion). This will be `void` if type `T` is not a unit.
		};
#endif
		/** @cond */	// DOXYGEN IGNORE
		/**
		 * @brief		unit traits implementation for classes which are not units.
		 */
		template<class T, typename = void>
		struct unit_traits
		{
			typedef void base_unit_type;
			typedef void conversion_ratio;
			typedef void pi_exponent_ratio;
			typedef void translation_ratio;
		};

		template<class T>
		struct unit_traits
			<T, typename void_t<
			typename T::base_unit_type,
			typename T::conversion_ratio,
			typename T::pi_exponent_ratio,
			typename T::translation_ratio>::type>
		{
			typedef typename T::base_unit_type base_unit_type;											///< Unit type that the unit was derived from. May be a `base_unit` or another `unit`. Use the `base_unit_of` trait to find the SI base unit type. This will be `void` if type `T` is not a unit.
			typedef typename T::conversion_ratio conversion_ratio;										///< `std::ratio` representing the conversion factor to the `base_unit_type`. This will be `void` if type `T` is not a unit.
			typedef typename T::pi_exponent_ratio pi_exponent_ratio;									///< `std::ratio` representing the exponent of pi to be used in the conversion. This will be `void` if type `T` is not a unit.
			typedef typename T::translation_ratio translation_ratio;									///< `std::ratio` representing a datum translation to the base unit (i.e. degrees C to degrees F conversion). This will be `void` if type `T` is not a unit.
		};
		/** @endcond */	// END DOXYGEN IGNORE
	}

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
		 * @brief		helper type to identify base units.
		 * @details		A non-templated base class for `base_unit` which enables RTTI testing.
		 */
		struct _base_unit_t {};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	namespace traits
	{
		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait which tests if a class is a `base_unit` type.
		 * @details		Inherits from `std::true_type` or `std::false_type`. Use `is_base_unit<T>::value` to test
		 *				whether `class T` implements a `base_unit`.
		 */
		template<class T>
		struct is_base_unit : std::is_base_of<units::detail::_base_unit_t, T> {};
	}

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
		 * @brief		helper type to identify units.
		 * @details		A non-templated base class for `unit` which enables RTTI testing.
		 */
		struct _unit {};

		template<std::intmax_t Num, std::intmax_t Den = 1>
		using meter_ratio = std::ratio<Num, Den>;
	}
	/** @endcond */	// END DOXYGEN IGNORE

	namespace traits
	{
		/**
		 * @ingroup		TypeTraits
		 * @brief		Traits which tests if a class is a `unit`
		 * @details		Inherits from `std::true_type` or `std::false_type`. Use `is_unit<T>::value` to test
		 *				whether `class T` implements a `unit`.
		 */
		template<class T>
		struct is_unit : std::is_base_of<units::detail::_unit, T>::type {};
	}

	/** @} */ // end of TypeTraits

	//------------------------------
	//	BASE UNIT CLASS
	//------------------------------

	/**
	 * @ingroup		UnitTypes
	 * @brief		Class representing SI base unit types.
	 * @details		Base units are represented by a combination of `std::ratio` template parameters, each
	 *				describing the exponent of the type of unit they represent. Example: meters per second
	 *				would be described by a +1 exponent for meters, and a -1 exponent for seconds, thus:
	 *				`base_unit<std::ratio<1>, std::ratio<0>, std::ratio<-1>>`
	 * @tparam		Meter		`std::ratio` representing the exponent value for meters.
	 * @tparam		Kilogram	`std::ratio` representing the exponent value for kilograms.
	 * @tparam		Second		`std::ratio` representing the exponent value for seconds.
	 * @tparam		Radian		`std::ratio` representing the exponent value for radians. Although radians are not SI base units, they are included because radians are described by the SI as m * m^-1, which would make them indistinguishable from scalars.
	 * @tparam		Ampere		`std::ratio` representing the exponent value for amperes.
	 * @tparam		Kelvin		`std::ratio` representing the exponent value for Kelvin.
	 * @tparam		Mole		`std::ratio` representing the exponent value for moles.
	 * @tparam		Candela		`std::ratio` representing the exponent value for candelas.
	 * @tparam		Byte		`std::ratio` representing the exponent value for bytes.
	 * @sa			category	 for type aliases for SI base_unit types.
	 */
	template<class Meter = detail::meter_ratio<0>,
	class Kilogram = std::ratio<0>,
	class Second = std::ratio<0>,
	class Radian = std::ratio<0>,
	class Ampere = std::ratio<0>,
	class Kelvin = std::ratio<0>,
	class Mole = std::ratio<0>,
	class Candela = std::ratio<0>,
	class Byte = std::ratio<0>>
	struct base_unit : units::detail::_base_unit_t
	{
		static_assert(traits::is_ratio<Meter>::value, "Template parameter `Meter` must be a `std::ratio` representing the exponent of meters the unit has");
		static_assert(traits::is_ratio<Kilogram>::value, "Template parameter `Kilogram` must be a `std::ratio` representing the exponent of kilograms the unit has");
		static_assert(traits::is_ratio<Second>::value, "Template parameter `Second` must be a `std::ratio` representing the exponent of seconds the unit has");
		static_assert(traits::is_ratio<Ampere>::value, "Template parameter `Ampere` must be a `std::ratio` representing the exponent of amperes the unit has");
		static_assert(traits::is_ratio<Kelvin>::value, "Template parameter `Kelvin` must be a `std::ratio` representing the exponent of kelvin the unit has");
		static_assert(traits::is_ratio<Candela>::value, "Template parameter `Candela` must be a `std::ratio` representing the exponent of candelas the unit has");
		static_assert(traits::is_ratio<Mole>::value, "Template parameter `Mole` must be a `std::ratio` representing the exponent of moles the unit has");
		static_assert(traits::is_ratio<Radian>::value, "Template parameter `Radian` must be a `std::ratio` representing the exponent of radians the unit has");
		static_assert(traits::is_ratio<Byte>::value, "Template parameter `Byte` must be a `std::ratio` representing the exponent of bytes the unit has");

		typedef Meter meter_ratio;
		typedef Kilogram kilogram_ratio;
		typedef Second second_ratio;
		typedef Radian radian_ratio;
		typedef Ampere ampere_ratio;
		typedef Kelvin kelvin_ratio;
		typedef Mole mole_ratio;
		typedef Candela candela_ratio;
		typedef Byte byte_ratio;
	};

	//------------------------------
	//	UNIT CATEGORIES
	//------------------------------

	/**
	 * @brief		namespace representing the implemented base and derived unit types. These will not generally be needed by library users.
	 * @sa			base_unit for the definition of the category parameters.
	 */
	namespace category
	{
		// SCALAR (DIMENSIONLESS) TYPES
		typedef base_unit<> scalar_unit;			///< Represents a quantity with no dimension.
		typedef base_unit<> dimensionless_unit;	///< Represents a quantity with no dimension.

		// SI BASE UNIT TYPES
		//					METERS			KILOGRAMS		SECONDS			RADIANS			AMPERES			KELVIN			MOLE			CANDELA			BYTE		---		CATEGORY
		typedef base_unit<detail::meter_ratio<1>>																																		length_unit;			 		///< Represents an SI base unit of length
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<1>>																														mass_unit;				 		///< Represents an SI base unit of mass
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<1>>																										time_unit;				 		///< Represents an SI base unit of time
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<1>>																						angle_unit;				 		///< Represents an SI base unit of angle
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<1>>																		current_unit;			 		///< Represents an SI base unit of current
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<1>>														temperature_unit;		 		///< Represents an SI base unit of temperature
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<1>>										substance_unit;			 		///< Represents an SI base unit of amount of substance
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<1>>						luminous_intensity_unit; 		///< Represents an SI base unit of luminous intensity

		// SI DERIVED UNIT TYPES
		//					METERS			KILOGRAMS		SECONDS			RADIANS			AMPERES			KELVIN			MOLE			CANDELA			BYTE		---		CATEGORY
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<2>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>>						solid_angle_unit;				///< Represents an SI derived unit of solid angle
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<-1>>																										frequency_unit;					///< Represents an SI derived unit of frequency
		typedef base_unit<detail::meter_ratio<1>,	std::ratio<0>,	std::ratio<-1>>																										velocity_unit;					///< Represents an SI derived unit of velocity
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<-1>,	std::ratio<1>>																						angular_velocity_unit;			///< Represents an SI derived unit of angular velocity
		typedef base_unit<detail::meter_ratio<1>,	std::ratio<0>,	std::ratio<-2>>																										acceleration_unit;				///< Represents an SI derived unit of acceleration
        typedef base_unit<detail::meter_ratio<1>,   std::ratio<0>,  std::ratio<-3>>                                                                                                     jerk_unit;                      ///< Represents an SI derived unit of jerk
		typedef base_unit<detail::meter_ratio<1>,	std::ratio<1>,	std::ratio<-2>>																										force_unit;						///< Represents an SI derived unit of force
		typedef base_unit<detail::meter_ratio<-1>,	std::ratio<1>,	std::ratio<-2>>																										pressure_unit;					///< Represents an SI derived unit of pressure
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<1>,	std::ratio<0>,	std::ratio<1>>																		charge_unit;					///< Represents an SI derived unit of charge
		typedef base_unit<detail::meter_ratio<2>,	std::ratio<1>,	std::ratio<-2>>																										energy_unit;					///< Represents an SI derived unit of energy
		typedef base_unit<detail::meter_ratio<2>,	std::ratio<1>,	std::ratio<-3>>																										power_unit;						///< Represents an SI derived unit of power
		typedef base_unit<detail::meter_ratio<2>,	std::ratio<1>,	std::ratio<-3>,	std::ratio<0>,	std::ratio<-1>>																		voltage_unit;					///< Represents an SI derived unit of voltage
		typedef base_unit<detail::meter_ratio<-2>,	std::ratio<-1>,	std::ratio<4>,	std::ratio<0>,	std::ratio<2>>																		capacitance_unit;				///< Represents an SI derived unit of capacitance
		typedef base_unit<detail::meter_ratio<2>,	std::ratio<1>,	std::ratio<-3>,	std::ratio<0>,	std::ratio<-2>>																		impedance_unit;					///< Represents an SI derived unit of impedance
		typedef base_unit<detail::meter_ratio<-2>,	std::ratio<-1>,	std::ratio<3>,	std::ratio<0>,	std::ratio<2>>																		conductance_unit;				///< Represents an SI derived unit of conductance
		typedef base_unit<detail::meter_ratio<2>,	std::ratio<1>,	std::ratio<-2>,	std::ratio<0>,	std::ratio<-1>>																		magnetic_flux_unit;				///< Represents an SI derived unit of magnetic flux
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<1>,	std::ratio<-2>,	std::ratio<0>,	std::ratio<-1>>																		magnetic_field_strength_unit;	///< Represents an SI derived unit of magnetic field strength
		typedef base_unit<detail::meter_ratio<2>,	std::ratio<1>,	std::ratio<-2>,	std::ratio<0>,	std::ratio<-2>>																		inductance_unit;				///< Represents an SI derived unit of inductance
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<2>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<1>>						luminous_flux_unit;				///< Represents an SI derived unit of luminous flux
		typedef base_unit<detail::meter_ratio<-2>,	std::ratio<0>,	std::ratio<0>,	std::ratio<2>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<1>>						illuminance_unit;				///< Represents an SI derived unit of illuminance
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<-1>>																										radioactivity_unit;				///< Represents an SI derived unit of radioactivity

		// OTHER UNIT TYPES
		//					METERS			KILOGRAMS		SECONDS			RADIANS			AMPERES			KELVIN			MOLE			CANDELA			BYTE		---		CATEGORY
		typedef base_unit<detail::meter_ratio<2>,	std::ratio<1>,	std::ratio<-2>>																										torque_unit;					///< Represents an SI derived unit of torque
		typedef base_unit<detail::meter_ratio<2>>																																		area_unit;						///< Represents an SI derived unit of area
		typedef base_unit<detail::meter_ratio<3>>																																		volume_unit;					///< Represents an SI derived unit of volume
		typedef base_unit<detail::meter_ratio<-3>,	std::ratio<1>>																														density_unit;					///< Represents an SI derived unit of density
		typedef base_unit<>																																						concentration_unit;				///< Represents a unit of concentration
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<1>>		data_unit;						///< Represents a unit of data size
		typedef base_unit<detail::meter_ratio<0>,	std::ratio<0>,	std::ratio<-1>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<0>,	std::ratio<1>>		data_transfer_rate_unit;		///< Represents a unit of data transfer rate
	}

	//------------------------------
	//	UNIT CLASSES
	//------------------------------

	/** @cond */	// DOXYGEN IGNORE
	/**
	 * @brief		unit type template specialization for units derived from base units.
	 */
	template <class, class, class, class> struct unit;
	template<class Conversion, class... Exponents, class PiExponent, class Translation>
	struct unit<Conversion, base_unit<Exponents...>, PiExponent, Translation> : units::detail::_unit
	{
		static_assert(traits::is_ratio<Conversion>::value, "Template parameter `Conversion` must be a `std::ratio` representing the conversion factor to `BaseUnit`.");
		static_assert(traits::is_ratio<PiExponent>::value, "Template parameter `PiExponent` must be a `std::ratio` representing the exponents of Pi the unit has.");
		static_assert(traits::is_ratio<Translation>::value, "Template parameter `Translation` must be a `std::ratio` representing an additive translation required by the unit conversion.");

		typedef typename units::base_unit<Exponents...> base_unit_type;
		typedef Conversion conversion_ratio;
		typedef Translation translation_ratio;
		typedef PiExponent pi_exponent_ratio;
	};
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @brief		Type representing an arbitrary unit.
	 * @ingroup		UnitTypes
	 * @details		`unit` types are used as tags for the `conversion` function. They are *not* containers
	 *				(see `unit_t` for a  container class). Each unit is defined by:
	 *
	 *				- A `std::ratio` defining the conversion factor to the base unit type. (e.g. `std::ratio<1,12>` for inches to feet)
	 *				- A base unit that the unit is derived from (or a unit category. Must be of type `unit` or `base_unit`)
	 *				- An exponent representing factors of PI required by the conversion. (e.g. `std::ratio<-1>` for a radians to degrees conversion)
	 *				- a ratio representing a datum translation required for the conversion (e.g. `std::ratio<32>` for a fahrenheit to celsius conversion)
	 *
	 *				Typically, a specific unit, like `meters`, would be implemented as a type alias
	 *				of `unit`, i.e. `using meters = unit<std::ratio<1>, units::category::length_unit`, or
	 *				`using inches = unit<std::ratio<1,12>, feet>`.
	 * @tparam		Conversion	std::ratio representing scalar multiplication factor.
	 * @tparam		BaseUnit	Unit type which this unit is derived from. May be a `base_unit`, or another `unit`.
	 * @tparam		PiExponent	std::ratio representing the exponent of pi required by the conversion.
	 * @tparam		Translation	std::ratio representing any datum translation required by the conversion.
	 */
	template<class Conversion, class BaseUnit, class PiExponent = std::ratio<0>, class Translation = std::ratio<0>>
	struct unit : units::detail::_unit
	{
		static_assert(traits::is_unit<BaseUnit>::value, "Template parameter `BaseUnit` must be a `unit` type.");
		static_assert(traits::is_ratio<Conversion>::value, "Template parameter `Conversion` must be a `std::ratio` representing the conversion factor to `BaseUnit`.");
		static_assert(traits::is_ratio<PiExponent>::value, "Template parameter `PiExponent` must be a `std::ratio` representing the exponents of Pi the unit has.");

		typedef typename units::traits::unit_traits<BaseUnit>::base_unit_type base_unit_type;
		typedef typename std::ratio_multiply<typename BaseUnit::conversion_ratio, Conversion> conversion_ratio;
		typedef typename std::ratio_add<typename BaseUnit::pi_exponent_ratio, PiExponent> pi_exponent_ratio;
		typedef typename std::ratio_add<std::ratio_multiply<typename BaseUnit::conversion_ratio, Translation>, typename BaseUnit::translation_ratio> translation_ratio;
	};

	//------------------------------
	//	BASE UNIT MANIPULATORS
	//------------------------------

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
		 * @brief		base_unit_of trait implementation
		 * @details		recursively seeks base_unit type that a unit is derived from. Since units can be
		 *				derived from other units, the `base_unit_type` typedef may not represent this value.
		 */
		template<class> struct base_unit_of_impl;
		template<class Conversion, class BaseUnit, class PiExponent, class Translation>
		struct base_unit_of_impl<unit<Conversion, BaseUnit, PiExponent, Translation>> : base_unit_of_impl<BaseUnit> {};
		template<class... Exponents>
		struct base_unit_of_impl<base_unit<Exponents...>>
		{
			typedef base_unit<Exponents...> type;
		};
		template<>
		struct base_unit_of_impl<void>
		{
			typedef void type;
		};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	namespace traits
	{
		/**
		 * @brief		Trait which returns the `base_unit` type that a unit is originally derived from.
		 * @details		Since units can be derived from other `unit` types in addition to `base_unit` types,
		 *				the `base_unit_type` typedef will not always be a `base_unit` (or unit category).
		 *				Since compatible
		 */
		template<class U>
		using base_unit_of = typename units::detail::base_unit_of_impl<U>::type;
	}

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
		 * @brief		implementation of base_unit_multiply
		 * @details		'multiples' (adds exponent ratios of) two base unit types. Base units can be found
		 *				using `base_unit_of`.
		 */
		template<class, class> struct base_unit_multiply_impl;
		template<class... Exponents1, class... Exponents2>
		struct base_unit_multiply_impl<base_unit<Exponents1...>, base_unit<Exponents2...>> {
			using type = base_unit<std::ratio_add<Exponents1, Exponents2>...>;
		};

		/**
		 * @brief		represents type of two base units multiplied together
		 */
		template<class U1, class U2>
		using base_unit_multiply = typename base_unit_multiply_impl<U1, U2>::type;

		/**
		 * @brief		implementation of base_unit_divide
		 * @details		'dived' (subtracts exponent ratios of) two base unit types. Base units can be found
		 *				using `base_unit_of`.
		 */
		template<class, class> struct base_unit_divide_impl;
		template<class... Exponents1, class... Exponents2>
		struct base_unit_divide_impl<base_unit<Exponents1...>, base_unit<Exponents2...>> {
			using type = base_unit<std::ratio_subtract<Exponents1, Exponents2>...>;
		};

		/**
		 * @brief		represents the resulting type of `base_unit` U1 divided by U2.
		 */
		template<class U1, class U2>
		using base_unit_divide = typename base_unit_divide_impl<U1, U2>::type;

		/**
		 * @brief		implementation of inverse_base
		 * @details		multiplies all `base_unit` exponent ratios by -1. The resulting type represents
		 *				the inverse base unit of the given `base_unit` type.
		 */
		template<class> struct inverse_base_impl;

		template<class... Exponents>
		struct inverse_base_impl<base_unit<Exponents...>> {
			using type = base_unit<std::ratio_multiply<Exponents, std::ratio<-1>>...>;
		};

		/**
		 * @brief		represent the inverse type of `class U`
		 * @details		E.g. if `U` is `length_unit`, then `inverse<U>` will represent `length_unit^-1`.
		 */
		template<class U> using inverse_base = typename inverse_base_impl<U>::type;

		/**
		 * @brief		implementation of `squared_base`
		 * @details		multiplies all the exponent ratios of the given class by 2. The resulting type is
		 *				equivalent to the given type squared.
		 */
		template<class U> struct squared_base_impl;
		template<class... Exponents>
		struct squared_base_impl<base_unit<Exponents...>> {
			using type = base_unit<std::ratio_multiply<Exponents, std::ratio<2>>...>;
		};

		/**
		 * @brief		represents the type of a `base_unit` squared.
		 * @details		E.g. `squared<length_unit>` will represent `length_unit^2`.
		 */
		template<class U> using squared_base = typename squared_base_impl<U>::type;

		/**
		 * @brief		implementation of `cubed_base`
		 * @details		multiplies all the exponent ratios of the given class by 3. The resulting type is
		 *				equivalent to the given type cubed.
		 */
		template<class U> struct cubed_base_impl;
		template<class... Exponents>
		struct cubed_base_impl<base_unit<Exponents...>> {
			using type = base_unit<std::ratio_multiply<Exponents, std::ratio<3>>...>;
		};

		/**
		 * @brief		represents the type of a `base_unit` cubed.
		 * @details		E.g. `cubed<length_unit>` will represent `length_unit^3`.
		 */
		template<class U> using cubed_base = typename cubed_base_impl<U>::type;

		/**
		 * @brief		implementation of `sqrt_base`
		 * @details		divides all the exponent ratios of the given class by 2. The resulting type is
		 *				equivalent to the square root of the given type.
		 */
		template<class U> struct sqrt_base_impl;
		template<class... Exponents>
		struct sqrt_base_impl<base_unit<Exponents...>> {
			using type = base_unit<std::ratio_divide<Exponents, std::ratio<2>>...>;
		};

		/**
		 * @brief		represents the square-root type of a `base_unit`.
		 * @details		E.g. `sqrt<length_unit>` will represent `length_unit^(1/2)`.
		 */
		template<class U> using sqrt_base = typename sqrt_base_impl<U>::type;

		/**
		 * @brief		implementation of `cbrt_base`
		 * @details		divides all the exponent ratios of the given class by 3. The resulting type is
		 *				equivalent to the given type's cube-root.
		 */
		template<class U> struct cbrt_base_impl;
		template<class... Exponents>
		struct cbrt_base_impl<base_unit<Exponents...>> {
			using type = base_unit<std::ratio_divide<Exponents, std::ratio<3>>...>;
		};

		/**
		 * @brief		represents the cube-root type of a `base_unit` .
		 * @details		E.g. `cbrt<length_unit>` will represent `length_unit^(1/3)`.
		 */
		template<class U> using cbrt_base = typename cbrt_base_impl<U>::type;
	}
	/** @endcond */	// END DOXYGEN IGNORE

	//------------------------------
	//	UNIT MANIPULATORS
	//------------------------------

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
		 * @brief		implementation of `unit_multiply`.
		 * @details		multiplies two units. The base unit becomes the base units of each with their exponents
		 *				added together. The conversion factors of each are multiplied by each other. Pi exponent ratios
		 *				are added, and datum translations are removed.
		 */
		template<class Unit1, class Unit2>
		struct unit_multiply_impl
		{
			using type = unit < std::ratio_multiply<typename Unit1::conversion_ratio, typename Unit2::conversion_ratio>,
				base_unit_multiply <traits::base_unit_of<typename Unit1::base_unit_type>, traits::base_unit_of<typename Unit2::base_unit_type>>,
				std::ratio_add<typename Unit1::pi_exponent_ratio, typename Unit2::pi_exponent_ratio>,
				std::ratio < 0 >> ;
		};

		/**
		 * @brief		represents the type of two units multiplied together.
		 * @details		recalculates conversion and exponent ratios at compile-time.
		 */
		template<class U1, class U2>
		using unit_multiply = typename unit_multiply_impl<U1, U2>::type;

		/**
		 * @brief		implementation of `unit_divide`.
		 * @details		divides two units. The base unit becomes the base units of each with their exponents
		 *				subtracted from each other. The conversion factors of each are divided by each other. Pi exponent ratios
		 *				are subtracted, and datum translations are removed.
		 */
		template<class Unit1, class Unit2>
		struct unit_divide_impl
		{
			using type = unit < std::ratio_divide<typename Unit1::conversion_ratio, typename Unit2::conversion_ratio>,
				base_unit_divide<traits::base_unit_of<typename Unit1::base_unit_type>, traits::base_unit_of<typename Unit2::base_unit_type>>,
				std::ratio_subtract<typename Unit1::pi_exponent_ratio, typename Unit2::pi_exponent_ratio>,
				std::ratio < 0 >> ;
		};

		/**
		 * @brief		represents the type of two units divided by each other.
		 * @details		recalculates conversion and exponent ratios at compile-time.
		 */
		template<class U1, class U2>
		using unit_divide = typename unit_divide_impl<U1, U2>::type;

		/**
		 * @brief		implementation of `inverse`
		 * @details		inverts a unit (equivalent to 1/unit). The `base_unit` and pi exponents are all multiplied by
		 *				-1. The conversion ratio numerator and denominator are swapped. Datum translation
		 *				ratios are removed.
		 */
		template<class Unit>
		struct inverse_impl
		{
			using type = unit < std::ratio<Unit::conversion_ratio::den, Unit::conversion_ratio::num>,
				inverse_base<traits::base_unit_of<typename units::traits::unit_traits<Unit>::base_unit_type>>,
				std::ratio_multiply<typename units::traits::unit_traits<Unit>::pi_exponent_ratio, std::ratio<-1>>,
				std::ratio < 0 >> ;	// inverses are rates or change, the translation factor goes away.
		};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @brief		represents the inverse unit type of `class U`.
	 * @ingroup		UnitManipulators
	 * @tparam		U	`unit` type to invert.
	 * @details		E.g. `inverse<meters>` will represent meters^-1 (i.e. 1/meters).
	 */
	template<class U> using inverse = typename units::detail::inverse_impl<U>::type;

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
		 * @brief		implementation of `squared`
		 * @details		Squares the conversion ratio, `base_unit` exponents, pi exponents, and removes
		 *				datum translation ratios.
		 */
		template<class Unit>
		struct squared_impl
		{
			static_assert(traits::is_unit<Unit>::value, "Template parameter `Unit` must be a `unit` type.");
			using Conversion = typename Unit::conversion_ratio;
			using type = unit < std::ratio_multiply<Conversion, Conversion>,
				squared_base<traits::base_unit_of<typename Unit::base_unit_type>>,
				std::ratio_multiply<typename Unit::pi_exponent_ratio, std::ratio<2>>,
				typename Unit::translation_ratio
			> ;
		};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @brief		represents the unit type of `class U` squared
	 * @ingroup		UnitManipulators
	 * @tparam		U	`unit` type to square.
	 * @details		E.g. `square<meters>` will represent meters^2.
	 */
	template<class U>
	using squared = typename units::detail::squared_impl<U>::type;

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
			 * @brief		implementation of `cubed`
			 * @details		Cubes the conversion ratio, `base_unit` exponents, pi exponents, and removes
			 *				datum translation ratios.
			 */
		template<class Unit>
		struct cubed_impl
		{
			static_assert(traits::is_unit<Unit>::value, "Template parameter `Unit` must be a `unit` type.");
			using Conversion = typename Unit::conversion_ratio;
			using type = unit < std::ratio_multiply<Conversion, std::ratio_multiply<Conversion, Conversion>>,
				cubed_base<traits::base_unit_of<typename Unit::base_unit_type>>,
				std::ratio_multiply<typename Unit::pi_exponent_ratio, std::ratio<3>>,
				typename Unit::translation_ratio> ;
		};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @brief		represents the type of `class U` cubed.
	 * @ingroup		UnitManipulators
	 * @tparam		U	`unit` type to cube.
	 * @details		E.g. `cubed<meters>` will represent meters^3.
	 */
	template<class U>
	using cubed = typename units::detail::cubed_impl<U>::type;

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		//----------------------------------
		//	RATIO_SQRT IMPLEMENTATION
		//----------------------------------

		using Zero = std::ratio<0>;
		using One = std::ratio<1>;
		template <typename R> using Square = std::ratio_multiply<R, R>;

		// Find the largest std::integer N such that Predicate<N>::value is true.
		template <template <std::intmax_t N> class Predicate, typename enabled = void>
		struct BinarySearch {
			template <std::intmax_t N>
			struct SafeDouble_ {
				static constexpr const std::intmax_t value = 2 * N;
				static_assert(value > 0, "Overflows when computing 2 * N");
			};

			template <intmax_t Lower, intmax_t Upper, typename Condition1 = void, typename Condition2 = void>
			struct DoubleSidedSearch_ : DoubleSidedSearch_<Lower, Upper,
				std::integral_constant<bool, (Upper - Lower == 1)>,
				std::integral_constant<bool, ((Upper - Lower>1 && Predicate<Lower + (Upper - Lower) / 2>::value))>> {};

			template <intmax_t Lower, intmax_t Upper>
			struct DoubleSidedSearch_<Lower, Upper, std::false_type, std::false_type> : DoubleSidedSearch_<Lower, Lower + (Upper - Lower) / 2> {};

			template <intmax_t Lower, intmax_t Upper, typename Condition2>
			struct DoubleSidedSearch_<Lower, Upper, std::true_type, Condition2> : std::integral_constant<intmax_t, Lower>{};

			template <intmax_t Lower, intmax_t Upper, typename Condition1>
			struct DoubleSidedSearch_<Lower, Upper, Condition1, std::true_type> : DoubleSidedSearch_<Lower + (Upper - Lower) / 2, Upper>{};

			template <std::intmax_t Lower, class enabled1 = void>
			struct SingleSidedSearch_ : SingleSidedSearch_<Lower, std::integral_constant<bool, Predicate<SafeDouble_<Lower>::value>::value>>{};

			template <std::intmax_t Lower>
			struct SingleSidedSearch_<Lower, std::false_type> : DoubleSidedSearch_<Lower, SafeDouble_<Lower>::value> {};

			template <std::intmax_t Lower>
			struct SingleSidedSearch_<Lower, std::true_type> : SingleSidedSearch_<SafeDouble_<Lower>::value>{};

			static constexpr const std::intmax_t value = SingleSidedSearch_<1>::value;
 		};

		template <template <std::intmax_t N> class Predicate>
		struct BinarySearch<Predicate, std::enable_if_t<!Predicate<1>::value>> : std::integral_constant<std::intmax_t, 0>{};

		// Find largest std::integer N such that N<=sqrt(R)
		template <typename R>
		struct Integer {
			template <std::intmax_t N> using Predicate_ = std::ratio_less_equal<std::ratio<N>, std::ratio_divide<R, std::ratio<N>>>;
			static constexpr const std::intmax_t value = BinarySearch<Predicate_>::value;
		};

		template <typename R>
		struct IsPerfectSquare {
			static constexpr const std::intmax_t DenSqrt_ = Integer<std::ratio<R::den>>::value;
			static constexpr const std::intmax_t NumSqrt_ = Integer<std::ratio<R::num>>::value;
			static constexpr const bool value =( DenSqrt_ * DenSqrt_ == R::den && NumSqrt_ * NumSqrt_ == R::num);
			using Sqrt = std::ratio<NumSqrt_, DenSqrt_>;
		};

		// Represents sqrt(P)-Q.
		template <typename Tp, typename Tq>
		struct Remainder {
			using P = Tp;
			using Q = Tq;
		};

		// Represents 1/R = I + Rem where R is a Remainder.
		template <typename R>
		struct Reciprocal {
			using P_ = typename R::P;
			using Q_ = typename R::Q;
			using Den_ = std::ratio_subtract<P_, Square<Q_>>;
			using A_ = std::ratio_divide<Q_, Den_>;
			using B_ = std::ratio_divide<P_, Square<Den_>>;
			static constexpr const std::intmax_t I_ = (A_::num + Integer<std::ratio_multiply<B_, Square<std::ratio<A_::den>>>>::value) / A_::den;
			using I = std::ratio<I_>;
			using Rem = Remainder<B_, std::ratio_subtract<I, A_>>;
		};

		// Expands sqrt(R) to continued fraction:
		// f(x)=C1+1/(C2+1/(C3+1/(...+1/(Cn+x)))) = (U*x+V)/(W*x+1) and sqrt(R)=f(Rem).
		// The error |f(Rem)-V| = |(U-W*V)x/(W*x+1)| <= |U-W*V|*Rem <= |U-W*V|/I' where
		// I' is the std::integer part of reciprocal of Rem.
		template <typename Tr, std::intmax_t N>
		struct ContinuedFraction {
			template <typename T>
			using Abs_ = std::conditional_t<std::ratio_less<T, Zero>::value, std::ratio_subtract<Zero, T>, T>;

			using R = Tr;
			using Last_ = ContinuedFraction<R, N - 1>;
			using Reciprocal_ = Reciprocal<typename Last_::Rem>;
			using Rem = typename Reciprocal_::Rem;
			using I_ = typename Reciprocal_::I;
			using Den_ = std::ratio_add<typename Last_::W, I_>;
			using U = std::ratio_divide<typename Last_::V, Den_>;
			using V = std::ratio_divide<std::ratio_add<typename Last_::U, std::ratio_multiply<typename Last_::V, I_>>, Den_>;
			using W = std::ratio_divide<One, Den_>;
			using Error = Abs_<std::ratio_divide<std::ratio_subtract<U, std::ratio_multiply<V, W>>, typename Reciprocal<Rem>::I>>;
		};

		template <typename Tr>
		struct ContinuedFraction<Tr, 1> {
			using R = Tr;
			using U = One;
			using V = std::ratio<Integer<R>::value>;
			using W = Zero;
			using Rem = Remainder<R, V>;
			using Error = std::ratio_divide<One, typename Reciprocal<Rem>::I>;
		};

		template <typename R, typename Eps, std::intmax_t N = 1, typename enabled = void>
		struct Sqrt_ : Sqrt_<R, Eps, N + 1> {};

		template <typename R, typename Eps, std::intmax_t N>
		struct Sqrt_<R, Eps, N, std::enable_if_t<std::ratio_less_equal<typename ContinuedFraction<R, N>::Error, Eps>::value>> {
			using type = typename ContinuedFraction<R, N>::V;
		};

		template <typename R, typename Eps, typename enabled = void>
		struct Sqrt {
			static_assert(std::ratio_greater_equal<R, Zero>::value, "R can't be negative");
		};

		template <typename R, typename Eps>
		struct Sqrt<R, Eps, std::enable_if_t<std::ratio_greater_equal<R, Zero>::value && IsPerfectSquare<R>::value>> {
			using type = typename IsPerfectSquare<R>::Sqrt;
		};

		template <typename R, typename Eps>
		struct Sqrt<R, Eps, std::enable_if_t<(std::ratio_greater_equal<R, Zero>::value && !IsPerfectSquare<R>::value)>> : Sqrt_<R, Eps>{};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @ingroup		TypeTraits
	 * @brief		Calculate square root of a ratio at compile-time
	 * @details		Calculates a rational approximation of the square root of the ratio. The error
	 *				in the calculation is bounded by 1/epsilon (Eps). E.g. for the default value
	 *				of 10000000000, the maximum error will be a/10000000000, or 1e-8, or said another way,
	 *				the error will be on the order of 10^-9. Since these calculations are done at
	 *				compile time, it is advisable to set epsilon to the highest value that does not
	 *				cause an integer overflow in the calculation. If you can't compile `ratio_sqrt`
	 *				due to overflow errors, reducing the value of epsilon sufficiently will correct
	 *				the problem.\n\n
	 *				`ratio_sqrt` is guaranteed to converge for all values of `Ratio` which do not
	 *				overflow.
	 * @note		This function provides a rational approximation, _NOT_ an exact value.
	 * @tparam		Ratio	ratio to take the square root of. This can represent any rational value,
	 *						_not_ just integers or values with integer roots.
	 * @tparam		Eps		Value of epsilon, which represents the inverse of the maximum allowable
	 *						error. This value should be chosen to be as high as possible before
	 *						integer overflow errors occur in the compiler.
	 */
	template<typename Ratio, std::intmax_t Eps = 10000000000>
	using ratio_sqrt = typename  units::detail::Sqrt<Ratio, std::ratio<1, Eps>>::type;

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
		 * @brief		implementation of `sqrt`
		 * @details		square roots the conversion ratio, `base_unit` exponents, pi exponents, and removes
		 *				datum translation ratios.
		 */
		template<class Unit, std::intmax_t Eps>
		struct sqrt_impl
		{
			static_assert(traits::is_unit<Unit>::value, "Template parameter `Unit` must be a `unit` type.");
			using Conversion = typename Unit::conversion_ratio;
			using type = unit <ratio_sqrt<Conversion, Eps>,
				sqrt_base<traits::base_unit_of<typename Unit::base_unit_type>>,
				std::ratio_divide<typename Unit::pi_exponent_ratio, std::ratio<2>>,
				typename Unit::translation_ratio>;
		};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @ingroup		UnitManipulators
	 * @brief		represents the square root of type `class U`.
	 * @details		Calculates a rational approximation of the square root of the unit. The error
	 *				in the calculation is bounded by 1/epsilon (Eps). E.g. for the default value
	 *				of 10000000000, the maximum error will be a/10000000000, or 1e-8, or said another way,
	 *				the error will be on the order of 10^-9. Since these calculations are done at
	 *				compile time, it is advisable to set epsilon to the highest value that does not
	 *				cause an integer overflow in the calculation. If you can't compile `ratio_sqrt`
	 *				due to overflow errors, reducing the value of epsilon sufficiently will correct
	 *				the problem.\n\n
	 *				`ratio_sqrt` is guaranteed to converge for all values of `Ratio` which do not
	 *				overflow.
	 * @tparam		U	`unit` type to take the square root of.
	 * @tparam		Eps	Value of epsilon, which represents the inverse of the maximum allowable
	 *					error. This value should be chosen to be as high as possible before
	 *					integer overflow errors occur in the compiler.
	 * @note		USE WITH CAUTION. The is an approximate value. In general, squared<sqrt<meter>> != meter,
	 *				i.e. the operation is not reversible, and it will result in propogated approximations.
	 *				Use only when absolutely necessary.
	 */
	template<class U, std::intmax_t Eps = 10000000000>
	using square_root = typename units::detail::sqrt_impl<U, Eps>::type;

	//------------------------------
	//	COMPOUND UNITS
	//------------------------------

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
			 * @brief		implementation of compound_unit
			 * @details		multiplies a variadic list of units together, and is inherited from the resulting
			 *				type.
			 */
		template<class U, class... Us> struct compound_impl;
		template<class U> struct compound_impl<U> { using type = U; };
		template<class U1, class U2, class...Us>
		struct compound_impl<U1, U2, Us...>
			: compound_impl<unit_multiply<U1, U2>, Us...> {};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @brief		Represents a unit type made up from other units.
	 * @details		Compound units are formed by multiplying the units of all the types provided in
	 *				the template argument. Types provided must inherit from `unit`. A compound unit can
	 *				be formed from any number of other units, and unit manipulators like `inverse` and
	 *				`squared` are supported. E.g. to specify acceleration, on could create
	 *				`using acceleration = compound_unit<length::meters, inverse<squared<seconds>>;`
	 * @tparam		U...	units which, when multiplied together, form the desired compound unit.
	 * @ingroup		UnitTypes
	 */
	template<class U, class... Us>
	using compound_unit = typename units::detail::compound_impl<U, Us...>::type;

	//------------------------------
	//	PREFIXES
	//------------------------------

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/**
		 * @brief		prefix applicator.
		 * @details		creates a unit type from a prefix and a unit
		 */
		template<class Ratio, class Unit>
		struct prefix
		{
			static_assert(traits::is_ratio<Ratio>::value, "Template parameter `Ratio` must be a `std::ratio`.");
			static_assert(traits::is_unit<Unit>::value, "Template parameter `Unit` must be a `unit` type.");
			typedef typename units::unit<Ratio, Unit> type;
		};

		/// recursive exponential implementation
		template <int N, class U>
		struct power_of_ratio
		{
			typedef std::ratio_multiply<U, typename power_of_ratio<N - 1, U>::type> type;
		};

		/// End recursion
		template <class U>
		struct power_of_ratio<1, U>
		{
			typedef U type;
		};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @ingroup UnitManipulators
	 * @{
	 * @ingroup Decimal Prefixes
	 * @{
	 */
	template<class U> using atto	= typename units::detail::prefix<std::atto,	U>::type;			///< Represents the type of `class U` with the metric 'atto' prefix appended.	@details E.g. atto<meters> represents meters*10^-18		@tparam U unit type to apply the prefix to.
	template<class U> using femto	= typename units::detail::prefix<std::femto,U>::type;			///< Represents the type of `class U` with the metric 'femto' prefix appended.  @details E.g. femto<meters> represents meters*10^-15	@tparam U unit type to apply the prefix to.
	template<class U> using pico	= typename units::detail::prefix<std::pico,	U>::type;			///< Represents the type of `class U` with the metric 'pico' prefix appended.	@details E.g. pico<meters> represents meters*10^-12		@tparam U unit type to apply the prefix to.
	template<class U> using nano	= typename units::detail::prefix<std::nano,	U>::type;			///< Represents the type of `class U` with the metric 'nano' prefix appended.	@details E.g. nano<meters> represents meters*10^-9		@tparam U unit type to apply the prefix to.
	template<class U> using micro	= typename units::detail::prefix<std::micro,U>::type;			///< Represents the type of `class U` with the metric 'micro' prefix appended.	@details E.g. micro<meters> represents meters*10^-6		@tparam U unit type to apply the prefix to.
	template<class U> using milli	= typename units::detail::prefix<std::milli,U>::type;			///< Represents the type of `class U` with the metric 'milli' prefix appended.	@details E.g. milli<meters> represents meters*10^-3		@tparam U unit type to apply the prefix to.
	template<class U> using centi	= typename units::detail::prefix<std::centi,U>::type;			///< Represents the type of `class U` with the metric 'centi' prefix appended.	@details E.g. centi<meters> represents meters*10^-2		@tparam U unit type to apply the prefix to.
	template<class U> using deci	= typename units::detail::prefix<std::deci,	U>::type;			///< Represents the type of `class U` with the metric 'deci' prefix appended.	@details E.g. deci<meters> represents meters*10^-1		@tparam U unit type to apply the prefix to.
	template<class U> using deca	= typename units::detail::prefix<std::deca,	U>::type;			///< Represents the type of `class U` with the metric 'deca' prefix appended.	@details E.g. deca<meters> represents meters*10^1		@tparam U unit type to apply the prefix to.
	template<class U> using hecto	= typename units::detail::prefix<std::hecto,U>::type;			///< Represents the type of `class U` with the metric 'hecto' prefix appended.	@details E.g. hecto<meters> represents meters*10^2		@tparam U unit type to apply the prefix to.
	template<class U> using kilo	= typename units::detail::prefix<std::kilo,	U>::type;			///< Represents the type of `class U` with the metric 'kilo' prefix appended.	@details E.g. kilo<meters> represents meters*10^3		@tparam U unit type to apply the prefix to.
	template<class U> using mega	= typename units::detail::prefix<std::mega,	U>::type;			///< Represents the type of `class U` with the metric 'mega' prefix appended.	@details E.g. mega<meters> represents meters*10^6		@tparam U unit type to apply the prefix to.
	template<class U> using giga	= typename units::detail::prefix<std::giga,	U>::type;			///< Represents the type of `class U` with the metric 'giga' prefix appended.	@details E.g. giga<meters> represents meters*10^9		@tparam U unit type to apply the prefix to.
	template<class U> using tera	= typename units::detail::prefix<std::tera,	U>::type;			///< Represents the type of `class U` with the metric 'tera' prefix appended.	@details E.g. tera<meters> represents meters*10^12		@tparam U unit type to apply the prefix to.
	template<class U> using peta	= typename units::detail::prefix<std::peta,	U>::type;			///< Represents the type of `class U` with the metric 'peta' prefix appended.	@details E.g. peta<meters> represents meters*10^15		@tparam U unit type to apply the prefix to.
	template<class U> using exa		= typename units::detail::prefix<std::exa,	U>::type;			///< Represents the type of `class U` with the metric 'exa' prefix appended.	@details E.g. exa<meters> represents meters*10^18		@tparam U unit type to apply the prefix to.
	/** @} @} */

	/**
	 * @ingroup UnitManipulators
	 * @{
	 * @ingroup Binary Prefixes
	 * @{
	 */
	template<class U> using kibi	= typename units::detail::prefix<std::ratio<1024>,					U>::type;	///< Represents the type of `class U` with the binary 'kibi' prefix appended.	@details E.g. kibi<bytes> represents bytes*2^10	@tparam U unit type to apply the prefix to.
	template<class U> using mebi	= typename units::detail::prefix<std::ratio<1048576>,				U>::type;	///< Represents the type of `class U` with the binary 'mibi' prefix appended.	@details E.g. mebi<bytes> represents bytes*2^20	@tparam U unit type to apply the prefix to.
	template<class U> using gibi	= typename units::detail::prefix<std::ratio<1073741824>,			U>::type;	///< Represents the type of `class U` with the binary 'gibi' prefix appended.	@details E.g. gibi<bytes> represents bytes*2^30	@tparam U unit type to apply the prefix to.
	template<class U> using tebi	= typename units::detail::prefix<std::ratio<1099511627776>,			U>::type;	///< Represents the type of `class U` with the binary 'tebi' prefix appended.	@details E.g. tebi<bytes> represents bytes*2^40	@tparam U unit type to apply the prefix to.
	template<class U> using pebi	= typename units::detail::prefix<std::ratio<1125899906842624>,		U>::type;	///< Represents the type of `class U` with the binary 'pebi' prefix appended.	@details E.g. pebi<bytes> represents bytes*2^50	@tparam U unit type to apply the prefix to.
	template<class U> using exbi	= typename units::detail::prefix<std::ratio<1152921504606846976>,	U>::type;	///< Represents the type of `class U` with the binary 'exbi' prefix appended.	@details E.g. exbi<bytes> represents bytes*2^60	@tparam U unit type to apply the prefix to.
	/** @} @} */

	//------------------------------
	//	CONVERSION TRAITS
	//------------------------------

	namespace traits
	{
		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait which checks whether two units can be converted to each other
		 * @details		Inherits from `std::true_type` or `std::false_type`. Use `is_convertible_unit<U1, U2>::value` to test
		 *				whether `class U1` is convertible to `class U2`. Note: convertible has both the semantic meaning,
		 *				(i.e. meters can be converted to feet), and the c++ meaning of conversion (type meters can be
		 *				converted to type feet). Conversion is always symmetric, so if U1 is convertible to U2, then
		 *				U2 will be convertible to U1.
		 * @tparam		U1 Unit to convert from.
		 * @tparam		U2 Unit to convert to.
		 * @sa			is_convertible_unit_t
		 */
		template<class U1, class U2>
		struct is_convertible_unit : std::is_same <traits::base_unit_of<typename units::traits::unit_traits<U1>::base_unit_type>,
			base_unit_of<typename units::traits::unit_traits<U2>::base_unit_type >> {};
	}

	//------------------------------
	//	CONVERSION FUNCTION
	//------------------------------

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		constexpr inline UNIT_LIB_DEFAULT_TYPE pow(UNIT_LIB_DEFAULT_TYPE x, unsigned long long y)
		{
			return y == 0 ? 1.0 : x * pow(x, y - 1);
		}

		constexpr inline UNIT_LIB_DEFAULT_TYPE abs(UNIT_LIB_DEFAULT_TYPE x)
		{
			return x < 0 ? -x : x;
		}

		/// convert dispatch for units which are both the same
		template<class Ratio, class PiRatio, class Translation, bool piRequired, bool translationRequired, typename T>
		static inline constexpr T convert(const T& value, std::true_type, std::integral_constant<bool, piRequired>, std::integral_constant<bool, translationRequired>) noexcept
		{
			return value;
		}

		template<std::intmax_t  Ratio_num, std::intmax_t Ratio_den>
		struct normal_convert
		{
			template<typename T>
			inline constexpr T operator()(const T& value) const noexcept
			{
				return value * Ratio_num / Ratio_den;
			}
		};

		template<std::intmax_t  Ratio_num>
		struct normal_convert<Ratio_num, 1>
		{
			template<typename T>
			inline constexpr T operator()(const T& value) const noexcept
			{
				return value * Ratio_num;
			}
		};

		template<std::intmax_t  Ratio_den>
		struct normal_convert<1, Ratio_den>
		{
			template<typename T>
			inline constexpr T operator()(const T& value) const noexcept
			{
				return value / Ratio_den;
			}
		};

		template<>
		struct normal_convert<1, 1>
		{
			template<typename T>
			inline constexpr T operator()(const T& value) const noexcept
			{
				return value;
			}
		};

		/// convert dispatch for units of different types w/ no translation and no PI
		template<class Ratio, class PiRatio, class Translation, typename T>
		static inline constexpr T convert(const T& value, std::false_type, std::false_type, std::false_type) noexcept
		{
			return normal_convert<Ratio::num, Ratio::den>{}(value);
		}

		/// convert dispatch for units of different types w/ no translation, but has PI in numerator
		// constepxr with PI in numerator
		template<class Ratio, class PiRatio, class Translation, typename T>
		static inline constexpr
		std::enable_if_t<(PiRatio::num / PiRatio::den >= 1 && PiRatio::num % PiRatio::den == 0), T>
		convert(const T& value, std::false_type, std::true_type, std::false_type) noexcept
		{
			return normal_convert<Ratio::num, Ratio::den>{}(value) * pow(constants::detail::PI_VAL, PiRatio::num / PiRatio::den);
		}

		/// convert dispatch for units of different types w/ no translation, but has PI in denominator
		// constexpr with PI in denominator
		template<class Ratio, class PiRatio, class Translation, typename T>
		static inline constexpr
		std::enable_if_t<(PiRatio::num / PiRatio::den <= -1 && PiRatio::num % PiRatio::den == 0), T>
 		convert(const T& value, std::false_type, std::true_type, std::false_type) noexcept
 		{
 			return normal_convert<Ratio::num, Ratio::den>{}(value) / pow(constants::detail::PI_VAL, -PiRatio::num / PiRatio::den);
 		}

		/// convert dispatch for units of different types w/ no translation, but has PI in numerator
		// Not constexpr - uses std::pow
		template<class Ratio, class PiRatio, class Translation, typename T>
		static inline // sorry, this can't be constexpr!
		std::enable_if_t<(PiRatio::num / PiRatio::den < 1 && PiRatio::num / PiRatio::den > -1), T>
		convert(const T& value, std::false_type, std::true_type, std::false_type) noexcept
		{
			return normal_convert<Ratio::num, Ratio::den>{}(value) * std::pow(constants::detail::PI_VAL, PiRatio::num / PiRatio::den);
		}

		/// convert dispatch for units of different types with a translation, but no PI
		template<class Ratio, class PiRatio, class Translation, typename T>
		static inline constexpr T convert(const T& value, std::false_type, std::false_type, std::true_type) noexcept
		{
			return normal_convert<Ratio::num, Ratio::den>{}(value) + (static_cast<UNIT_LIB_DEFAULT_TYPE>(Translation::num) / Translation::den);
		}

		/// convert dispatch for units of different types with a translation AND PI
		template<class Ratio, class PiRatio, class Translation, typename T>
		static inline constexpr T convert(const T& value, std::false_type isSame, std::true_type piRequired, std::true_type) noexcept
		{
			return convert<Ratio, PiRatio, Translation>(value, isSame, piRequired, std::false_type()) + (static_cast<UNIT_LIB_DEFAULT_TYPE>(Translation::num) / Translation::den);
		}
	}
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @ingroup		Conversion
	 * @brief		converts a <i>value</i> from one type to another.
	 * @details		Converts a <i>value</i> of a built-in arithmetic type to another unit. This does not change
	 *				the type of <i>value</i>, only what it contains. E.g. @code double result = convert<length::meters, length::feet>(1.0);	// result == 3.28084 @endcode
	 * @sa			unit_t	for implicit conversion of unit containers.
	 * @tparam		UnitFrom unit tag to convert <i>value</i> from. Must be a `unit` type (i.e. is_unit<UnitFrom>::value == true),
	 *				and must be convertible to `UnitTo` (i.e. is_convertible_unit<UnitFrom, UnitTo>::value == true).
	 * @tparam		UnitTo unit tag to convert <i>value</i> to. Must be a `unit` type (i.e. is_unit<UnitTo>::value == true),
	 *				and must be convertible from `UnitFrom` (i.e. is_convertible_unit<UnitFrom, UnitTo>::value == true).
	 * @tparam		T type of <i>value</i>. It is inferred from <i>value</i>, and is expected to be a built-in arithmetic type.
	 * @param[in]	value Arithmetic value to convert from `UnitFrom` to `UnitTo`. The value should represent
	 *				a quantity in units of `UnitFrom`.
	 * @returns		value, converted from units of `UnitFrom` to `UnitTo`.
	 */
	template<class UnitFrom, class UnitTo, typename T = UNIT_LIB_DEFAULT_TYPE>
	static inline constexpr T convert(const T& value) noexcept
	{
		static_assert(traits::is_unit<UnitFrom>::value, "Template parameter `UnitFrom` must be a `unit` type.");
		static_assert(traits::is_unit<UnitTo>::value, "Template parameter `UnitTo` must be a `unit` type.");
		static_assert(traits::is_convertible_unit<UnitFrom, UnitTo>::value, "Units are not compatible.");

		using Ratio = std::ratio_divide<typename UnitFrom::conversion_ratio, typename UnitTo::conversion_ratio>;
		using PiRatio = std::ratio_subtract<typename UnitFrom::pi_exponent_ratio, typename UnitTo::pi_exponent_ratio>;
		using Translation = std::ratio_divide<std::ratio_subtract<typename UnitFrom::translation_ratio, typename UnitTo::translation_ratio>, typename UnitTo::conversion_ratio>;

		using isSame = typename std::is_same<std::decay_t<UnitFrom>, std::decay_t<UnitTo>>::type;
		using piRequired = std::integral_constant<bool, !(std::is_same<std::ratio<0>, PiRatio>::value)>;
		using translationRequired = std::integral_constant<bool, !(std::is_same<std::ratio<0>, Translation>::value)>;

		return units::detail::convert<Ratio, PiRatio, Translation>
			(value, isSame{}, piRequired{}, translationRequired{});
	}

	//----------------------------------
	//	NON-LINEAR SCALE TRAITS
	//----------------------------------

	/** @cond */	// DOXYGEN IGNORE
	namespace traits
	{
		namespace detail
		{
			/**
			* @brief		implementation of has_operator_parenthesis
			* @details		checks that operator() returns the same type as `Ret`
			*/
			template<class T, class Ret>
			struct has_operator_parenthesis_impl
			{
				template<class U>
				static constexpr auto test(U*) -> decltype(std::declval<U>()()) { return decltype(std::declval<U>()()){}; }
				template<typename>
				static constexpr std::false_type test(...) { return std::false_type{}; }

				using type = typename std::is_same<Ret, decltype(test<T>(0))>::type;
			};
		}

		/**
		 * @brief		checks that `class T` has an `operator()` member which returns `Ret`
		 * @details		used as part of the linear_scale concept.
		 */
		template<class T, class Ret>
		struct has_operator_parenthesis : traits::detail::has_operator_parenthesis_impl<T, Ret>::type {};
	}

	namespace traits
	{
		namespace detail
		{
			/**
			* @brief		implementation of has_value_member
			* @details		checks for a member named `m_member` with type `Ret`
			*/
			template<class T, class Ret>
			struct has_value_member_impl
			{
				template<class U>
				static constexpr auto test(U* p) -> decltype(p->m_value) { return p->m_value; }
				template<typename>
				static constexpr auto test(...)->std::false_type { return std::false_type{}; }

				using type = typename std::is_same<std::decay_t<Ret>, std::decay_t<decltype(test<T>(0))>>::type;
			};
		}

		/**
		 * @brief		checks for a member named `m_member` with type `Ret`
		 * @details		used as part of the linear_scale concept checker.
		 */
		template<class T, class Ret>
		struct has_value_member : traits::detail::has_value_member_impl<T, Ret>::type {};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	namespace traits
	{
		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait which tests that `class T` meets the requirements for a non-linear scale
		 * @details		A non-linear scale must:
		 *				- be default constructible
		 *				- have an `operator()` member which returns the non-linear value stored in the scale
		 *				- have an accessible `m_value` member type which stores the linearized value in the scale.
		 *
		 *				Linear/nonlinear scales are used by `units::unit` to store values and scale them
		 *				if they represent things like dB.
		 */
		template<class T, class Ret>
		struct is_nonlinear_scale : std::integral_constant<bool,
			std::is_default_constructible<T>::value &&
			has_operator_parenthesis<T, Ret>::value &&
			has_value_member<T, Ret>::value &&
			std::is_trivial<T>::value>
		{};
	}

	//------------------------------
	//	UNIT_T TYPE TRAITS
	//------------------------------

	namespace traits
	{
#ifdef FOR_DOXYGEN_PURPOSOES_ONLY
		/**
		* @ingroup		TypeTraits
		* @brief		Trait for accessing the publically defined types of `units::unit_t`
		* @details		The units library determines certain properties of the unit_t types passed to them
		*				and what they represent by using the members of the corresponding unit_t_traits instantiation.
		*/
		template<typename T>
		struct unit_t_traits
		{
			typedef typename T::non_linear_scale_type non_linear_scale_type;	///< Type of the unit_t non_linear_scale (e.g. linear_scale, decibel_scale). This property is used to enable the proper linear or logarithmic arithmetic functions.
			typedef typename T::underlying_type underlying_type;				///< Underlying storage type of the `unit_t`, e.g. `double`.
			typedef typename T::value_type value_type;							///< Synonym for underlying type. May be removed in future versions. Prefer underlying_type.
			typedef typename T::unit_type unit_type;							///< Type of unit the `unit_t` represents, e.g. `meters`
		};
#endif

		/** @cond */	// DOXYGEN IGNORE
		/**
		 * @brief		unit_t_traits specialization for things which are not unit_t
		 * @details
		 */
		template<typename T, typename = void>
		struct unit_t_traits
		{
			typedef void non_linear_scale_type;
			typedef void underlying_type;
			typedef void value_type;
			typedef void unit_type;
		};

		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait for accessing the publically defined types of `units::unit_t`
		 * @details
		 */
		template<typename T>
		struct unit_t_traits <T, typename void_t<
			typename T::non_linear_scale_type,
			typename T::underlying_type,
			typename T::value_type,
			typename T::unit_type>::type>
		{
			typedef typename T::non_linear_scale_type non_linear_scale_type;
			typedef typename T::underlying_type underlying_type;
			typedef typename T::value_type value_type;
			typedef typename T::unit_type unit_type;
		};
		/** @endcond */	// END DOXYGEN IGNORE
	}

	namespace traits
	{
		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait which tests whether two container types derived from `unit_t` are convertible to each other
		 * @details		Inherits from `std::true_type` or `std::false_type`. Use `is_convertible_unit_t<U1, U2>::value` to test
		 *				whether `class U1` is convertible to `class U2`. Note: convertible has both the semantic meaning,
		 *				(i.e. meters can be converted to feet), and the c++ meaning of conversion (type meters can be
		 *				converted to type feet). Conversion is always symmetric, so if U1 is convertible to U2, then
		 *				U2 will be convertible to U1.
		 * @tparam		U1 Unit to convert from.
		 * @tparam		U2 Unit to convert to.
		 * @sa			is_convertible_unit
		 */
		template<class U1, class U2>
		struct is_convertible_unit_t : std::integral_constant<bool,
			is_convertible_unit<typename units::traits::unit_t_traits<U1>::unit_type, typename units::traits::unit_t_traits<U2>::unit_type>::value>
		{};
	}

	//----------------------------------
	//	UNIT TYPE
	//----------------------------------

	/** @cond */	// DOXYGEN IGNORE
	// forward declaration
	template<typename T> struct linear_scale;
	template<typename T> struct decibel_scale;

	namespace detail
	{
		/**
		* @brief		helper type to identify units.
		* @details		A non-templated base class for `unit` which enables RTTI testing.
		*/
		struct _unit_t {};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	namespace traits
	{
		// forward declaration
		#if !defined(_MSC_VER) || _MSC_VER > 1800 // bug in VS2013 prevents this from working
		template<typename... T> struct is_dimensionless_unit;
		#else
		template<typename T1, typename T2 = T1, typename T3 = T1> struct is_dimensionless_unit;
		#endif

		/**
		 * @ingroup		TypeTraits
		 * @brief		Traits which tests if a class is a `unit`
		 * @details		Inherits from `std::true_type` or `std::false_type`. Use `is_unit<T>::value` to test
		 *				whether `class T` implements a `unit`.
		 */
		template<class T>
		struct is_unit_t : std::is_base_of<units::detail::_unit_t, T>::type {};
	}

	/**
	 * @ingroup		UnitContainers
	 * @brief		Container for values which represent quantities of a given unit.
	 * @details		Stores a value which represents a quantity in the given units. Unit containers
	 *				(except scalar values) are *not* convertible to built-in c++ types, in order to
	 *				provide type safety in dimensional analysis. Unit containers *are* implicitly
	 *				convertible to other compatible unit container types. Unit containers support
	 *				various types of arithmetic operations, depending on their scale type.
	 *
	 *				The value of a `unit_t` can only be changed on construction, or by assignment
	 *				from another `unit_t` type. If necessary, the underlying value can be accessed
	 *				using `operator()`: @code
	 *				meter_t m(5.0);
	 *				double val = m(); // val == 5.0	@endcode.
	 * @tparam		Units unit tag for which type of units the `unit_t` represents (e.g. meters)
	 * @tparam		T underlying type of the storage. Defaults to double.
	 * @tparam		NonLinearScale optional scale class for the units. Defaults to linear (i.e. does
	 *				not scale the unit value). Examples of non-linear scales could be logarithmic,
	 *				decibel, or richter scales. Non-linear scales must adhere to the non-linear-scale
	 *				concept, i.e. `is_nonlinear_scale<...>::value` must be `true`.
	 * @sa
	 *				- \ref lengthContainers "length unit containers"
	 *				- \ref massContainers "mass unit containers"
	 *				- \ref timeContainers "time unit containers"
	 *				- \ref angleContainers "angle unit containers"
	 *				- \ref currentContainers "current unit containers"
	 *				- \ref temperatureContainers "temperature unit containers"
	 *				- \ref substanceContainers "substance unit containers"
	 *				- \ref luminousIntensityContainers "luminous intensity unit containers"
	 *				- \ref solidAngleContainers "solid angle unit containers"
	 *				- \ref frequencyContainers "frequency unit containers"
	 *				- \ref velocityContainers "velocity unit containers"
	 *				- \ref angularVelocityContainers "angular velocity unit containers"
	 *				- \ref accelerationContainers "acceleration unit containers"
     *              - \ref jerkContainers "jerk unit containers"
	 *				- \ref forceContainers "force unit containers"
	 *				- \ref pressureContainers "pressure unit containers"
	 *				- \ref chargeContainers "charge unit containers"
	 *				- \ref energyContainers "energy unit containers"
	 *				- \ref powerContainers "power unit containers"
	 *				- \ref voltageContainers "voltage unit containers"
	 *				- \ref capacitanceContainers "capacitance unit containers"
	 *				- \ref impedanceContainers "impedance unit containers"
	 *				- \ref magneticFluxContainers "magnetic flux unit containers"
	 *				- \ref magneticFieldStrengthContainers "magnetic field strength unit containers"
	 *				- \ref inductanceContainers "inductance unit containers"
	 *				- \ref luminousFluxContainers "luminous flux unit containers"
	 *				- \ref illuminanceContainers "illuminance unit containers"
	 *				- \ref radiationContainers "radiation unit containers"
	 *				- \ref torqueContainers "torque unit containers"
	 *				- \ref areaContainers "area unit containers"
	 *				- \ref volumeContainers "volume unit containers"
	 *				- \ref densityContainers "density unit containers"
	 *				- \ref concentrationContainers "concentration unit containers"
	 *				- \ref constantContainers "constant unit containers"
	 */
	template<class Units, typename T = UNIT_LIB_DEFAULT_TYPE, template<typename> class NonLinearScale = linear_scale>
	class unit_t : public NonLinearScale<T>, units::detail::_unit_t
	{
		static_assert(traits::is_unit<Units>::value, "Template parameter `Units` must be a unit tag. Check that you aren't using a unit type (_t).");
		static_assert(traits::is_nonlinear_scale<NonLinearScale<T>, T>::value, "Template parameter `NonLinearScale` does not conform to the `is_nonlinear_scale` concept.");

	protected:

		using nls = NonLinearScale<T>;
		using nls::m_value;

	public:

		typedef NonLinearScale<T> non_linear_scale_type;											///< Type of the non-linear scale of the unit_t (e.g. linear_scale)
		typedef T underlying_type;																	///< Type of the underlying storage of the unit_t (e.g. double)
		typedef T value_type;																		///< Synonym for underlying type. May be removed in future versions. Prefer underlying_type.
		typedef Units unit_type;																	///< Type of `unit` the `unit_t` represents (e.g. meters)

		/**
		 * @ingroup		Constructors
		 * @brief		default constructor.
		 */
		constexpr unit_t() = default;

		/**
		 * @brief		constructor
		 * @details		constructs a new unit_t using the non-linear scale's constructor.
		 * @param[in]	value	unit value magnitude.
		 * @param[in]	args	additional constructor arguments are forwarded to the non-linear scale constructor. Which
		 *						args are required depends on which scale is used. For the default (linear) scale,
		 *						no additional args are necessary.
		 */
		template<class... Args>
		inline explicit constexpr unit_t(const T value, const Args&... args) noexcept : nls(value, args...)
		{

		}

		/**
		 * @brief		constructor
		 * @details		enable implicit conversions from T types ONLY for linear scalar units
		 * @param[in]	value value of the unit_t
		 */
		template<class Ty, class = typename std::enable_if<traits::is_dimensionless_unit<Units>::value && std::is_arithmetic<Ty>::value>::type>
		inline constexpr unit_t(const Ty value) noexcept : nls(value)
		{

		}

		/**
		 * @brief		chrono constructor
		 * @details		enable implicit conversions from std::chrono::duration types ONLY for time units
		 * @param[in]	value value of the unit_t
		 */
		template<class Rep, class Period, class = std::enable_if_t<std::is_arithmetic<Rep>::value && traits::is_ratio<Period>::value>>
		inline constexpr unit_t(const std::chrono::duration<Rep, Period>& value) noexcept :
		nls(units::convert<unit<std::ratio<1,1000000000>, category::time_unit>, Units>(static_cast<T>(std::chrono::duration_cast<std::chrono::nanoseconds>(value).count())))
		{

		}

		/**
		 * @brief		copy constructor (converting)
		 * @details		performs implicit unit conversions if required.
		 * @param[in]	rhs unit to copy.
		 */
		template<class UnitsRhs, typename Ty, template<typename> class NlsRhs>
		inline constexpr unit_t(const unit_t<UnitsRhs, Ty, NlsRhs>& rhs) noexcept :
		nls(units::convert<UnitsRhs, Units, T>(rhs.m_value), std::true_type() /*store linear value*/)
		{

		}

		/**
		 * @brief		assignment
		 * @details		performs implicit unit conversions if required
		 * @param[in]	rhs unit to copy.
		 */
		template<class UnitsRhs, typename Ty, template<typename> class NlsRhs>
		inline unit_t& operator=(const unit_t<UnitsRhs, Ty, NlsRhs>& rhs) noexcept
		{
			nls::m_value = units::convert<UnitsRhs, Units, T>(rhs.m_value);
			return *this;
		}

		/**
		* @brief		assignment
		* @details		performs implicit conversions from built-in types ONLY for scalar units
		* @param[in]	rhs value to copy.
		*/
		template<class Ty, class = std::enable_if_t<traits::is_dimensionless_unit<Units>::value && std::is_arithmetic<Ty>::value>>
		inline unit_t& operator=(const Ty& rhs) noexcept
		{
			nls::m_value = rhs;
			return *this;
		}

		/**
		 * @brief		less-than
		 * @details		compares the linearized value of two units. Performs unit conversions if necessary.
		 * @param[in]	rhs right-hand side unit for the comparison
		 * @returns		true IFF the value of `this` is less than the value of `rhs`
		 */
		template<class UnitsRhs, typename Ty, template<typename> class NlsRhs>
		inline constexpr bool operator<(const unit_t<UnitsRhs, Ty, NlsRhs>& rhs) const noexcept
		{
			return (nls::m_value < units::convert<UnitsRhs, Units>(rhs.m_value));
		}

		/**
		 * @brief		less-than or equal
		 * @details		compares the linearized value of two units. Performs unit conversions if necessary.
		 * @param[in]	rhs right-hand side unit for the comparison
		 * @returns		true IFF the value of `this` is less than or equal to the value of `rhs`
		 */
		template<class UnitsRhs, typename Ty, template<typename> class NlsRhs>
		inline constexpr bool operator<=(const unit_t<UnitsRhs, Ty, NlsRhs>& rhs) const noexcept
		{
			return (nls::m_value <= units::convert<UnitsRhs, Units>(rhs.m_value));
		}

		/**
		 * @brief		greater-than
		 * @details		compares the linearized value of two units. Performs unit conversions if necessary.
		 * @param[in]	rhs right-hand side unit for the comparison
		 * @returns		true IFF the value of `this` is greater than the value of `rhs`
		 */
		template<class UnitsRhs, typename Ty, template<typename> class NlsRhs>
		inline constexpr bool operator>(const unit_t<UnitsRhs, Ty, NlsRhs>& rhs) const noexcept
		{
			return (nls::m_value > units::convert<UnitsRhs, Units>(rhs.m_value));
		}

		/**
		 * @brief		greater-than or equal
		 * @details		compares the linearized value of two units. Performs unit conversions if necessary.
		 * @param[in]	rhs right-hand side unit for the comparison
		 * @returns		true IFF the value of `this` is greater than or equal to the value of `rhs`
		 */
		template<class UnitsRhs, typename Ty, template<typename> class NlsRhs>
		inline constexpr bool operator>=(const unit_t<UnitsRhs, Ty, NlsRhs>& rhs) const noexcept
		{
			return (nls::m_value >= units::convert<UnitsRhs, Units>(rhs.m_value));
		}

		/**
		 * @brief		equality
		 * @details		compares the linearized value of two units. Performs unit conversions if necessary.
		 * @param[in]	rhs right-hand side unit for the comparison
		 * @returns		true IFF the value of `this` exactly equal to the value of rhs.
		 * @note		This may not be suitable for all applications when the underlying_type of unit_t is a double.
		 */
		template<class UnitsRhs, typename Ty, template<typename> class NlsRhs, std::enable_if_t<std::is_floating_point<T>::value || std::is_floating_point<Ty>::value, int> = 0>
		inline constexpr bool operator==(const unit_t<UnitsRhs, Ty, NlsRhs>& rhs) const noexcept
		{
			return detail::abs(nls::m_value - units::convert<UnitsRhs, Units>(rhs.m_value)) < std::numeric_limits<T>::epsilon() *
				detail::abs(nls::m_value + units::convert<UnitsRhs, Units>(rhs.m_value)) ||
				detail::abs(nls::m_value - units::convert<UnitsRhs, Units>(rhs.m_value)) < std::numeric_limits<T>::min();
		}

		template<class UnitsRhs, typename Ty, template<typename> class NlsRhs, std::enable_if_t<std::is_integral<T>::value && std::is_integral<Ty>::value, int> = 0>
		inline constexpr bool operator==(const unit_t<UnitsRhs, Ty, NlsRhs>& rhs) const noexcept
		{
			return nls::m_value == units::convert<UnitsRhs, Units>(rhs.m_value);
		}

		/**
		 * @brief		inequality
		 * @details		compares the linearized value of two units. Performs unit conversions if necessary.
		 * @param[in]	rhs right-hand side unit for the comparison
		 * @returns		true IFF the value of `this` is not equal to the value of rhs.
		 * @note		This may not be suitable for all applications when the underlying_type of unit_t is a double.
		 */
		template<class UnitsRhs, typename Ty, template<typename> class NlsRhs>
		inline constexpr bool operator!=(const unit_t<UnitsRhs, Ty, NlsRhs>& rhs) const noexcept
		{
			return !(*this == rhs);
		}

		/**
		 * @brief		unit value
		 * @returns		value of the unit in it's underlying, non-safe type.
		 */
		inline constexpr underlying_type value() const noexcept
		{
			return static_cast<underlying_type>(*this);
		}

		/**
		 * @brief		unit value
		 * @returns		value of the unit converted to an arithmetic, non-safe type.
		 */
		template<typename Ty, class = std::enable_if_t<std::is_arithmetic<Ty>::value>>
		inline constexpr Ty to() const noexcept
		{
			return static_cast<Ty>(*this);
		}

		/**
		 * @brief		linearized unit value
		 * @returns		linearized value of unit which has a non-linear scale. For `unit_t` types with
		 *				linear scales, this is equivalent to `value`.
		 */
		template<typename Ty, class = std::enable_if_t<std::is_arithmetic<Ty>::value>>
		inline constexpr Ty toLinearized() const noexcept
		{
			return static_cast<Ty>(m_value);
		}

		/**
		 * @brief		conversion
		 * @details		Converts to a different unit container. Units can be converted to other containers
		 *				implicitly, but this can be used in cases where explicit notation of a conversion
		 *				is beneficial, or where an r-value container is needed.
		 * @tparam		U unit (not unit_t) to convert to
		 * @returns		a unit container with the specified units containing the equivalent value to
		 *				*this.
		 */
		template<class U>
		inline constexpr unit_t<U> convert() const noexcept
		{
			static_assert(traits::is_unit<U>::value, "Template parameter `U` must be a unit type.");
			return unit_t<U>(*this);
		}

		/**
		 * @brief		implicit type conversion.
		 * @details		only enabled for scalar unit types.
		 */
		template<class Ty, std::enable_if_t<traits::is_dimensionless_unit<Units>::value && std::is_arithmetic<Ty>::value, int> = 0>
		inline constexpr operator Ty() const noexcept
		{
			// this conversion also resolves any PI exponents, by converting from a non-zero PI ratio to a zero-pi ratio.
			return static_cast<Ty>(units::convert<Units, unit<std::ratio<1>, units::category::scalar_unit>>((*this)()));
		}

		/**
		 * @brief		explicit type conversion.
		 * @details		only enabled for non-dimensionless unit types.
		 */
		template<class Ty, std::enable_if_t<!traits::is_dimensionless_unit<Units>::value && std::is_arithmetic<Ty>::value, int> = 0>
		inline constexpr explicit operator Ty() const noexcept
		{
			return static_cast<Ty>((*this)());
		}

		/**
		 * @brief		chrono implicit type conversion.
		 * @details		only enabled for time unit types.
		 */
		template<typename U = Units, std::enable_if_t<units::traits::is_convertible_unit<U, unit<std::ratio<1>, category::time_unit>>::value, int> = 0>
		inline constexpr operator std::chrono::nanoseconds() const noexcept
		{
			return std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::duration<double, std::nano>(units::convert<Units, unit<std::ratio<1,1000000000>, category::time_unit>>((*this)())));
		}

		/**
		 * @brief		returns the unit name
		 */
		inline constexpr const char* name() const noexcept
		{
			return units::name(*this);
		}

		/**
		 * @brief		returns the unit abbreviation
		 */
		inline constexpr const char* abbreviation() const noexcept
		{
			return units::abbreviation(*this);
		}

	public:

		template<class U, typename Ty, template<typename> class Nlt>
		friend class unit_t;
	};

	//------------------------------
	//	UNIT_T NON-MEMBER FUNCTIONS
	//------------------------------

	/**
	 * @ingroup		UnitContainers
	 * @brief		Constructs a unit container from an arithmetic type.
	 * @details		make_unit can be used to construct a unit container from an arithmetic type, as an alternative to
	 *				using the explicit constructor. Unlike the explicit constructor it forces the user to explicitly
	 *				specify the units.
	 * @tparam		UnitType Type to construct.
	 * @tparam		Ty		Arithmetic type.
	 * @param[in]	value	Arithmetic value that represents a quantity in units of `UnitType`.
	 */
	template<class UnitType, typename T, class = std::enable_if_t<std::is_arithmetic<T>::value>>
	inline constexpr UnitType make_unit(const T value) noexcept
	{
		static_assert(traits::is_unit_t<UnitType>::value, "Template parameter `UnitType` must be a unit type (_t).");

		return UnitType(value);
	}

#if !defined(UNIT_LIB_DISABLE_IOSTREAM)
	template<class Units, typename T, template<typename> class NonLinearScale>
	inline std::ostream& operator<<(std::ostream& os, const unit_t<Units, T, NonLinearScale>& obj) noexcept
	{
		using BaseUnits = unit<std::ratio<1>, typename traits::unit_traits<Units>::base_unit_type>;
		os << convert<Units, BaseUnits>(obj());

		if (traits::unit_traits<Units>::base_unit_type::meter_ratio::num != 0) { os << " m"; }
		if (traits::unit_traits<Units>::base_unit_type::meter_ratio::num != 0 &&
			traits::unit_traits<Units>::base_unit_type::meter_ratio::num != 1) { os << "^" << traits::unit_traits<Units>::base_unit_type::meter_ratio::num; }
		if (traits::unit_traits<Units>::base_unit_type::meter_ratio::den != 1) { os << "/"   << traits::unit_traits<Units>::base_unit_type::meter_ratio::den; }

		if (traits::unit_traits<Units>::base_unit_type::kilogram_ratio::num != 0) { os << " kg"; }
		if (traits::unit_traits<Units>::base_unit_type::kilogram_ratio::num != 0 &&
			traits::unit_traits<Units>::base_unit_type::kilogram_ratio::num != 1) { os << "^" << traits::unit_traits<Units>::base_unit_type::kilogram_ratio::num; }
		if (traits::unit_traits<Units>::base_unit_type::kilogram_ratio::den != 1) { os << "/" << traits::unit_traits<Units>::base_unit_type::kilogram_ratio::den; }

		if (traits::unit_traits<Units>::base_unit_type::second_ratio::num != 0) { os << " s"; }
		if (traits::unit_traits<Units>::base_unit_type::second_ratio::num != 0 &&
			traits::unit_traits<Units>::base_unit_type::second_ratio::num != 1) { os << "^" << traits::unit_traits<Units>::base_unit_type::second_ratio::num; }
		if (traits::unit_traits<Units>::base_unit_type::second_ratio::den != 1) { os << "/" << traits::unit_traits<Units>::base_unit_type::second_ratio::den; }

		if (traits::unit_traits<Units>::base_unit_type::ampere_ratio::num != 0) { os << " A"; }
		if (traits::unit_traits<Units>::base_unit_type::ampere_ratio::num != 0 &&
			traits::unit_traits<Units>::base_unit_type::ampere_ratio::num != 1) { os << "^" << traits::unit_traits<Units>::base_unit_type::ampere_ratio::num; }
		if (traits::unit_traits<Units>::base_unit_type::ampere_ratio::den != 1) { os << "/" << traits::unit_traits<Units>::base_unit_type::ampere_ratio::den; }

		if (traits::unit_traits<Units>::base_unit_type::kelvin_ratio::num != 0) { os << " K"; }
		if (traits::unit_traits<Units>::base_unit_type::kelvin_ratio::num != 0 &&
			traits::unit_traits<Units>::base_unit_type::kelvin_ratio::num != 1) { os << "^" << traits::unit_traits<Units>::base_unit_type::kelvin_ratio::num; }
		if (traits::unit_traits<Units>::base_unit_type::kelvin_ratio::den != 1) { os << "/" << traits::unit_traits<Units>::base_unit_type::kelvin_ratio::den; }

		if (traits::unit_traits<Units>::base_unit_type::mole_ratio::num != 0) { os << " mol"; }
		if (traits::unit_traits<Units>::base_unit_type::mole_ratio::num != 0 &&
			traits::unit_traits<Units>::base_unit_type::mole_ratio::num != 1) { os << "^" << traits::unit_traits<Units>::base_unit_type::mole_ratio::num; }
		if (traits::unit_traits<Units>::base_unit_type::mole_ratio::den != 1) { os << "/" << traits::unit_traits<Units>::base_unit_type::mole_ratio::den; }

		if (traits::unit_traits<Units>::base_unit_type::candela_ratio::num != 0) { os << " cd"; }
		if (traits::unit_traits<Units>::base_unit_type::candela_ratio::num != 0 &&
			traits::unit_traits<Units>::base_unit_type::candela_ratio::num != 1) { os << "^" << traits::unit_traits<Units>::base_unit_type::candela_ratio::num; }
		if (traits::unit_traits<Units>::base_unit_type::candela_ratio::den != 1) { os << "/" << traits::unit_traits<Units>::base_unit_type::candela_ratio::den; }

		if (traits::unit_traits<Units>::base_unit_type::radian_ratio::num != 0) { os << " rad"; }
		if (traits::unit_traits<Units>::base_unit_type::radian_ratio::num != 0 &&
			traits::unit_traits<Units>::base_unit_type::radian_ratio::num != 1) { os << "^" << traits::unit_traits<Units>::base_unit_type::radian_ratio::num; }
		if (traits::unit_traits<Units>::base_unit_type::radian_ratio::den != 1) { os << "/" << traits::unit_traits<Units>::base_unit_type::radian_ratio::den; }

		if (traits::unit_traits<Units>::base_unit_type::byte_ratio::num != 0) { os << " b"; }
		if (traits::unit_traits<Units>::base_unit_type::byte_ratio::num != 0 &&
			traits::unit_traits<Units>::base_unit_type::byte_ratio::num != 1) { os << "^" << traits::unit_traits<Units>::base_unit_type::byte_ratio::num; }
		if (traits::unit_traits<Units>::base_unit_type::byte_ratio::den != 1) { os << "/" << traits::unit_traits<Units>::base_unit_type::byte_ratio::den; }

		return os;
	}
#endif

	template<class Units, typename T, template<typename> class NonLinearScale, typename RhsType>
	inline constexpr unit_t<Units, T, NonLinearScale>& operator+=(unit_t<Units, T, NonLinearScale>& lhs, const RhsType& rhs) noexcept
	{
		static_assert(traits::is_convertible_unit_t<unit_t<Units, T, NonLinearScale>, RhsType>::value ||
			(traits::is_dimensionless_unit<decltype(lhs)>::value && std::is_arithmetic<RhsType>::value),
			"parameters are not compatible units.");

		lhs = lhs + rhs;
		return lhs;
	}

	template<class Units, typename T, template<typename> class NonLinearScale, typename RhsType>
	inline constexpr unit_t<Units, T, NonLinearScale>& operator-=(unit_t<Units, T, NonLinearScale>& lhs, const RhsType& rhs) noexcept
	{
		static_assert(traits::is_convertible_unit_t<unit_t<Units, T, NonLinearScale>, RhsType>::value ||
			(traits::is_dimensionless_unit<decltype(lhs)>::value && std::is_arithmetic<RhsType>::value),
			"parameters are not compatible units.");

		lhs = lhs - rhs;
		return lhs;
	}

	template<class Units, typename T, template<typename> class NonLinearScale, typename RhsType>
	inline constexpr unit_t<Units, T, NonLinearScale>& operator*=(unit_t<Units, T, NonLinearScale>& lhs, const RhsType& rhs) noexcept
	{
		static_assert((traits::is_dimensionless_unit<RhsType>::value || std::is_arithmetic<RhsType>::value),
			"right-hand side parameter must be dimensionless.");

		lhs = lhs * rhs;
		return lhs;
	}

	template<class Units, typename T, template<typename> class NonLinearScale, typename RhsType>
	inline constexpr unit_t<Units, T, NonLinearScale>& operator/=(unit_t<Units, T, NonLinearScale>& lhs, const RhsType& rhs) noexcept
	{
		static_assert((traits::is_dimensionless_unit<RhsType>::value || std::is_arithmetic<RhsType>::value),
			"right-hand side parameter must be dimensionless.");

		lhs = lhs / rhs;
		return lhs;
	}

	//------------------------------
	//	UNIT_T UNARY OPERATORS
	//------------------------------

	// unary addition: +T
	template<class Units, typename T, template<typename> class NonLinearScale>
	inline constexpr unit_t<Units, T, NonLinearScale> operator+(const unit_t<Units, T, NonLinearScale>& u) noexcept
	{
		return u;
	}

	// prefix increment: ++T
	template<class Units, typename T, template<typename> class NonLinearScale>
	inline constexpr unit_t<Units, T, NonLinearScale>& operator++(unit_t<Units, T, NonLinearScale>& u) noexcept
	{
		u = unit_t<Units, T, NonLinearScale>(u() + 1);
		return u;
	}

	// postfix increment: T++
	template<class Units, typename T, template<typename> class NonLinearScale>
	inline constexpr unit_t<Units, T, NonLinearScale> operator++(unit_t<Units, T, NonLinearScale>& u, int) noexcept
	{
		auto ret = u;
		u = unit_t<Units, T, NonLinearScale>(u() + 1);
		return ret;
	}

	// unary addition: -T
	template<class Units, typename T, template<typename> class NonLinearScale>
	inline constexpr unit_t<Units, T, NonLinearScale> operator-(const unit_t<Units, T, NonLinearScale>& u) noexcept
	{
		return unit_t<Units, T, NonLinearScale>(-u());
	}

	// prefix increment: --T
	template<class Units, typename T, template<typename> class NonLinearScale>
	inline constexpr unit_t<Units, T, NonLinearScale>& operator--(unit_t<Units, T, NonLinearScale>& u) noexcept
	{
		u = unit_t<Units, T, NonLinearScale>(u() - 1);
		return u;
	}

	// postfix increment: T--
	template<class Units, typename T, template<typename> class NonLinearScale>
	inline constexpr unit_t<Units, T, NonLinearScale> operator--(unit_t<Units, T, NonLinearScale>& u, int) noexcept
	{
		auto ret = u;
		u = unit_t<Units, T, NonLinearScale>(u() - 1);
		return ret;
	}

	//------------------------------
	//	UNIT_CAST
	//------------------------------

	/**
	 * @ingroup		Conversion
	 * @brief		Casts a unit container to an arithmetic type.
	 * @details		unit_cast can be used to remove the strong typing from a unit class, and convert it
	 *				to a built-in arithmetic type. This may be useful for compatibility with libraries
	 *				and legacy code that don't support `unit_t` types. E.g
	 * @code		meter_t unitVal(5);
	 *  double value = units::unit_cast<double>(unitVal);	// value = 5.0
	 * @endcode
	 * @tparam		T		Type to cast the unit type to. Must be a built-in arithmetic type.
	 * @param		value	Unit value to cast.
	 * @sa			unit_t::to
	 */
	template<typename T, typename Units, class = std::enable_if_t<std::is_arithmetic<T>::value && traits::is_unit_t<Units>::value>>
	inline constexpr T unit_cast(const Units& value) noexcept
	{
		return static_cast<T>(value);
	}

	//------------------------------
	//	NON-LINEAR SCALE TRAITS
	//------------------------------

	// forward declaration
	template<typename T> struct decibel_scale;

	namespace traits
	{
		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait which tests whether a type is inherited from a linear scale.
		 * @details		Inherits from `std::true_type` or `std::false_type`. Use `has_linear_scale<U1 [, U2, ...]>::value` to test
		 *				one or more types to see if they represent unit_t's whose scale is linear.
		 * @tparam		T	one or more types to test.
		 */
#if !defined(_MSC_VER) || _MSC_VER > 1800	// bug in VS2013 prevents this from working
		template<typename... T>
		struct has_linear_scale : std::integral_constant<bool, units::all_true<std::is_base_of<units::linear_scale<typename units::traits::unit_t_traits<T>::underlying_type>, T>::value...>::value > {};
#else
		template<typename T1, typename T2 = T1, typename T3 = T1>
		struct has_linear_scale : std::integral_constant<bool,
			std::is_base_of<units::linear_scale<typename units::traits::unit_t_traits<T1>::underlying_type>, T1>::value &&
			std::is_base_of<units::linear_scale<typename units::traits::unit_t_traits<T2>::underlying_type>, T2>::value &&
			std::is_base_of<units::linear_scale<typename units::traits::unit_t_traits<T3>::underlying_type>, T3>::value> {};
#endif

		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait which tests whether a type is inherited from a decibel scale.
		 * @details		Inherits from `std::true_type` or `std::false_type`. Use `has_decibel_scale<U1 [, U2, ...]>::value` to test
		 *				one or more types to see if they represent unit_t's whose scale is in decibels.
		 * @tparam		T	one or more types to test.
		 */
#if !defined(_MSC_VER) || _MSC_VER > 1800	// bug in VS2013 prevents this from working
		template<typename... T>
		struct has_decibel_scale : std::integral_constant<bool,	units::all_true<std::is_base_of<units::decibel_scale<typename units::traits::unit_t_traits<T>::underlying_type>, T>::value...>::value> {};
#else
		template<typename T1, typename T2 = T1, typename T3 = T1>
		struct has_decibel_scale : std::integral_constant<bool,
			std::is_base_of<units::decibel_scale<typename units::traits::unit_t_traits<T1>::underlying_type>, T1>::value &&
			std::is_base_of<units::decibel_scale<typename units::traits::unit_t_traits<T2>::underlying_type>, T2>::value &&
			std::is_base_of<units::decibel_scale<typename units::traits::unit_t_traits<T2>::underlying_type>, T3>::value> {};
#endif

		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait which tests whether two types has the same non-linear scale.
		 * @details		Inherits from `std::true_type` or `std::false_type`. Use `is_same_scale<U1 , U2>::value` to test
		 *				whether two types have the same non-linear scale.
		 * @tparam		T1	left hand type.
		 * @tparam		T2	right hand type
		 */
		template<typename T1, typename T2>
		struct is_same_scale : std::integral_constant<bool,
			std::is_same<typename units::traits::unit_t_traits<T1>::non_linear_scale_type, typename units::traits::unit_t_traits<T2>::non_linear_scale_type>::value>
		{};
	}

	//----------------------------------
	//	NON-LINEAR SCALES
	//----------------------------------

	// Non-linear transforms are used to pre and post scale units which are defined in terms of non-
	// linear functions of their current value. A good example of a non-linear scale would be a
	// logarithmic or decibel scale

	//------------------------------
	//	LINEAR SCALE
	//------------------------------

	/**
	 * @brief		unit_t scale which is linear
	 * @details		Represents units on a linear scale. This is the appropriate unit_t scale for almost
	 *				all units almost all of the time.
	 * @tparam		T	underlying storage type
	 * @sa			unit_t
	 */
	template<typename T>
	struct linear_scale
	{
		inline constexpr linear_scale() = default;													///< default constructor.
		inline constexpr linear_scale(const linear_scale&) = default;
		inline ~linear_scale() = default;
		inline linear_scale& operator=(const linear_scale&) = default;
#if defined(_MSC_VER) && (_MSC_VER > 1800)
		inline constexpr linear_scale(linear_scale&&) = default;
		inline linear_scale& operator=(linear_scale&&) = default;
#endif
		template<class... Args>
		inline constexpr linear_scale(const T& value, Args&&...) noexcept : m_value(value) {}	///< constructor.
		inline constexpr T operator()() const noexcept { return m_value; }							///< returns value.

		T m_value;																					///< linearized value.
	};

	//----------------------------------
	//	SCALAR (LINEAR) UNITS
	//----------------------------------

	// Scalar units are the *ONLY* units implicitly convertible to/from built-in types.
	namespace dimensionless
	{
		typedef unit<std::ratio<1>, units::category::scalar_unit> scalar;
		typedef unit<std::ratio<1>, units::category::dimensionless_unit> dimensionless;

		typedef unit_t<scalar> scalar_t;
		typedef scalar_t dimensionless_t;
	}

// ignore the redeclaration of the default template parameters
#if defined(_MSC_VER)
#	pragma warning(push)
#	pragma warning(disable : 4348)
#endif
	UNIT_ADD_CATEGORY_TRAIT(scalar)
	UNIT_ADD_CATEGORY_TRAIT(dimensionless)
#if defined(_MSC_VER)
#	pragma warning(pop)
#endif

	//------------------------------
	//	LINEAR ARITHMETIC
	//------------------------------

	template<class UnitTypeLhs, class UnitTypeRhs, std::enable_if_t<!traits::is_same_scale<UnitTypeLhs, UnitTypeRhs>::value, int> = 0>
	constexpr inline int operator+(const UnitTypeLhs& /* lhs */, const UnitTypeRhs& /* rhs */) noexcept
	{
		static_assert(traits::is_same_scale<UnitTypeLhs, UnitTypeRhs>::value, "Cannot add units with different linear/non-linear scales.");
		return 0;
	}

	/// Addition operator for unit_t types with a linear_scale.
	template<class UnitTypeLhs, class UnitTypeRhs, std::enable_if_t<traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value, int> = 0>
	inline constexpr UnitTypeLhs operator+(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept
	{
		using UnitsLhs = typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type;
		using UnitsRhs = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		return UnitTypeLhs(lhs() + convert<UnitsRhs, UnitsLhs>(rhs()));
	}

	/// Addition operator for scalar unit_t types with a linear_scale. Scalar types can be implicitly converted to built-in types.
	template<typename T, std::enable_if_t<std::is_arithmetic<T>::value, int> = 0>
	inline constexpr dimensionless::scalar_t operator+(const dimensionless::scalar_t& lhs, T rhs) noexcept
	{
		return dimensionless::scalar_t(lhs() + rhs);
	}

	/// Addition operator for scalar unit_t types with a linear_scale. Scalar types can be implicitly converted to built-in types.
	template<typename T, std::enable_if_t<std::is_arithmetic<T>::value, int> = 0>
	inline constexpr dimensionless::scalar_t operator+(T lhs, const dimensionless::scalar_t& rhs) noexcept
	{
		return dimensionless::scalar_t(lhs + rhs());
	}

	/// Subtraction operator for unit_t types with a linear_scale.
	template<class UnitTypeLhs, class UnitTypeRhs, std::enable_if_t<traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value, int> = 0>
	inline constexpr UnitTypeLhs operator-(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept
	{
		using UnitsLhs = typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type;
		using UnitsRhs = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		return UnitTypeLhs(lhs() - convert<UnitsRhs, UnitsLhs>(rhs()));
	}

	/// Subtraction operator for scalar unit_t types with a linear_scale. Scalar types can be implicitly converted to built-in types.
	template<typename T, std::enable_if_t<std::is_arithmetic<T>::value, int> = 0>
	inline constexpr dimensionless::scalar_t operator-(const dimensionless::scalar_t& lhs, T rhs) noexcept
	{
		return dimensionless::scalar_t(lhs() - rhs);
	}

	/// Subtraction operator for scalar unit_t types with a linear_scale. Scalar types can be implicitly converted to built-in types.
	template<typename T, std::enable_if_t<std::is_arithmetic<T>::value, int> = 0>
	inline constexpr dimensionless::scalar_t operator-(T lhs, const dimensionless::scalar_t& rhs) noexcept
	{
		return dimensionless::scalar_t(lhs - rhs());
	}

	/// Multiplication type for convertible unit_t types with a linear scale. @returns the multiplied value, with the same type as left-hand side unit.
	template<class UnitTypeLhs, class UnitTypeRhs,
		std::enable_if_t<traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value && traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value, int> = 0>
		inline constexpr auto operator*(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept -> unit_t<compound_unit<squared<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type>>>
	{
		using UnitsLhs = typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type;
		using UnitsRhs = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		return  unit_t<compound_unit<squared<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type>>>
			(lhs() * convert<UnitsRhs, UnitsLhs>(rhs()));
	}

	/// Multiplication type for non-convertible unit_t types with a linear scale. @returns the multiplied value, whose type is a compound unit of the left and right hand side values.
	template<class UnitTypeLhs, class UnitTypeRhs,
		std::enable_if_t<!traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value && traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value && !traits::is_dimensionless_unit<UnitTypeLhs>::value && !traits::is_dimensionless_unit<UnitTypeRhs>::value, int> = 0>
		inline constexpr auto operator*(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept -> unit_t<compound_unit<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type, typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type>>
	{
		using UnitsLhs = typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type;
		using UnitsRhs = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		return unit_t<compound_unit<UnitsLhs, UnitsRhs>>
			(lhs() * rhs());
	}

	/// Multiplication by a dimensionless unit for unit_t types with a linear scale.
	template<class UnitTypeLhs, typename UnitTypeRhs,
		std::enable_if_t<traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value && !traits::is_dimensionless_unit<UnitTypeLhs>::value && traits::is_dimensionless_unit<UnitTypeRhs>::value, int> = 0>
		inline constexpr UnitTypeLhs operator*(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept
	{
		// the cast makes sure factors of PI are handled as expected
		return UnitTypeLhs(lhs() * static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs));
	}

	/// Multiplication by a dimensionless unit for unit_t types with a linear scale.
	template<class UnitTypeLhs, typename UnitTypeRhs,
		std::enable_if_t<traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value && traits::is_dimensionless_unit<UnitTypeLhs>::value && !traits::is_dimensionless_unit<UnitTypeRhs>::value, int> = 0>
		inline constexpr UnitTypeRhs operator*(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept
	{
		// the cast makes sure factors of PI are handled as expected
		return UnitTypeRhs(static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs) * rhs());
	}

	/// Multiplication by a scalar for unit_t types with a linear scale.
	template<class UnitTypeLhs, typename T,
		std::enable_if_t<std::is_arithmetic<T>::value && traits::has_linear_scale<UnitTypeLhs>::value, int> = 0>
		inline constexpr UnitTypeLhs operator*(const UnitTypeLhs& lhs, T rhs) noexcept
	{
		return UnitTypeLhs(lhs() * rhs);
	}

	/// Multiplication by a scalar for unit_t types with a linear scale.
	template<class UnitTypeRhs, typename T,
		std::enable_if_t<std::is_arithmetic<T>::value && traits::has_linear_scale<UnitTypeRhs>::value, int> = 0>
		inline constexpr UnitTypeRhs operator*(T lhs, const UnitTypeRhs& rhs) noexcept
	{
		return UnitTypeRhs(lhs * rhs());
	}

	/// Division for convertible unit_t types with a linear scale. @returns the lhs divided by rhs value, whose type is a scalar
	template<class UnitTypeLhs, class UnitTypeRhs,
		std::enable_if_t<traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value && traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value, int> = 0>
		inline constexpr dimensionless::scalar_t operator/(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept
	{
		using UnitsLhs = typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type;
		using UnitsRhs = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		return dimensionless::scalar_t(lhs() / convert<UnitsRhs, UnitsLhs>(rhs()));
	}

	/// Division for non-convertible unit_t types with a linear scale. @returns the lhs divided by the rhs, with a compound unit type of lhs/rhs
	template<class UnitTypeLhs, class UnitTypeRhs,
		std::enable_if_t<!traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value && traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value && !traits::is_dimensionless_unit<UnitTypeLhs>::value && !traits::is_dimensionless_unit<UnitTypeRhs>::value, int> = 0>
		inline constexpr auto operator/(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept ->  unit_t<compound_unit<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type, inverse<typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type>>>
	{
		using UnitsLhs = typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type;
		using UnitsRhs = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		return unit_t<compound_unit<UnitsLhs, inverse<UnitsRhs>>>
			(lhs() / rhs());
	}

	/// Division by a dimensionless unit for unit_t types with a linear scale
	template<class UnitTypeLhs, class UnitTypeRhs,
		std::enable_if_t<traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value && !traits::is_dimensionless_unit<UnitTypeLhs>::value && traits::is_dimensionless_unit<UnitTypeRhs>::value, int> = 0>
		inline constexpr UnitTypeLhs operator/(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept
	{
		return UnitTypeLhs(lhs() / static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs));
	}

	/// Division of a dimensionless unit  by a unit_t type with a linear scale
	template<class UnitTypeLhs, class UnitTypeRhs,
		std::enable_if_t<traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value && traits::is_dimensionless_unit<UnitTypeLhs>::value && !traits::is_dimensionless_unit<UnitTypeRhs>::value, int> = 0>
		inline constexpr auto operator/(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept -> unit_t<inverse<typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type>>
	{
		return unit_t<inverse<typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type>>
			(static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs) / rhs());
	}

	/// Division by a scalar for unit_t types with a linear scale
	template<class UnitTypeLhs, typename T,
		std::enable_if_t<std::is_arithmetic<T>::value && traits::has_linear_scale<UnitTypeLhs>::value, int> = 0>
		inline constexpr UnitTypeLhs operator/(const UnitTypeLhs& lhs, T rhs) noexcept
	{
		return UnitTypeLhs(lhs() / rhs);
	}

	/// Division of a scalar  by a unit_t type with a linear scale
	template<class UnitTypeRhs, typename T,
		std::enable_if_t<std::is_arithmetic<T>::value && traits::has_linear_scale<UnitTypeRhs>::value, int> = 0>
		inline constexpr auto operator/(T lhs, const UnitTypeRhs& rhs) noexcept -> unit_t<inverse<typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type>>
	{
		using UnitsRhs = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		return unit_t<inverse<UnitsRhs>>
			(lhs / rhs());
	}

	//----------------------------------
	//	SCALAR COMPARISONS
	//----------------------------------

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator==(const UNIT_LIB_DEFAULT_TYPE lhs, const Units& rhs) noexcept
	{
		return detail::abs(lhs - static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs)) < std::numeric_limits<UNIT_LIB_DEFAULT_TYPE>::epsilon() * detail::abs(lhs + static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs)) ||
			detail::abs(lhs - static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs)) < std::numeric_limits<UNIT_LIB_DEFAULT_TYPE>::min();
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator==(const Units& lhs, const UNIT_LIB_DEFAULT_TYPE rhs) noexcept
	{
		return detail::abs(static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs) - rhs) < std::numeric_limits<UNIT_LIB_DEFAULT_TYPE>::epsilon() * detail::abs(static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs) + rhs) ||
			detail::abs(static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs) - rhs) < std::numeric_limits<UNIT_LIB_DEFAULT_TYPE>::min();
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator!=(const UNIT_LIB_DEFAULT_TYPE lhs, const Units& rhs) noexcept
	{
		return!(lhs == static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs));
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator!=(const Units& lhs, const UNIT_LIB_DEFAULT_TYPE rhs) noexcept
	{
		return !(static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs) == rhs);
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator>=(const UNIT_LIB_DEFAULT_TYPE lhs, const Units& rhs) noexcept
	{
		return std::isgreaterequal(lhs, static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs));
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator>=(const Units& lhs, const UNIT_LIB_DEFAULT_TYPE rhs) noexcept
	{
		return std::isgreaterequal(static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs), rhs);
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator>(const UNIT_LIB_DEFAULT_TYPE lhs, const Units& rhs) noexcept
	{
		return lhs > static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs);
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator>(const Units& lhs, const UNIT_LIB_DEFAULT_TYPE rhs) noexcept
	{
		return static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs) > rhs;
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator<=(const UNIT_LIB_DEFAULT_TYPE lhs, const Units& rhs) noexcept
	{
		return std::islessequal(lhs, static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs));
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator<=(const Units& lhs, const UNIT_LIB_DEFAULT_TYPE rhs) noexcept
	{
		return std::islessequal(static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs), rhs);
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator<(const UNIT_LIB_DEFAULT_TYPE lhs, const Units& rhs) noexcept
	{
		return lhs < static_cast<UNIT_LIB_DEFAULT_TYPE>(rhs);
	}

	template<typename Units, class = std::enable_if_t<units::traits::is_dimensionless_unit<Units>::value>>
	constexpr bool operator<(const Units& lhs, const UNIT_LIB_DEFAULT_TYPE rhs) noexcept
	{
		return static_cast<UNIT_LIB_DEFAULT_TYPE>(lhs) < rhs;
	}

	//----------------------------------
	//	POW
	//----------------------------------

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		/// recursive exponential implementation
		template <int N, class U> struct power_of_unit
		{
			template<bool isPos, int V> struct power_of_unit_impl;

			template<int V> struct power_of_unit_impl<true, V>
			{
				typedef units::detail::unit_multiply<U, typename power_of_unit<N - 1, U>::type> type;
			};

			template<int V> struct power_of_unit_impl<false, V>
			{
				typedef units::inverse<typename power_of_unit<-N, U>::type> type;
			};

			typedef typename power_of_unit_impl<(N > 0), N>::type type;
		};

		/// End recursion
		template <class U> struct power_of_unit<1, U>
		{
			typedef U type;
		};
		template <class U> struct power_of_unit<0, U>
		{
			typedef units::dimensionless::dimensionless type;
		};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	namespace math
	{
		/**
		 * @brief		computes the value of <i>value</i> raised to the <i>power</i>
		 * @details		Only implemented for linear_scale units. <i>Power</i> must be known at compile time, so the resulting unit type can be deduced.
		 * @tparam		power exponential power to raise <i>value</i> by.
		 * @param[in]	value `unit_t` derived type to raise to the given <i>power</i>
		 * @returns		new unit_t, raised to the given exponent
		 */
		template<int power, class UnitType, class = typename std::enable_if<traits::has_linear_scale<UnitType>::value, int>>
		inline auto pow(const UnitType& value) noexcept -> unit_t<typename units::detail::power_of_unit<power, typename units::traits::unit_t_traits<UnitType>::unit_type>::type, typename units::traits::unit_t_traits<UnitType>::underlying_type, linear_scale>
		{
			return unit_t<typename units::detail::power_of_unit<power, typename units::traits::unit_t_traits<UnitType>::unit_type>::type, typename units::traits::unit_t_traits<UnitType>::underlying_type, linear_scale>
				(std::pow(value(), power));
		}

		/**
		 * @brief		computes the value of <i>value</i> raised to the <i>power</i> as a constexpr
		 * @details		Only implemented for linear_scale units. <i>Power</i> must be known at compile time, so the resulting unit type can be deduced.
		 *				Additionally, the power must be <i>a positive, integral, value</i>.
		 * @tparam		power exponential power to raise <i>value</i> by.
		 * @param[in]	value `unit_t` derived type to raise to the given <i>power</i>
		 * @returns		new unit_t, raised to the given exponent
		 */
		template<int power, class UnitType, class = typename std::enable_if<traits::has_linear_scale<UnitType>::value, int>>
		inline constexpr auto cpow(const UnitType& value) noexcept -> unit_t<typename units::detail::power_of_unit<power, typename units::traits::unit_t_traits<UnitType>::unit_type>::type, typename units::traits::unit_t_traits<UnitType>::underlying_type, linear_scale>
		{
			static_assert(power >= 0, "cpow cannot accept negative numbers. Try units::math::pow instead.");
			return unit_t<typename units::detail::power_of_unit<power, typename units::traits::unit_t_traits<UnitType>::unit_type>::type, typename units::traits::unit_t_traits<UnitType>::underlying_type, linear_scale>
				(detail::pow(value(), power));
		}
	}

	//------------------------------
	//	DECIBEL SCALE
	//------------------------------

	/**
	* @brief		unit_t scale for representing decibel values.
	* @details		internally stores linearized values. `operator()` returns the value in dB.
	* @tparam		T	underlying storage type
	* @sa			unit_t
	*/
	template<typename T>
	struct decibel_scale
	{
		inline constexpr decibel_scale() = default;
		inline constexpr decibel_scale(const decibel_scale&) = default;
		inline ~decibel_scale() = default;
		inline decibel_scale& operator=(const decibel_scale&) = default;
#if defined(_MSC_VER) && (_MSC_VER > 1800)
		inline constexpr decibel_scale(decibel_scale&&) = default;
		inline decibel_scale& operator=(decibel_scale&&) = default;
#endif
		inline constexpr decibel_scale(const T value) noexcept : m_value(std::pow(10, value / 10)) {}
		template<class... Args>
		inline constexpr decibel_scale(const T value, std::true_type, Args&&...) noexcept : m_value(value) {}
		inline constexpr T operator()() const noexcept { return 10 * std::log10(m_value); }

		T m_value;	///< linearized value
	};

	//------------------------------
	//	SCALAR (DECIBEL) UNITS
	//------------------------------

	/**
	 * @brief		namespace for unit types and containers for units that have no dimension (scalar units)
	 * @sa			See unit_t for more information on unit type containers.
	 */
	namespace dimensionless
	{
		typedef unit_t<scalar, UNIT_LIB_DEFAULT_TYPE, decibel_scale> dB_t;
#if !defined(UNIT_LIB_DISABLE_IOSTREAM)
		inline std::ostream& operator<<(std::ostream& os, const dB_t& obj) { os << obj() << " dB"; return os; }
#endif
		typedef dB_t dBi_t;
	}

	//------------------------------
	//	DECIBEL ARITHMETIC
	//------------------------------

	/// Addition for convertible unit_t types with a decibel_scale
	template<class UnitTypeLhs, class UnitTypeRhs,
		std::enable_if_t<traits::has_decibel_scale<UnitTypeLhs, UnitTypeRhs>::value, int> = 0>
	constexpr inline auto operator+(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept -> unit_t<compound_unit<squared<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type>>, typename units::traits::unit_t_traits<UnitTypeLhs>::underlying_type, decibel_scale>
	{
		using LhsUnits = typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type;
		using RhsUnits = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		using underlying_type = typename units::traits::unit_t_traits<UnitTypeLhs>::underlying_type;

		return unit_t<compound_unit<squared<LhsUnits>>, underlying_type, decibel_scale>
			(lhs.template toLinearized<underlying_type>() * convert<RhsUnits, LhsUnits>(rhs.template toLinearized<underlying_type>()), std::true_type());
	}

	/// Addition between unit_t types with a decibel_scale and dimensionless dB units
	template<class UnitTypeLhs, std::enable_if_t<traits::has_decibel_scale<UnitTypeLhs>::value && !traits::is_dimensionless_unit<UnitTypeLhs>::value, int> = 0>
	constexpr inline UnitTypeLhs operator+(const UnitTypeLhs& lhs, const dimensionless::dB_t& rhs) noexcept
	{
		using underlying_type = typename units::traits::unit_t_traits<UnitTypeLhs>::underlying_type;
		return UnitTypeLhs(lhs.template toLinearized<underlying_type>() * rhs.template toLinearized<underlying_type>(), std::true_type());
	}

	/// Addition between unit_t types with a decibel_scale and dimensionless dB units
	template<class UnitTypeRhs, std::enable_if_t<traits::has_decibel_scale<UnitTypeRhs>::value && !traits::is_dimensionless_unit<UnitTypeRhs>::value, int> = 0>
	constexpr inline UnitTypeRhs operator+(const dimensionless::dB_t& lhs, const UnitTypeRhs& rhs) noexcept
	{
		using underlying_type = typename units::traits::unit_t_traits<UnitTypeRhs>::underlying_type;
		return UnitTypeRhs(lhs.template toLinearized<underlying_type>() * rhs.template toLinearized<underlying_type>(), std::true_type());
	}

	/// Subtraction for convertible unit_t types with a decibel_scale
	template<class UnitTypeLhs, class UnitTypeRhs, std::enable_if_t<traits::has_decibel_scale<UnitTypeLhs, UnitTypeRhs>::value, int> = 0>
	constexpr inline auto operator-(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs) noexcept -> unit_t<compound_unit<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type, inverse<typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type>>, typename units::traits::unit_t_traits<UnitTypeLhs>::underlying_type, decibel_scale>
	{
		using LhsUnits = typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type;
		using RhsUnits = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		using underlying_type = typename units::traits::unit_t_traits<UnitTypeLhs>::underlying_type;

		return unit_t<compound_unit<LhsUnits, inverse<RhsUnits>>, underlying_type, decibel_scale>
			(lhs.template toLinearized<underlying_type>() / convert<RhsUnits, LhsUnits>(rhs.template toLinearized<underlying_type>()), std::true_type());
	}

	/// Subtraction between unit_t types with a decibel_scale and dimensionless dB units
	template<class UnitTypeLhs, std::enable_if_t<traits::has_decibel_scale<UnitTypeLhs>::value && !traits::is_dimensionless_unit<UnitTypeLhs>::value, int> = 0>
	constexpr inline UnitTypeLhs operator-(const UnitTypeLhs& lhs, const dimensionless::dB_t& rhs) noexcept
	{
		using underlying_type = typename units::traits::unit_t_traits<UnitTypeLhs>::underlying_type;
		return UnitTypeLhs(lhs.template toLinearized<underlying_type>() / rhs.template toLinearized<underlying_type>(), std::true_type());
	}

	/// Subtraction between unit_t types with a decibel_scale and dimensionless dB units
	template<class UnitTypeRhs, std::enable_if_t<traits::has_decibel_scale<UnitTypeRhs>::value && !traits::is_dimensionless_unit<UnitTypeRhs>::value, int> = 0>
	constexpr inline auto operator-(const dimensionless::dB_t& lhs, const UnitTypeRhs& rhs) noexcept -> unit_t<inverse<typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type>, typename units::traits::unit_t_traits<UnitTypeRhs>::underlying_type, decibel_scale>
	{
		using RhsUnits = typename units::traits::unit_t_traits<UnitTypeRhs>::unit_type;
		using underlying_type = typename units::traits::unit_t_traits<RhsUnits>::underlying_type;

		return unit_t<inverse<RhsUnits>, underlying_type, decibel_scale>
			(lhs.template toLinearized<underlying_type>() / rhs.template toLinearized<underlying_type>(), std::true_type());
	}

	//----------------------------------
	//	UNIT RATIO CLASS
	//----------------------------------

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		template<class Units>
		struct _unit_value_t {};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	namespace traits
	{
#ifdef FOR_DOXYGEN_PURPOSES_ONLY
		/**
		* @ingroup		TypeTraits
		* @brief		Trait for accessing the publically defined types of `units::unit_value_t_traits`
		* @details		The units library determines certain properties of the `unit_value_t` types passed to
		*				them and what they represent by using the members of the corresponding `unit_value_t_traits`
		*				instantiation.
		*/
		template<typename T>
		struct unit_value_t_traits
		{
			typedef typename T::unit_type unit_type;	///< Dimension represented by the `unit_value_t`.
			typedef typename T::ratio ratio;			///< Quantity represented by the `unit_value_t`, expressed as arational number.
		};
#endif

		/** @cond */	// DOXYGEN IGNORE
		/**
		 * @brief		unit_value_t_traits specialization for things which are not unit_t
		 * @details
		 */
		template<typename T, typename = void>
		struct unit_value_t_traits
		{
			typedef void unit_type;
			typedef void ratio;
		};

		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait for accessing the publically defined types of `units::unit_value_t_traits`
		 * @details
		 */
		template<typename T>
		struct unit_value_t_traits <T, typename void_t<
			typename T::unit_type,
			typename T::ratio>::type>
		{
			typedef typename T::unit_type unit_type;
			typedef typename T::ratio ratio;
		};
		/** @endcond */	// END DOXYGEN IGNORE
	}

	//------------------------------------------------------------------------------
	//	COMPILE-TIME UNIT VALUES AND ARITHMETIC
	//------------------------------------------------------------------------------

	/**
	 * @ingroup		UnitContainers
	 * @brief		Stores a rational unit value as a compile-time constant
	 * @details		unit_value_t is useful for performing compile-time arithmetic on known
	 *				unit quantities.
	 * @tparam		Units	units represented by the `unit_value_t`
	 * @tparam		Num		numerator of the represented value.
	 * @tparam		Denom	denominator of the represented value.
	 * @sa			unit_value_t_traits to access information about the properties of the class,
	 *				such as it's unit type and rational value.
	 * @note		This is intentionally identical in concept to a `std::ratio`.
	 *
	 */
	template<typename Units, std::uintmax_t Num, std::uintmax_t Denom = 1>
	struct unit_value_t : units::detail::_unit_value_t<Units>
	{
		typedef Units unit_type;
		typedef std::ratio<Num, Denom> ratio;

		static_assert(traits::is_unit<Units>::value, "Template parameter `Units` must be a unit type.");
		static constexpr const unit_t<Units> value() { return unit_t<Units>((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den); }
	};

	namespace traits
	{
		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait which tests whether a type is a unit_value_t representing the given unit type.
		 * @details		e.g. `is_unit_value_t<meters, myType>::value` would test that `myType` is a
		 *				`unit_value_t<meters>`.
		 * @tparam		Units	units that the `unit_value_t` is supposed to have.
		 * @tparam		T		type to test.
		 */
		template<typename T, typename Units = typename traits::unit_value_t_traits<T>::unit_type>
		struct is_unit_value_t : std::integral_constant<bool,
			std::is_base_of<units::detail::_unit_value_t<Units>, T>::value>
		{};

		/**
		 * @ingroup		TypeTraits
		 * @brief		Trait which tests whether type T is a unit_value_t with a unit type in the given category.
		 * @details		e.g. `is_unit_value_t_category<units::category::length, unit_value_t<feet>>::value` would be true
		 */
		template<typename Category, typename T>
		struct is_unit_value_t_category : std::integral_constant<bool,
			std::is_same<units::traits::base_unit_of<typename traits::unit_value_t_traits<T>::unit_type>, Category>::value>
		{
			static_assert(is_base_unit<Category>::value, "Template parameter `Category` must be a `base_unit` type.");
		};
	}

	/** @cond */	// DOXYGEN IGNORE
	namespace detail
	{
		// base class for common arithmetic
		template<class U1, class U2>
		struct unit_value_arithmetic
		{
			static_assert(traits::is_unit_value_t<U1>::value, "Template parameter `U1` must be a `unit_value_t` type.");
			static_assert(traits::is_unit_value_t<U2>::value, "Template parameter `U2` must be a `unit_value_t` type.");

			using _UNIT1 = typename traits::unit_value_t_traits<U1>::unit_type;
			using _UNIT2 = typename traits::unit_value_t_traits<U2>::unit_type;
			using _CONV1 = typename units::traits::unit_traits<_UNIT1>::conversion_ratio;
			using _CONV2 = typename units::traits::unit_traits<_UNIT2>::conversion_ratio;
			using _RATIO1 = typename traits::unit_value_t_traits<U1>::ratio;
			using _RATIO2 = typename traits::unit_value_t_traits<U2>::ratio;
			using _RATIO2CONV = typename std::ratio_divide<std::ratio_multiply<_RATIO2, _CONV2>, _CONV1>;
			using _PI_EXP = std::ratio_subtract<typename units::traits::unit_traits<_UNIT2>::pi_exponent_ratio, typename units::traits::unit_traits<_UNIT1>::pi_exponent_ratio>;
		};
	}
	/** @endcond */	// END DOXYGEN IGNORE

	/**
	 * @ingroup		CompileTimeUnitManipulators
	 * @brief		adds two unit_value_t types at compile-time
	 * @details		The resulting unit will the the `unit_type` of `U1`
	 * @tparam		U1	left-hand `unit_value_t`
	 * @tparam		U2	right-hand `unit_value_t`
	 * @sa			unit_value_t_traits to access information about the properties of the class,
	 *				such as it's unit type and rational value.
	 * @note		very similar in concept to `std::ratio_add`
	 */
	template<class U1, class U2>
	struct unit_value_add : units::detail::unit_value_arithmetic<U1, U2>, units::detail::_unit_value_t<typename traits::unit_value_t_traits<U1>::unit_type>
	{
		/** @cond */	// DOXYGEN IGNORE
		using Base = units::detail::unit_value_arithmetic<U1, U2>;
		typedef typename Base::_UNIT1 unit_type;
		using ratio = std::ratio_add<typename Base::_RATIO1, typename Base::_RATIO2CONV>;

		static_assert(traits::is_convertible_unit<typename Base::_UNIT1, typename Base::_UNIT2>::value, "Unit types are not compatible.");
		/** @endcond */	// END DOXYGEN IGNORE

		/**
		 * @brief		Value of sum
		 * @details		Returns the calculated value of the sum of `U1` and `U2`, in the same
		 *				units as `U1`.
		 * @returns		Value of the sum in the appropriate units.
		 */
		static constexpr const unit_t<unit_type> value() noexcept
		{
			using UsePi = std::integral_constant<bool, Base::_PI_EXP::num != 0>;
			return value(UsePi());
		}

		/** @cond */	// DOXYGEN IGNORE
		// value if PI isn't involved
		static constexpr const unit_t<unit_type> value(std::false_type) noexcept
		{
			return unit_t<unit_type>((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den);
		}

		// value if PI *is* involved
		static constexpr const unit_t<unit_type> value(std::true_type) noexcept
		{
			return unit_t<unit_type>(((UNIT_LIB_DEFAULT_TYPE)Base::_RATIO1::num / Base::_RATIO1::den) +
			((UNIT_LIB_DEFAULT_TYPE)Base::_RATIO2CONV::num / Base::_RATIO2CONV::den) * std::pow(units::constants::detail::PI_VAL, ((UNIT_LIB_DEFAULT_TYPE)Base::_PI_EXP::num / Base::_PI_EXP::den)));
		}
		/** @endcond */	// END DOXYGEN IGNORE
	};

	/**
	 * @ingroup		CompileTimeUnitManipulators
	 * @brief		subtracts two unit_value_t types at compile-time
	 * @details		The resulting unit will the the `unit_type` of `U1`
	 * @tparam		U1	left-hand `unit_value_t`
	 * @tparam		U2	right-hand `unit_value_t`
	 * @sa			unit_value_t_traits to access information about the properties of the class,
	 *				such as it's unit type and rational value.
	 * @note		very similar in concept to `std::ratio_subtract`
	 */
	template<class U1, class U2>
	struct unit_value_subtract : units::detail::unit_value_arithmetic<U1, U2>, units::detail::_unit_value_t<typename traits::unit_value_t_traits<U1>::unit_type>
	{
		/** @cond */	// DOXYGEN IGNORE
		using Base = units::detail::unit_value_arithmetic<U1, U2>;

		typedef typename Base::_UNIT1 unit_type;
		using ratio = std::ratio_subtract<typename Base::_RATIO1, typename Base::_RATIO2CONV>;

		static_assert(traits::is_convertible_unit<typename Base::_UNIT1, typename Base::_UNIT2>::value, "Unit types are not compatible.");
		/** @endcond */	// END DOXYGEN IGNORE

		/**
		 * @brief		Value of difference
		 * @details		Returns the calculated value of the difference of `U1` and `U2`, in the same
		 *				units as `U1`.
		 * @returns		Value of the difference in the appropriate units.
		 */
		static constexpr const unit_t<unit_type> value() noexcept
		{
			using UsePi = std::integral_constant<bool, Base::_PI_EXP::num != 0>;
			return value(UsePi());
		}

		/** @cond */	// DOXYGEN IGNORE
		// value if PI isn't involved
		static constexpr const unit_t<unit_type> value(std::false_type) noexcept
		{
			return unit_t<unit_type>((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den);
		}

		// value if PI *is* involved
		static constexpr const unit_t<unit_type> value(std::true_type) noexcept
		{
			return unit_t<unit_type>(((UNIT_LIB_DEFAULT_TYPE)Base::_RATIO1::num / Base::_RATIO1::den) - ((UNIT_LIB_DEFAULT_TYPE)Base::_RATIO2CONV::num / Base::_RATIO2CONV::den)
				* std::pow(units::constants::detail::PI_VAL, ((UNIT_LIB_DEFAULT_TYPE)Base::_PI_EXP::num / Base::_PI_EXP::den)));
		}
		/** @endcond */	// END DOXYGEN IGNORE	};
	};

	/**
	 * @ingroup		CompileTimeUnitManipulators
	 * @brief		multiplies two unit_value_t types at compile-time
	 * @details		The resulting unit will the the `unit_type` of `U1 * U2`
	 * @tparam		U1	left-hand `unit_value_t`
	 * @tparam		U2	right-hand `unit_value_t`
	 * @sa			unit_value_t_traits to access information about the properties of the class,
	 *				such as it's unit type and rational value.
	 * @note		very similar in concept to `std::ratio_multiply`
	 */
	template<class U1, class U2>
	struct unit_value_multiply : units::detail::unit_value_arithmetic<U1, U2>,
		units::detail::_unit_value_t<typename std::conditional<traits::is_convertible_unit<typename traits::unit_value_t_traits<U1>::unit_type,
			typename traits::unit_value_t_traits<U2>::unit_type>::value, compound_unit<squared<typename traits::unit_value_t_traits<U1>::unit_type>>,
			compound_unit<typename traits::unit_value_t_traits<U1>::unit_type, typename traits::unit_value_t_traits<U2>::unit_type>>::type>
	{
		/** @cond */	// DOXYGEN IGNORE
		using Base = units::detail::unit_value_arithmetic<U1, U2>;

		using unit_type = std::conditional_t<traits::is_convertible_unit<typename Base::_UNIT1, typename Base::_UNIT2>::value, compound_unit<squared<typename Base::_UNIT1>>, compound_unit<typename Base::_UNIT1, typename Base::_UNIT2>>;
		using ratio = std::conditional_t<traits::is_convertible_unit<typename Base::_UNIT1, typename Base::_UNIT2>::value, std::ratio_multiply<typename Base::_RATIO1, typename Base::_RATIO2CONV>, std::ratio_multiply<typename Base::_RATIO1, typename Base::_RATIO2>>;
		/** @endcond */	// END DOXYGEN IGNORE

		/**
		 * @brief		Value of product
		 * @details		Returns the calculated value of the product of `U1` and `U2`, in units
		 *				of `U1 x U2`.
		 * @returns		Value of the product in the appropriate units.
		 */
		static constexpr const unit_t<unit_type> value() noexcept
		{
			using UsePi = std::integral_constant<bool, Base::_PI_EXP::num != 0>;
			return value(UsePi());
		}

		/** @cond */	// DOXYGEN IGNORE
		// value if PI isn't involved
		static constexpr const unit_t<unit_type> value(std::false_type) noexcept
		{
			return unit_t<unit_type>((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den);
		}

		// value if PI *is* involved
		static constexpr const unit_t<unit_type> value(std::true_type) noexcept
		{
			return unit_t<unit_type>(((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den) * std::pow(units::constants::detail::PI_VAL, ((UNIT_LIB_DEFAULT_TYPE)Base::_PI_EXP::num / Base::_PI_EXP::den)));
		}
		/** @endcond */	// END DOXYGEN IGNORE
	};

	/**
	 * @ingroup		CompileTimeUnitManipulators
	 * @brief		divides two unit_value_t types at compile-time
	 * @details		The resulting unit will the the `unit_type` of `U1`
	 * @tparam		U1	left-hand `unit_value_t`
	 * @tparam		U2	right-hand `unit_value_t`
	 * @sa			unit_value_t_traits to access information about the properties of the class,
	 *				such as it's unit type and rational value.
	 * @note		very similar in concept to `std::ratio_divide`
	 */
	template<class U1, class U2>
	struct unit_value_divide : units::detail::unit_value_arithmetic<U1, U2>,
		units::detail::_unit_value_t<typename std::conditional<traits::is_convertible_unit<typename traits::unit_value_t_traits<U1>::unit_type,
		typename traits::unit_value_t_traits<U2>::unit_type>::value, dimensionless::scalar, compound_unit<typename traits::unit_value_t_traits<U1>::unit_type,
		inverse<typename traits::unit_value_t_traits<U2>::unit_type>>>::type>
	{
		/** @cond */	// DOXYGEN IGNORE
		using Base = units::detail::unit_value_arithmetic<U1, U2>;

		using unit_type = std::conditional_t<traits::is_convertible_unit<typename Base::_UNIT1, typename Base::_UNIT2>::value, dimensionless::scalar, compound_unit<typename Base::_UNIT1, inverse<typename Base::_UNIT2>>>;
		using ratio = std::conditional_t<traits::is_convertible_unit<typename Base::_UNIT1, typename Base::_UNIT2>::value, std::ratio_divide<typename Base::_RATIO1, typename Base::_RATIO2CONV>, std::ratio_divide<typename Base::_RATIO1, typename Base::_RATIO2>>;
		/** @endcond */	// END DOXYGEN IGNORE

		/**
		 * @brief		Value of quotient
		 * @details		Returns the calculated value of the quotient of `U1` and `U2`, in units
		 *				of `U1 x U2`.
		 * @returns		Value of the quotient in the appropriate units.
		 */
		static constexpr const unit_t<unit_type> value() noexcept
		{
			using UsePi = std::integral_constant<bool, Base::_PI_EXP::num != 0>;
			return value(UsePi());
		}

		/** @cond */	// DOXYGEN IGNORE
		// value if PI isn't involved
		static constexpr const unit_t<unit_type> value(std::false_type) noexcept
		{
			return unit_t<unit_type>((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den);
		}

		// value if PI *is* involved
		static constexpr const unit_t<unit_type> value(std::true_type) noexcept
		{
			return unit_t<unit_type>(((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den) * std::pow(units::constants::detail::PI_VAL, ((UNIT_LIB_DEFAULT_TYPE)Base::_PI_EXP::num / Base::_PI_EXP::den)));
		}
		/** @endcond */	// END DOXYGEN IGNORE
	};

	/**
	 * @ingroup		CompileTimeUnitManipulators
	 * @brief		raises unit_value_to a power at compile-time
	 * @details		The resulting unit will the `unit_type` of `U1` squared
	 * @tparam		U1	`unit_value_t` to take the exponentiation of.
	 * @sa			unit_value_t_traits to access information about the properties of the class,
	 *				such as it's unit type and rational value.
	 * @note		very similar in concept to `units::math::pow`
	 */
	template<class U1, int power>
	struct unit_value_power : units::detail::unit_value_arithmetic<U1, U1>, units::detail::_unit_value_t<typename units::detail::power_of_unit<power, typename traits::unit_value_t_traits<U1>::unit_type>::type>
	{
		/** @cond */	// DOXYGEN IGNORE
		using Base = units::detail::unit_value_arithmetic<U1, U1>;

		using unit_type = typename units::detail::power_of_unit<power, typename Base::_UNIT1>::type;
		using ratio = typename units::detail::power_of_ratio<power, typename Base::_RATIO1>::type;
		using pi_exponent = std::ratio_multiply<std::ratio<power>, typename Base::_UNIT1::pi_exponent_ratio>;
		/** @endcond */	// END DOXYGEN IGNORE

		/**
		 * @brief		Value of exponentiation
		 * @details		Returns the calculated value of the exponentiation of `U1`, in units
		 *				of `U1^power`.
		 * @returns		Value of the exponentiation in the appropriate units.
		 */
		static constexpr const unit_t<unit_type> value() noexcept
		{
			using UsePi = std::integral_constant<bool, Base::_PI_EXP::num != 0>;
			return value(UsePi());
		}

		/** @cond */	// DOXYGEN IGNORE
		// value if PI isn't involved
		static constexpr const unit_t<unit_type> value(std::false_type) noexcept
		{
			return unit_t<unit_type>((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den);
		}

		// value if PI *is* involved
		static constexpr const unit_t<unit_type> value(std::true_type) noexcept
		{
			return unit_t<unit_type>(((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den) * std::pow(units::constants::detail::PI_VAL, ((UNIT_LIB_DEFAULT_TYPE)pi_exponent::num / pi_exponent::den)));
		}
		/** @endcond */	// END DOXYGEN IGNORE	};
	};

	/**
	 * @ingroup		CompileTimeUnitManipulators
	 * @brief		calculates square root of unit_value_t at compile-time
	 * @details		The resulting unit will the square root `unit_type` of `U1`
	 * @tparam		U1	`unit_value_t` to take the square root of.
	 * @sa			unit_value_t_traits to access information about the properties of the class,
	 *				such as it's unit type and rational value.
	 * @note		very similar in concept to `units::ratio_sqrt`
	 */
	template<class U1, std::intmax_t Eps = 10000000000>
	struct unit_value_sqrt : units::detail::unit_value_arithmetic<U1, U1>, units::detail::_unit_value_t<square_root<typename traits::unit_value_t_traits<U1>::unit_type, Eps>>
	{
		/** @cond */	// DOXYGEN IGNORE
		using Base = units::detail::unit_value_arithmetic<U1, U1>;

		using unit_type = square_root<typename Base::_UNIT1, Eps>;
		using ratio = ratio_sqrt<typename Base::_RATIO1, Eps>;
		using pi_exponent = ratio_sqrt<typename Base::_UNIT1::pi_exponent_ratio, Eps>;
		/** @endcond */	// END DOXYGEN IGNORE

		/**
		 * @brief		Value of square root
		 * @details		Returns the calculated value of the square root of `U1`, in units
		 *				of `U1^1/2`.
		 * @returns		Value of the square root in the appropriate units.
		 */
		static constexpr const unit_t<unit_type> value() noexcept
		{
			using UsePi = std::integral_constant<bool, Base::_PI_EXP::num != 0>;
			return value(UsePi());
		}

		/** @cond */	// DOXYGEN IGNORE
		// value if PI isn't involved
		static constexpr const unit_t<unit_type> value(std::false_type) noexcept
		{
			return unit_t<unit_type>((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den);
		}

		// value if PI *is* involved
		static constexpr const unit_t<unit_type> value(std::true_type) noexcept
		{
			return unit_t<unit_type>(((UNIT_LIB_DEFAULT_TYPE)ratio::num / ratio::den) * std::pow(units::constants::detail::PI_VAL, ((UNIT_LIB_DEFAULT_TYPE)pi_exponent::num / pi_exponent::den)));
		}
		/** @endcond */	// END DOXYGEN IGNORE
	};

	//------------------------------
	//	LITERALS
	//------------------------------

	/**
	 * @namespace	units::literals
	 * @brief		namespace for unit literal definitions of all categories.
	 * @details		Literals allow for declaring unit types using suffix values. For example, a type
	 *				of `meter_t(6.2)` could be declared as `6.2_m`. All literals use an underscore
	 *				followed by the abbreviation for the unit. To enable literal syntax in your code,
	 *				include the statement `using namespace units::literals`.
	 * @anchor		unitLiterals
	 * @sa			See unit_t for more information on unit type containers.
	 */

	//------------------------------
	//	LENGTH UNITS
	//------------------------------

	/**
	 * @namespace	units::length
	 * @brief		namespace for unit types and containers representing length values
	 * @details		The SI unit for length is `meters`, and the corresponding `base_unit` category is
	 *				`length_unit`.
	 * @anchor		lengthContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_LENGTH_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(length, meter, meters, m, unit<std::ratio<1>, units::category::length_unit>)
	UNIT_ADD(length, foot, feet, ft, unit<std::ratio<381, 1250>, meters>)
	UNIT_ADD(length, inch, inches, in, unit<std::ratio<1, 12>, feet>)
	UNIT_ADD(length, mil, mils, mil, unit<std::ratio<1000>, inches>)
	UNIT_ADD(length, mile,   miles,    mi,    unit<std::ratio<5280>, feet>)
	UNIT_ADD(length, nauticalMile, nauticalMiles, nmi, unit<std::ratio<1852>, meters>)
	UNIT_ADD(length, astronicalUnit, astronicalUnits, au, unit<std::ratio<149597870700>, meters>)
	UNIT_ADD(length, lightyear, lightyears, ly, unit<std::ratio<9460730472580800>, meters>)
	UNIT_ADD(length, parsec, parsecs, pc, unit<std::ratio<648000>, astronicalUnits, std::ratio<-1>>)
	UNIT_ADD(length, angstrom, angstroms, angstrom, unit<std::ratio<1, 10>, nanometers>)
	UNIT_ADD(length, cubit, cubits, cbt, unit<std::ratio<18>, inches>)
	UNIT_ADD(length, fathom, fathoms, ftm, unit<std::ratio<6>, feet>)
	UNIT_ADD(length, chain, chains, ch, unit<std::ratio<66>, feet>)
	UNIT_ADD(length, furlong, furlongs, fur, unit<std::ratio<10>, chains>)
	UNIT_ADD(length, hand, hands, hand, unit<std::ratio<4>, inches>)
	UNIT_ADD(length, league, leagues, lea, unit<std::ratio<3>, miles>)
	UNIT_ADD(length, nauticalLeague, nauticalLeagues, nl, unit<std::ratio<3>, nauticalMiles>)
	UNIT_ADD(length, yard, yards, yd, unit<std::ratio<3>, feet>)

	UNIT_ADD_CATEGORY_TRAIT(length)
#endif

	//------------------------------
	//	MASS UNITS
	//------------------------------

	/**
	 * @namespace	units::mass
	 * @brief		namespace for unit types and containers representing mass values
	 * @details		The SI unit for mass is `kilograms`, and the corresponding `base_unit` category is
	 *				`mass_unit`.
	 * @anchor		massContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_MASS_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(mass, gram, grams, g, unit<std::ratio<1, 1000>, units::category::mass_unit>)
	UNIT_ADD(mass, metric_ton, metric_tons, t, unit<std::ratio<1000>, kilograms>)
	UNIT_ADD(mass, pound, pounds, lb, unit<std::ratio<45359237, 100000000>, kilograms>)
	UNIT_ADD(mass, long_ton, long_tons, ln_t, unit<std::ratio<2240>, pounds>)
	UNIT_ADD(mass, short_ton, short_tons, sh_t, unit<std::ratio<2000>, pounds>)
	UNIT_ADD(mass, stone, stone, st, unit<std::ratio<14>, pounds>)
	UNIT_ADD(mass, ounce, ounces, oz, unit<std::ratio<1, 16>, pounds>)
	UNIT_ADD(mass, carat, carats, ct, unit<std::ratio<200>, milligrams>)
	UNIT_ADD(mass, slug, slugs, slug, unit<std::ratio<145939029, 10000000>, kilograms>)

	UNIT_ADD_CATEGORY_TRAIT(mass)
#endif

	//------------------------------
	//	TIME UNITS
	//------------------------------

	/**
	 * @namespace	units::time
	 * @brief		namespace for unit types and containers representing time values
	 * @details		The SI unit for time is `seconds`, and the corresponding `base_unit` category is
	 *				`time_unit`.
	 * @anchor		timeContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_TIME_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(time, second, seconds, s, unit<std::ratio<1>, units::category::time_unit>)
	UNIT_ADD(time, minute, minutes, min, unit<std::ratio<60>, seconds>)
	UNIT_ADD(time, hour, hours, hr, unit<std::ratio<60>, minutes>)
	UNIT_ADD(time, day, days, d, unit<std::ratio<24>, hours>)
	UNIT_ADD(time, week, weeks, wk, unit<std::ratio<7>, days>)
	UNIT_ADD(time, year, years, yr, unit<std::ratio<365>, days>)
	UNIT_ADD(time, julian_year, julian_years, a_j,	unit<std::ratio<31557600>, seconds>)
	UNIT_ADD(time, gregorian_year, gregorian_years, a_g, unit<std::ratio<31556952>, seconds>)

	UNIT_ADD_CATEGORY_TRAIT(time)
#endif

	//------------------------------
	//	ANGLE UNITS
	//------------------------------

	/**
	 * @namespace	units::angle
	 * @brief		namespace for unit types and containers representing angle values
	 * @details		The SI unit for angle is `radians`, and the corresponding `base_unit` category is
	 *				`angle_unit`.
	 * @anchor		angleContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(angle, radian, radians, rad, unit<std::ratio<1>, units::category::angle_unit>)
	UNIT_ADD(angle, degree, degrees, deg, unit<std::ratio<1, 180>, radians, std::ratio<1>>)
	UNIT_ADD(angle, arcminute, arcminutes, arcmin, unit<std::ratio<1, 60>, degrees>)
	UNIT_ADD(angle, arcsecond, arcseconds, arcsec, unit<std::ratio<1, 60>, arcminutes>)
	UNIT_ADD(angle, milliarcsecond, milliarcseconds, mas, milli<arcseconds>)
	UNIT_ADD(angle, turn, turns, tr, unit<std::ratio<2>, radians, std::ratio<1>>)
	UNIT_ADD(angle, gradian, gradians, gon, unit<std::ratio<1, 400>, turns>)

	UNIT_ADD_CATEGORY_TRAIT(angle)
#endif

	//------------------------------
	//	UNITS OF CURRENT
	//------------------------------
	/**
	 * @namespace	units::current
	 * @brief		namespace for unit types and containers representing current values
	 * @details		The SI unit for current is `amperes`, and the corresponding `base_unit` category is
	 *				`current_unit`.
	 * @anchor		currentContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_CURRENT_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(current, ampere, amperes, A, unit<std::ratio<1>, units::category::current_unit>)

	UNIT_ADD_CATEGORY_TRAIT(current)
#endif

	//------------------------------
	//	UNITS OF TEMPERATURE
	//------------------------------

	// NOTE: temperature units have special conversion overloads, since they
	// require translations and aren't a reversible transform.

	/**
	 * @namespace	units::temperature
	 * @brief		namespace for unit types and containers representing temperature values
	 * @details		The SI unit for temperature is `kelvin`, and the corresponding `base_unit` category is
	 *				`temperature_unit`.
	 * @anchor		temperatureContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_TEMPERATURE_UNITS)
	UNIT_ADD(temperature, kelvin, kelvin, K, unit<std::ratio<1>, units::category::temperature_unit>)
	UNIT_ADD(temperature, celsius, celsius, degC, unit<std::ratio<1>, kelvin, std::ratio<0>, std::ratio<27315, 100>>)
	UNIT_ADD(temperature, fahrenheit, fahrenheit, degF, unit<std::ratio<5, 9>, celsius, std::ratio<0>, std::ratio<-160, 9>>)
	UNIT_ADD(temperature, reaumur, reaumur, Re, unit<std::ratio<10, 8>, celsius>)
	UNIT_ADD(temperature, rankine, rankine, Ra, unit<std::ratio<5, 9>, kelvin>)

	UNIT_ADD_CATEGORY_TRAIT(temperature)
#endif

	//------------------------------
	//	UNITS OF AMOUNT OF SUBSTANCE
	//------------------------------

	/**
	 * @namespace	units::substance
	 * @brief		namespace for unit types and containers representing substance values
	 * @details		The SI unit for substance is `moles`, and the corresponding `base_unit` category is
	 *				`substance_unit`.
	 * @anchor		substanceContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_SUBSTANCE_UNITS)
	UNIT_ADD(substance, mole, moles, mol, unit<std::ratio<1>, units::category::substance_unit>)

	UNIT_ADD_CATEGORY_TRAIT(substance)
#endif

	//------------------------------
	//	UNITS OF LUMINOUS INTENSITY
	//------------------------------

	/**
	 * @namespace	units::luminous_intensity
	 * @brief		namespace for unit types and containers representing luminous_intensity values
	 * @details		The SI unit for luminous_intensity is `candelas`, and the corresponding `base_unit` category is
	 *				`luminous_intensity_unit`.
	 * @anchor		luminousIntensityContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_LUMINOUS_INTENSITY_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(luminous_intensity, candela, candelas, cd, unit<std::ratio<1>, units::category::luminous_intensity_unit>)

	UNIT_ADD_CATEGORY_TRAIT(luminous_intensity)
#endif

	//------------------------------
	//	UNITS OF SOLID ANGLE
	//------------------------------

	/**
	 * @namespace	units::solid_angle
	 * @brief		namespace for unit types and containers representing solid_angle values
	 * @details		The SI unit for solid_angle is `steradians`, and the corresponding `base_unit` category is
	 *				`solid_angle_unit`.
	 * @anchor		solidAngleContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_SOLID_ANGLE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(solid_angle, steradian, steradians, sr, unit<std::ratio<1>, units::category::solid_angle_unit>)
	UNIT_ADD(solid_angle, degree_squared, degrees_squared, sq_deg, squared<angle::degrees>)
	UNIT_ADD(solid_angle, spat, spats, sp, unit<std::ratio<4>, steradians, std::ratio<1>>)

	UNIT_ADD_CATEGORY_TRAIT(solid_angle)
#endif

	//------------------------------
	//	FREQUENCY UNITS
	//------------------------------

	/**
	 * @namespace	units::frequency
	 * @brief		namespace for unit types and containers representing frequency values
	 * @details		The SI unit for frequency is `hertz`, and the corresponding `base_unit` category is
	 *				`frequency_unit`.
	 * @anchor		frequencyContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_FREQUENCY_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(frequency, hertz, hertz, Hz, unit<std::ratio<1>, units::category::frequency_unit>)

	UNIT_ADD_CATEGORY_TRAIT(frequency)
#endif

	//------------------------------
	//	VELOCITY UNITS
	//------------------------------

	/**
	 * @namespace	units::velocity
	 * @brief		namespace for unit types and containers representing velocity values
	 * @details		The SI unit for velocity is `meters_per_second`, and the corresponding `base_unit` category is
	 *				`velocity_unit`.
	 * @anchor		velocityContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_VELOCITY_UNITS)
	UNIT_ADD(velocity, meters_per_second, meters_per_second, mps, unit<std::ratio<1>, units::category::velocity_unit>)
	UNIT_ADD(velocity, feet_per_second, feet_per_second, fps, compound_unit<length::feet, inverse<time::seconds>>)
	UNIT_ADD(velocity, miles_per_hour, miles_per_hour, mph, compound_unit<length::miles, inverse<time::hour>>)
	UNIT_ADD(velocity, kilometers_per_hour, kilometers_per_hour, kph, compound_unit<length::kilometers, inverse<time::hour>>)
	UNIT_ADD(velocity, knot, knots, kts, compound_unit<length::nauticalMiles, inverse<time::hour>>)

	UNIT_ADD_CATEGORY_TRAIT(velocity)
#endif

	//------------------------------
	//	ANGULAR VELOCITY UNITS
	//------------------------------

	/**
	 * @namespace	units::angular_velocity
	 * @brief		namespace for unit types and containers representing angular velocity values
	 * @details		The SI unit for angular velocity is `radians_per_second`, and the corresponding `base_unit` category is
	 *				`angular_velocity_unit`.
	 * @anchor		angularVelocityContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGULAR_VELOCITY_UNITS)
	UNIT_ADD(angular_velocity, radians_per_second, radians_per_second, rad_per_s, unit<std::ratio<1>, units::category::angular_velocity_unit>)
	UNIT_ADD(angular_velocity, degrees_per_second, degrees_per_second, deg_per_s, compound_unit<angle::degrees, inverse<time::seconds>>)
	UNIT_ADD(angular_velocity, revolutions_per_minute, revolutions_per_minute, rpm, unit<std::ratio<2, 60>, radians_per_second, std::ratio<1>>)
	UNIT_ADD(angular_velocity, revolutions_per_second, revolutions_per_second, rps, unit<std::ratio<2, 1>, radians_per_second, std::ratio<1>>)
	UNIT_ADD(angular_velocity, milliarcseconds_per_year, milliarcseconds_per_year, mas_per_yr, compound_unit<angle::milliarcseconds, inverse<time::year>>)

	UNIT_ADD_CATEGORY_TRAIT(angular_velocity)
#endif

	//------------------------------
	//	UNITS OF ACCELERATION
	//------------------------------

	/**
	 * @namespace	units::acceleration
	 * @brief		namespace for unit types and containers representing acceleration values
	 * @details		The SI unit for acceleration is `meters_per_second_squared`, and the corresponding `base_unit` category is
	 *				`acceleration_unit`.
	 * @anchor		accelerationContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ACCELERATION_UNITS)
	UNIT_ADD(acceleration, meters_per_second_squared, meters_per_second_squared, mps_sq, unit<std::ratio<1>, units::category::acceleration_unit>)
	UNIT_ADD(acceleration, feet_per_second_squared, feet_per_second_squared, fps_sq, compound_unit<length::feet, inverse<squared<time::seconds>>>)
	UNIT_ADD(acceleration, standard_gravity, standard_gravity, SG, unit<std::ratio<980665, 100000>, meters_per_second_squared>)

	UNIT_ADD_CATEGORY_TRAIT(acceleration)
#endif

    //------------------------------
    //	UNITS OF JERK
    //------------------------------

    /**
     * @namespace	units::jerk
     * @brief		namespace for unit types and containers representing jerk values
     * @details		The SI unit for jerk is `meters_per_second_cubed`, and the corresponding `base_unit` category is
     *				`jerk_unit`.
     * @anchor		jerkContainers
     * @sa			See unit_t for more information on unit type containers.
     */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_JERK_UNITS)
    UNIT_ADD(jerk, meters_per_second_cubed, meters_per_second_cubed, mps_cb, unit<std::ratio<1>, units::category::jerk_unit>)
    UNIT_ADD(jerk, feet_per_second_cubed, feet_per_second_cubed, fps_cb, compound_unit<length::feet, inverse<cubed<time::seconds>>>)

    UNIT_ADD_CATEGORY_TRAIT(jerk)
#endif

	//------------------------------
	//	UNITS OF FORCE
	//------------------------------

	/**
	 * @namespace	units::force
	 * @brief		namespace for unit types and containers representing force values
	 * @details		The SI unit for force is `newtons`, and the corresponding `base_unit` category is
	 *				`force_unit`.
	 * @anchor		forceContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_FORCE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(force, newton, newtons, N, unit<std::ratio<1>, units::category::force_unit>)
	UNIT_ADD(force, pound, pounds, lbf, compound_unit<mass::slug, length::foot, inverse<squared<time::seconds>>>)
	UNIT_ADD(force, dyne, dynes, dyn, unit<std::ratio<1, 100000>, newtons>)
	UNIT_ADD(force, kilopond, kiloponds, kp, compound_unit<acceleration::standard_gravity, mass::kilograms>)
	UNIT_ADD(force, poundal, poundals, pdl, compound_unit<mass::pound, length::foot, inverse<squared<time::seconds>>>)

	UNIT_ADD_CATEGORY_TRAIT(force)
#endif

	//------------------------------
	//	UNITS OF PRESSURE
	//------------------------------

	/**
	 * @namespace	units::pressure
	 * @brief		namespace for unit types and containers representing pressure values
	 * @details		The SI unit for pressure is `pascals`, and the corresponding `base_unit` category is
	 *				`pressure_unit`.
	 * @anchor		pressureContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_PRESSURE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(pressure, pascal, pascals, Pa, unit<std::ratio<1>, units::category::pressure_unit>)
	UNIT_ADD(pressure, bar, bars, bar, unit<std::ratio<100>, kilo<pascals>>)
	UNIT_ADD(pressure, mbar, mbars, mbar, unit<std::ratio<1>, milli<bar>>)
	UNIT_ADD(pressure, atmosphere, atmospheres, atm, unit<std::ratio<101325>, pascals>)
	UNIT_ADD(pressure, pounds_per_square_inch, pounds_per_square_inch, psi, compound_unit<force::pounds, inverse<squared<length::inch>>>)
	UNIT_ADD(pressure, torr, torrs, torr, unit<std::ratio<1, 760>, atmospheres>)
	UNIT_ADD(pressure, millimeter_of_mercury, millimeters_of_mercury, mmHg, unit<std::ratio<26664477483LL, 200000000LL>, pascals>)
	UNIT_ADD(pressure, inch_of_mercury, inches_of_mercury, inHg, unit<std::ratio<254, 10>, millimeters_of_mercury>)

	UNIT_ADD_CATEGORY_TRAIT(pressure)
#endif

	//------------------------------
	//	UNITS OF CHARGE
	//------------------------------

	/**
	 * @namespace	units::charge
	 * @brief		namespace for unit types and containers representing charge values
	 * @details		The SI unit for charge is `coulombs`, and the corresponding `base_unit` category is
	 *				`charge_unit`.
	 * @anchor		chargeContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_CHARGE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(charge, coulomb, coulombs, C, unit<std::ratio<1>, units::category::charge_unit>)
	UNIT_ADD_WITH_METRIC_PREFIXES(charge, ampere_hour, ampere_hours, Ah, compound_unit<current::ampere, time::hours>)

	UNIT_ADD_CATEGORY_TRAIT(charge)
#endif

	//------------------------------
	//	UNITS OF ENERGY
	//------------------------------

	/**
	 * @namespace	units::energy
	 * @brief		namespace for unit types and containers representing energy values
	 * @details		The SI unit for energy is `joules`, and the corresponding `base_unit` category is
	 *				`energy_unit`.
	 * @anchor		energyContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ENERGY_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(energy, joule, joules, J, unit<std::ratio<1>, units::category::energy_unit>)
	UNIT_ADD_WITH_METRIC_PREFIXES(energy, calorie, calories, cal, unit<std::ratio<4184, 1000>, joules>)
	UNIT_ADD(energy, kilowatt_hour, kilowatt_hours, kWh, unit<std::ratio<36, 10>, megajoules>)
	UNIT_ADD(energy, watt_hour, watt_hours, Wh, unit<std::ratio<1, 1000>, kilowatt_hours>)
	UNIT_ADD(energy, british_thermal_unit, british_thermal_units, BTU, unit<std::ratio<105505585262, 100000000>, joules>)
	UNIT_ADD(energy, british_thermal_unit_iso, british_thermal_units_iso, BTU_iso, unit<std::ratio<1055056, 1000>, joules>)
	UNIT_ADD(energy, british_thermal_unit_59, british_thermal_units_59, BTU59, unit<std::ratio<1054804, 1000>, joules>)
	UNIT_ADD(energy, therm, therms, thm, unit<std::ratio<100000>, british_thermal_units_59>)
	UNIT_ADD(energy, foot_pound, foot_pounds, ftlbf, unit<std::ratio<13558179483314004, 10000000000000000>, joules>)

	UNIT_ADD_CATEGORY_TRAIT(energy)
#endif

	//------------------------------
	//	UNITS OF POWER
	//------------------------------

	/**
	 * @namespace	units::power
	 * @brief		namespace for unit types and containers representing power values
	 * @details		The SI unit for power is `watts`, and the corresponding `base_unit` category is
	 *				`power_unit`.
	 * @anchor		powerContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_POWER_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(power, watt, watts, W, unit<std::ratio<1>, units::category::power_unit>)
	UNIT_ADD(power, horsepower, horsepower, hp, unit<std::ratio<7457, 10>, watts>)
	UNIT_ADD_DECIBEL(power, watt, dBW)
	UNIT_ADD_DECIBEL(power, milliwatt, dBm)

	UNIT_ADD_CATEGORY_TRAIT(power)
#endif

	//------------------------------
	//	UNITS OF VOLTAGE
	//------------------------------

	/**
	 * @namespace	units::voltage
	 * @brief		namespace for unit types and containers representing voltage values
	 * @details		The SI unit for voltage is `volts`, and the corresponding `base_unit` category is
	 *				`voltage_unit`.
	 * @anchor		voltageContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_VOLTAGE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(voltage, volt, volts, V, unit<std::ratio<1>, units::category::voltage_unit>)
	UNIT_ADD(voltage, statvolt, statvolts, statV, unit<std::ratio<1000000, 299792458>, volts>)
	UNIT_ADD(voltage, abvolt, abvolts, abV, unit<std::ratio<1, 100000000>, volts>)

	UNIT_ADD_CATEGORY_TRAIT(voltage)
#endif

	//------------------------------
	//	UNITS OF CAPACITANCE
	//------------------------------

	/**
	 * @namespace	units::capacitance
	 * @brief		namespace for unit types and containers representing capacitance values
	 * @details		The SI unit for capacitance is `farads`, and the corresponding `base_unit` category is
	 *				`capacitance_unit`.
	 * @anchor		capacitanceContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_CAPACITANCE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(capacitance, farad, farads, F, unit<std::ratio<1>, units::category::capacitance_unit>)

	UNIT_ADD_CATEGORY_TRAIT(capacitance)
#endif

	//------------------------------
	//	UNITS OF IMPEDANCE
	//------------------------------

	/**
	 * @namespace	units::impedance
	 * @brief		namespace for unit types and containers representing impedance values
	 * @details		The SI unit for impedance is `ohms`, and the corresponding `base_unit` category is
	 *				`impedance_unit`.
	 * @anchor		impedanceContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_IMPEDANCE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(impedance, ohm, ohms, Ohm, unit<std::ratio<1>, units::category::impedance_unit>)

	UNIT_ADD_CATEGORY_TRAIT(impedance)
#endif

	//------------------------------
	//	UNITS OF CONDUCTANCE
	//------------------------------

	/**
	 * @namespace	units::conductance
	 * @brief		namespace for unit types and containers representing conductance values
	 * @details		The SI unit for conductance is `siemens`, and the corresponding `base_unit` category is
	 *				`conductance_unit`.
	 * @anchor		conductanceContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_CONDUCTANCE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(conductance, siemens, siemens, S, unit<std::ratio<1>, units::category::conductance_unit>)

	UNIT_ADD_CATEGORY_TRAIT(conductance)
#endif

	//------------------------------
	//	UNITS OF MAGNETIC FLUX
	//------------------------------

	/**
	 * @namespace	units::magnetic_flux
	 * @brief		namespace for unit types and containers representing magnetic_flux values
	 * @details		The SI unit for magnetic_flux is `webers`, and the corresponding `base_unit` category is
	 *				`magnetic_flux_unit`.
	 * @anchor		magneticFluxContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_MAGNETIC_FLUX_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(magnetic_flux, weber, webers, Wb, unit<std::ratio<1>, units::category::magnetic_flux_unit>)
	UNIT_ADD(magnetic_flux, maxwell, maxwells, Mx, unit<std::ratio<1, 100000000>, webers>)

	UNIT_ADD_CATEGORY_TRAIT(magnetic_flux)
#endif

	//----------------------------------------
	//	UNITS OF MAGNETIC FIELD STRENGTH
	//----------------------------------------

	/**
	 * @namespace	units::magnetic_field_strength
	 * @brief		namespace for unit types and containers representing magnetic_field_strength values
	 * @details		The SI unit for magnetic_field_strength is `teslas`, and the corresponding `base_unit` category is
	 *				`magnetic_field_strength_unit`.
	 * @anchor		magneticFieldStrengthContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
	// Unfortunately `_T` is a WINAPI macro, so we have to use `_Te` as the tesla abbreviation.
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_MAGNETIC_FIELD_STRENGTH_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(magnetic_field_strength, tesla, teslas, Te, unit<std::ratio<1>, units::category::magnetic_field_strength_unit>)
	UNIT_ADD(magnetic_field_strength, gauss, gauss, G, compound_unit<magnetic_flux::maxwell, inverse<squared<length::centimeter>>>)

	UNIT_ADD_CATEGORY_TRAIT(magnetic_field_strength)
#endif

	//------------------------------
	//	UNITS OF INDUCTANCE
	//------------------------------

	/**
	 * @namespace	units::inductance
	 * @brief		namespace for unit types and containers representing inductance values
	 * @details		The SI unit for inductance is `henrys`, and the corresponding `base_unit` category is
	 *				`inductance_unit`.
	 * @anchor		inductanceContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_INDUCTANCE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(inductance, henry, henries, H, unit<std::ratio<1>, units::category::inductance_unit>)

	UNIT_ADD_CATEGORY_TRAIT(inductance)
#endif

	//------------------------------
	//	UNITS OF LUMINOUS FLUX
	//------------------------------

	/**
	 * @namespace	units::luminous_flux
	 * @brief		namespace for unit types and containers representing luminous_flux values
	 * @details		The SI unit for luminous_flux is `lumens`, and the corresponding `base_unit` category is
	 *				`luminous_flux_unit`.
	 * @anchor		luminousFluxContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_LUMINOUS_FLUX_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(luminous_flux, lumen, lumens, lm, unit<std::ratio<1>, units::category::luminous_flux_unit>)

	UNIT_ADD_CATEGORY_TRAIT(luminous_flux)
#endif

	//------------------------------
	//	UNITS OF ILLUMINANCE
	//------------------------------

	/**
	 * @namespace	units::illuminance
	 * @brief		namespace for unit types and containers representing illuminance values
	 * @details		The SI unit for illuminance is `luxes`, and the corresponding `base_unit` category is
	 *				`illuminance_unit`.
	 * @anchor		illuminanceContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ILLUMINANCE_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(illuminance, lux, luxes, lx, unit<std::ratio<1>, units::category::illuminance_unit>)
	UNIT_ADD(illuminance, footcandle, footcandles, fc, compound_unit<luminous_flux::lumen, inverse<squared<length::foot>>>)
	UNIT_ADD(illuminance, lumens_per_square_inch, lumens_per_square_inch, lm_per_in_sq, compound_unit<luminous_flux::lumen, inverse<squared<length::inch>>>)
	UNIT_ADD(illuminance, phot, phots, ph, compound_unit<luminous_flux::lumens, inverse<squared<length::centimeter>>>)

	UNIT_ADD_CATEGORY_TRAIT(illuminance)
#endif

	//------------------------------
	//	UNITS OF RADIATION
	//------------------------------

	/**
	 * @namespace	units::radiation
	 * @brief		namespace for unit types and containers representing radiation values
	 * @details		The SI units for radiation are:
	 *				- source activity:	becquerel
	 *				- absorbed dose:	gray
	 *				- equivalent dose:	sievert
	 * @anchor		radiationContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_RADIATION_UNITS)
	UNIT_ADD_WITH_METRIC_PREFIXES(radiation, becquerel, becquerels, Bq, unit<std::ratio<1>, units::frequency::hertz>)
	UNIT_ADD_WITH_METRIC_PREFIXES(radiation, gray, grays, Gy, compound_unit<energy::joules, inverse<mass::kilogram>>)
	UNIT_ADD_WITH_METRIC_PREFIXES(radiation, sievert, sieverts, Sv, unit<std::ratio<1>, grays>)
	UNIT_ADD(radiation, curie, curies, Ci, unit<std::ratio<37>, gigabecquerels>)
	UNIT_ADD(radiation, rutherford, rutherfords, rd, unit<std::ratio<1>, megabecquerels>)
	UNIT_ADD(radiation, rad, rads, rads, unit<std::ratio<1>, centigrays>)

	UNIT_ADD_CATEGORY_TRAIT(radioactivity)
#endif

	//------------------------------
	//	UNITS OF TORQUE
	//------------------------------

	/**
	 * @namespace	units::torque
	 * @brief		namespace for unit types and containers representing torque values
	 * @details		The SI unit for torque is `newton_meters`, and the corresponding `base_unit` category is
	 *				`torque_units`.
	 * @anchor		torqueContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_TORQUE_UNITS)
	UNIT_ADD(torque, newton_meter, newton_meters, Nm, unit<std::ratio<1>, units::energy::joule>)
	UNIT_ADD(torque, foot_pound, foot_pounds, ftlb, compound_unit<length::foot, force::pounds>)
	UNIT_ADD(torque, foot_poundal, foot_poundals, ftpdl, compound_unit<length::foot, force::poundal>)
	UNIT_ADD(torque, inch_pound, inch_pounds, inlb, compound_unit<length::inch, force::pounds>)
	UNIT_ADD(torque, meter_kilogram, meter_kilograms, mkgf, compound_unit<length::meter, force::kiloponds>)

	UNIT_ADD_CATEGORY_TRAIT(torque)
#endif

	//------------------------------
	//	AREA UNITS
	//------------------------------

	/**
	 * @namespace	units::area
	 * @brief		namespace for unit types and containers representing area values
	 * @details		The SI unit for area is `square_meters`, and the corresponding `base_unit` category is
	 *				`area_unit`.
	 * @anchor		areaContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_AREA_UNITS)
	UNIT_ADD(area, square_meter, square_meters, sq_m, unit<std::ratio<1>, units::category::area_unit>)
	UNIT_ADD(area, square_foot, square_feet, sq_ft, squared<length::feet>)
	UNIT_ADD(area, square_inch, square_inches, sq_in, squared<length::inch>)
	UNIT_ADD(area, square_mile, square_miles, sq_mi, squared<length::miles>)
	UNIT_ADD(area, square_kilometer, square_kilometers, sq_km, squared<length::kilometers>)
	UNIT_ADD(area, hectare, hectares, ha, unit<std::ratio<10000>, square_meters>)
	UNIT_ADD(area, acre, acres, acre, unit<std::ratio<43560>, square_feet>)

	UNIT_ADD_CATEGORY_TRAIT(area)
#endif

	//------------------------------
	//	UNITS OF VOLUME
	//------------------------------

	/**
	 * @namespace	units::volume
	 * @brief		namespace for unit types and containers representing volume values
	 * @details		The SI unit for volume is `cubic_meters`, and the corresponding `base_unit` category is
	 *				`volume_unit`.
	 * @anchor		volumeContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_VOLUME_UNITS)
	UNIT_ADD(volume, cubic_meter, cubic_meters, cu_m, unit<std::ratio<1>, units::category::volume_unit>)
	UNIT_ADD(volume, cubic_millimeter, cubic_millimeters, cu_mm, cubed<length::millimeter>)
	UNIT_ADD(volume, cubic_kilometer, cubic_kilometers, cu_km, cubed<length::kilometer>)
	UNIT_ADD_WITH_METRIC_PREFIXES(volume, liter, liters, L, cubed<deci<length::meter>>)
	UNIT_ADD(volume, cubic_inch, cubic_inches, cu_in, cubed<length::inches>)
	UNIT_ADD(volume, cubic_foot, cubic_feet, cu_ft, cubed<length::feet>)
	UNIT_ADD(volume, cubic_yard, cubic_yards, cu_yd, cubed<length::yards>)
	UNIT_ADD(volume, cubic_mile, cubic_miles, cu_mi, cubed<length::miles>)
	UNIT_ADD(volume, gallon, gallons, gal, unit<std::ratio<231>, cubic_inches>)
	UNIT_ADD(volume, quart, quarts, qt, unit<std::ratio<1, 4>, gallons>)
	UNIT_ADD(volume, pint, pints, pt, unit<std::ratio<1, 2>, quarts>)
	UNIT_ADD(volume, cup, cups, c, unit<std::ratio<1, 2>, pints>)
	UNIT_ADD(volume, fluid_ounce, fluid_ounces, fl_oz, unit<std::ratio<1, 8>, cups>)
	UNIT_ADD(volume, barrel, barrels, bl, unit<std::ratio<42>, gallons>)
	UNIT_ADD(volume, bushel, bushels, bu, unit<std::ratio<215042, 100>, cubic_inches>)
	UNIT_ADD(volume, cord, cords, cord, unit<std::ratio<128>, cubic_feet>)
	UNIT_ADD(volume, cubic_fathom, cubic_fathoms, cu_fm, cubed<length::fathom>)
	UNIT_ADD(volume, tablespoon, tablespoons, tbsp, unit<std::ratio<1, 2>, fluid_ounces>)
	UNIT_ADD(volume, teaspoon, teaspoons, tsp, unit<std::ratio<1, 6>, fluid_ounces>)
	UNIT_ADD(volume, pinch, pinches, pinch, unit<std::ratio<1, 8>, teaspoons>)
	UNIT_ADD(volume, dash, dashes, dash, unit<std::ratio<1, 2>, pinches>)
	UNIT_ADD(volume, drop, drops, drop, unit<std::ratio<1, 360>, fluid_ounces>)
	UNIT_ADD(volume, fifth, fifths, fifth, unit<std::ratio<1, 5>, gallons>)
	UNIT_ADD(volume, dram, drams, dr, unit<std::ratio<1, 8>, fluid_ounces>)
	UNIT_ADD(volume, gill, gills, gi, unit<std::ratio<4>, fluid_ounces>)
	UNIT_ADD(volume, peck, pecks, pk, unit<std::ratio<1, 4>, bushels>)
	UNIT_ADD(volume, sack, sacks, sacks, unit<std::ratio<3>, bushels>)
	UNIT_ADD(volume, shot, shots, shots, unit<std::ratio<3, 2>, fluid_ounces>)
	UNIT_ADD(volume, strike, strikes, strikes, unit<std::ratio<2>, bushels>)

	UNIT_ADD_CATEGORY_TRAIT(volume)
#endif

	//------------------------------
	//	UNITS OF DENSITY
	//------------------------------

	/**
	 * @namespace	units::density
	 * @brief		namespace for unit types and containers representing density values
	 * @details		The SI unit for density is `kilograms_per_cubic_meter`, and the corresponding `base_unit` category is
	 *				`density_unit`.
	 * @anchor		densityContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_DENSITY_UNITS)
	UNIT_ADD(density, kilograms_per_cubic_meter, kilograms_per_cubic_meter, kg_per_cu_m, unit<std::ratio<1>, units::category::density_unit>)
	UNIT_ADD(density, grams_per_milliliter, grams_per_milliliter, g_per_mL, compound_unit<mass::grams, inverse<volume::milliliter>>)
	UNIT_ADD(density, kilograms_per_liter, kilograms_per_liter, kg_per_L, unit<std::ratio<1>, compound_unit<mass::grams, inverse<volume::milliliter>>>)
	UNIT_ADD(density, ounces_per_cubic_foot, ounces_per_cubic_foot, oz_per_cu_ft, compound_unit<mass::ounces, inverse<volume::cubic_foot>>)
	UNIT_ADD(density, ounces_per_cubic_inch, ounces_per_cubic_inch, oz_per_cu_in, compound_unit<mass::ounces, inverse<volume::cubic_inch>>)
	UNIT_ADD(density, ounces_per_gallon, ounces_per_gallon, oz_per_gal, compound_unit<mass::ounces, inverse<volume::gallon>>)
	UNIT_ADD(density, pounds_per_cubic_foot, pounds_per_cubic_foot, lb_per_cu_ft, compound_unit<mass::pounds, inverse<volume::cubic_foot>>)
	UNIT_ADD(density, pounds_per_cubic_inch, pounds_per_cubic_inch, lb_per_cu_in, compound_unit<mass::pounds, inverse<volume::cubic_inch>>)
	UNIT_ADD(density, pounds_per_gallon, pounds_per_gallon, lb_per_gal, compound_unit<mass::pounds, inverse<volume::gallon>>)
	UNIT_ADD(density, slugs_per_cubic_foot, slugs_per_cubic_foot, slug_per_cu_ft, compound_unit<mass::slugs, inverse<volume::cubic_foot>>)

	UNIT_ADD_CATEGORY_TRAIT(density)
#endif

	//------------------------------
	//	UNITS OF CONCENTRATION
	//------------------------------

	/**
	 * @namespace	units::concentration
	 * @brief		namespace for unit types and containers representing concentration values
	 * @details		The SI unit for concentration is `parts_per_million`, and the corresponding `base_unit` category is
	 *				`scalar_unit`.
	 * @anchor		concentrationContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_CONCENTRATION_UNITS)
	UNIT_ADD(concentration, ppm, parts_per_million, ppm, unit<std::ratio<1, 1000000>, units::category::scalar_unit>)
	UNIT_ADD(concentration, ppb, parts_per_billion, ppb, unit<std::ratio<1, 1000>, parts_per_million>)
	UNIT_ADD(concentration, ppt, parts_per_trillion, ppt, unit<std::ratio<1, 1000>, parts_per_billion>)
	UNIT_ADD(concentration, percent, percent, pct, unit<std::ratio<1, 100>, units::category::scalar_unit>)

	UNIT_ADD_CATEGORY_TRAIT(concentration)
#endif

	//------------------------------
	//	UNITS OF DATA
	//------------------------------

	/**
	 * @namespace	units::data
	 * @brief		namespace for unit types and containers representing data values
	 * @details		The base unit for data is `bytes`, and the corresponding `base_unit` category is
	 *				`data_unit`.
	 * @anchor		dataContainers
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_DATA_UNITS)
	UNIT_ADD_WITH_METRIC_AND_BINARY_PREFIXES(data, byte, bytes, B, unit<std::ratio<1>, units::category::data_unit>)
	UNIT_ADD(data, exabyte, exabytes, EB, unit<std::ratio<1000>, petabytes>)
	UNIT_ADD_WITH_METRIC_AND_BINARY_PREFIXES(data, bit, bits, b, unit<std::ratio<1, 8>, byte>)
	UNIT_ADD(data, exabit, exabits, Eb, unit<std::ratio<1000>, petabits>)

	UNIT_ADD_CATEGORY_TRAIT(data)
#endif

	//------------------------------
	//	UNITS OF DATA TRANSFER
	//------------------------------

	/**
	* @namespace	units::data_transfer_rate
	* @brief		namespace for unit types and containers representing data values
	* @details		The base unit for data is `bytes`, and the corresponding `base_unit` category is
	*				`data_unit`.
	* @anchor		dataContainers
	* @sa			See unit_t for more information on unit type containers.
	*/
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_DATA_TRANSFER_RATE_UNITS)
	UNIT_ADD_WITH_METRIC_AND_BINARY_PREFIXES(data_transfer_rate, bytes_per_second, bytes_per_second, Bps, unit<std::ratio<1>, units::category::data_transfer_rate_unit>)
	UNIT_ADD(data_transfer_rate, exabytes_per_second, exabytes_per_second, EBps, unit<std::ratio<1000>, petabytes_per_second>)
	UNIT_ADD_WITH_METRIC_AND_BINARY_PREFIXES(data_transfer_rate, bits_per_second, bits_per_second, bps, unit<std::ratio<1, 8>, bytes_per_second>)
	UNIT_ADD(data_transfer_rate, exabits_per_second, exabits_per_second, Ebps, unit<std::ratio<1000>, petabits_per_second>)

	UNIT_ADD_CATEGORY_TRAIT(data_transfer_rate)
#endif

	//------------------------------
	//	CONSTANTS
	//------------------------------

	/**
	 * @brief		namespace for physical constants like PI and Avogadro's Number.
	 * @sa			See unit_t for more information on unit type containers.
	 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_CONSTANTS_UNITS)
	namespace constants
	{
		/**
		 * @name Unit Containers
		 * @anchor constantContainers
		 * @{
		 */
		#undef PI
		using PI = unit<std::ratio<1>, dimensionless::scalar, std::ratio<1>>;

		static constexpr const unit_t<PI>																											pi(1);											///< Ratio of a circle's circumference to its diameter.
		static constexpr const velocity::meters_per_second_t																						c(299792458.0);									///< Speed of light in vacuum.
		static constexpr const unit_t<compound_unit<cubed<length::meters>, inverse<mass::kilogram>, inverse<squared<time::seconds>>>>				G(6.67408e-11);									///< Newtonian constant of gravitation.
		static constexpr const unit_t<compound_unit<energy::joule, time::seconds>>																	h(6.626070040e-34);								///< Planck constant.
		static constexpr const unit_t<compound_unit<force::newtons, inverse<squared<current::ampere>>>>												mu0(pi * 4.0e-7 * force::newton_t(1) / units::math::cpow<2>(current::ampere_t(1)));										///< vacuum permeability.
		static constexpr const unit_t<compound_unit<capacitance::farad, inverse<length::meter>>>													epsilon0(1.0 / (mu0 * math::cpow<2>(c)));		///< vacuum permitivity.
		static constexpr const impedance::ohm_t																										Z0(mu0 * c);									///< characteristic impedance of vacuum.
		static constexpr const unit_t<compound_unit<force::newtons, area::square_meter, inverse<squared<charge::coulomb>>>>							k_e(1.0 / (4 * pi * epsilon0));					///< Coulomb's constant.
		static constexpr const charge::coulomb_t																									e(1.6021766208e-19);							///< elementary charge.
		static constexpr const mass::kilogram_t																										m_e(9.10938356e-31);							///< electron mass.
		static constexpr const mass::kilogram_t																										m_p(1.672621898e-27);							///< proton mass.
		static constexpr const unit_t<compound_unit<energy::joules, inverse<magnetic_field_strength::tesla>>>										mu_B(e * h / (4 * pi *m_e));					///< Bohr magneton.
		static constexpr const unit_t<inverse<substance::mol>>																						N_A(6.022140857e23);							///< Avagadro's Number.
		static constexpr const unit_t<compound_unit<energy::joules, inverse<temperature::kelvin>, inverse<substance::moles>>>						R(8.3144598);									///< Gas constant.
		static constexpr const unit_t<compound_unit<energy::joules, inverse<temperature::kelvin>>>													k_B(R / N_A);									///< Boltzmann constant.
		static constexpr const unit_t<compound_unit<charge::coulomb, inverse<substance::mol>>>														F(N_A * e);										///< Faraday constant.
		static constexpr const unit_t<compound_unit<power::watts, inverse<area::square_meters>, inverse<squared<squared<temperature::kelvin>>>>>	sigma((2 * math::cpow<5>(pi) * math::cpow<4>(R)) / (15 * math::cpow<3>(h) * math::cpow<2>(c) * math::cpow<4>(N_A)));	///< Stefan-Boltzmann constant.
		/** @} */
	}
#endif

	//----------------------------------
	//	UNIT-ENABLED CMATH FUNCTIONS
	//----------------------------------

	/**
	 * @brief		namespace for unit-enabled versions of the `<cmath>` library
	 * @details		Includes trigonometric functions, exponential/log functions, rounding functions, etc.
	 * @sa			See `unit_t` for more information on unit type containers.
	 */
	namespace math
	{

		//----------------------------------
		//	MIN/MAX FUNCTIONS
		//----------------------------------

		template<class UnitTypeLhs, class UnitTypeRhs>
		UnitTypeLhs min(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs)
		{
			static_assert(traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value, "Unit types are not compatible.");
			UnitTypeLhs r(rhs);
			return (lhs < r ? lhs : r);
		}

		template<class UnitTypeLhs, class UnitTypeRhs>
		UnitTypeLhs max(const UnitTypeLhs& lhs, const UnitTypeRhs& rhs)
		{
			static_assert(traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value, "Unit types are not compatible.");
			UnitTypeLhs r(rhs);
			return (lhs > r ? lhs : r);
		}

		//----------------------------------
		//	TRIGONOMETRIC FUNCTIONS
		//----------------------------------

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute cosine
		 * @details		The input value can be in any unit of angle, including radians or degrees.
		 * @tparam		AngleUnit	any `unit_t` type of `category::angle_unit`.
		 * @param[in]	angle		angle to compute the cosine of
		 * @returns		Returns the cosine of <i>angle</i>
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class AngleUnit>
		dimensionless::scalar_t cos(const AngleUnit angle) noexcept
		{
			static_assert(traits::is_angle_unit<AngleUnit>::value, "Type `AngleUnit` must be a unit of angle derived from `unit_t`.");
			return dimensionless::scalar_t(std::cos(angle.template convert<angle::radian>()()));
		}
#endif

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute sine
		 * @details		The input value can be in any unit of angle, including radians or degrees.
		 * @tparam		AngleUnit	any `unit_t` type of `category::angle_unit`.
		 * @param[in]	angle		angle to compute the since of
		 * @returns		Returns the sine of <i>angle</i>
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class AngleUnit>
		dimensionless::scalar_t sin(const AngleUnit angle) noexcept
		{
			static_assert(traits::is_angle_unit<AngleUnit>::value, "Type `AngleUnit` must be a unit of angle derived from `unit_t`.");
			return dimensionless::scalar_t(std::sin(angle.template convert<angle::radian>()()));
		}
#endif
		/**
		 * @ingroup		UnitMath
		 * @brief		Compute tangent
		 * @details		The input value can be in any unit of angle, including radians or degrees.
		 * @tparam		AngleUnit	any `unit_t` type of `category::angle_unit`.
		 * @param[in]	angle		angle to compute the tangent of
		 * @returns		Returns the tangent of <i>angle</i>
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class AngleUnit>
		dimensionless::scalar_t tan(const AngleUnit angle) noexcept
		{
			static_assert(traits::is_angle_unit<AngleUnit>::value, "Type `AngleUnit` must be a unit of angle derived from `unit_t`.");
			return dimensionless::scalar_t(std::tan(angle.template convert<angle::radian>()()));
		}
#endif

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute arc cosine
		 * @details		Returns the principal value of the arc cosine of x, expressed in radians.
		 * @param[in]	x		Value whose arc cosine is computed, in the interval [-1,+1].
		 * @returns		Principal arc cosine of x, in the interval [0,pi] radians.
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class ScalarUnit>
		angle::radian_t acos(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return angle::radian_t(std::acos(x.value()));
		}
#endif

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute arc sine
		 * @details		Returns the principal value of the arc sine of x, expressed in radians.
		 * @param[in]	x		Value whose arc sine is computed, in the interval [-1,+1].
		 * @returns		Principal arc sine of x, in the interval [-pi/2,+pi/2] radians.
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class ScalarUnit>
		angle::radian_t asin(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return angle::radian_t(std::asin(x.value()));
		}
#endif

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute arc tangent
		 * @details		Returns the principal value of the arc tangent of x, expressed in radians.
		 *				Notice that because of the sign ambiguity, the function cannot determine with
		 *				certainty in which quadrant the angle falls only by its tangent value. See
		 *				atan2 for an alternative that takes a fractional argument instead.
		 * @tparam		AngleUnit	any `unit_t` type of `category::angle_unit`.
		 * @param[in]	x		Value whose arc tangent is computed, in the interval [-1,+1].
		 * @returns		Principal arc tangent of x, in the interval [-pi/2,+pi/2] radians.
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class ScalarUnit>
		angle::radian_t atan(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return angle::radian_t(std::atan(x.value()));
		}
#endif

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute arc tangent with two parameters
		 * @details		To compute the value, the function takes into account the sign of both arguments in order to determine the quadrant.
		 * @param[in]	y		y-component of the triangle expressed.
		 * @param[in]	x		x-component of the triangle expressed.
		 * @returns		Returns the principal value of the arc tangent of <i>y/x</i>, expressed in radians.
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class Y, class X>
		angle::radian_t atan2(const Y y, const X x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<decltype(y/x)>::value, "The quantity y/x must yield a dimensionless ratio.");

			// X and Y could be different length units, so normalize them
			return angle::radian_t(std::atan2(y.template convert<typename units::traits::unit_t_traits<X>::unit_type>()(), x()));
		}
#endif

		//----------------------------------
		//	HYPERBOLIC TRIG FUNCTIONS
		//----------------------------------

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute hyperbolic cosine
		 * @details		The input value can be in any unit of angle, including radians or degrees.
		 * @tparam		AngleUnit	any `unit_t` type of `category::angle_unit`.
		 * @param[in]	angle		angle to compute the hyperbolic cosine of
		 * @returns		Returns the hyperbolic cosine of <i>angle</i>
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class AngleUnit>
		dimensionless::scalar_t cosh(const AngleUnit angle) noexcept
		{
			static_assert(traits::is_angle_unit<AngleUnit>::value, "Type `AngleUnit` must be a unit of angle derived from `unit_t`.");
			return dimensionless::scalar_t(std::cosh(angle.template convert<angle::radian>()()));
		}
#endif

		/**
		* @ingroup		UnitMath
		* @brief		Compute hyperbolic sine
		* @details		The input value can be in any unit of angle, including radians or degrees.
		* @tparam		AngleUnit	any `unit_t` type of `category::angle_unit`.
		* @param[in]	angle		angle to compute the hyperbolic sine of
		* @returns		Returns the hyperbolic sine of <i>angle</i>
		*/
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class AngleUnit>
		dimensionless::scalar_t sinh(const AngleUnit angle) noexcept
		{
			static_assert(traits::is_angle_unit<AngleUnit>::value, "Type `AngleUnit` must be a unit of angle derived from `unit_t`.");
			return dimensionless::scalar_t(std::sinh(angle.template convert<angle::radian>()()));
		}
#endif

		/**
		* @ingroup		UnitMath
		* @brief		Compute hyperbolic tangent
		* @details		The input value can be in any unit of angle, including radians or degrees.
		* @tparam		AngleUnit	any `unit_t` type of `category::angle_unit`.
		* @param[in]	angle		angle to compute the hyperbolic tangent of
		* @returns		Returns the hyperbolic tangent of <i>angle</i>
		*/
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class AngleUnit>
		dimensionless::scalar_t tanh(const AngleUnit angle) noexcept
		{
			static_assert(traits::is_angle_unit<AngleUnit>::value, "Type `AngleUnit` must be a unit of angle derived from `unit_t`.");
			return dimensionless::scalar_t(std::tanh(angle.template convert<angle::radian>()()));
		}
#endif

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute arc hyperbolic cosine
		 * @details		Returns the nonnegative arc hyperbolic cosine of x, expressed in radians.
		 * @param[in]	x	Value whose arc hyperbolic cosine is computed. If the argument is less
		 *					than 1, a domain error occurs.
		 * @returns		Nonnegative arc hyperbolic cosine of x, in the interval [0,+INFINITY] radians.
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class ScalarUnit>
		angle::radian_t acosh(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return angle::radian_t(std::acosh(x.value()));
		}
#endif

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute arc hyperbolic sine
		 * @details		Returns the arc hyperbolic sine of x, expressed in radians.
		 * @param[in]	x	Value whose arc hyperbolic sine is computed.
		 * @returns		Arc hyperbolic sine of x, in radians.
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class ScalarUnit>
		angle::radian_t asinh(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return angle::radian_t(std::asinh(x.value()));
		}
#endif

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute arc hyperbolic tangent
		 * @details		Returns the arc hyperbolic tangent of x, expressed in radians.
		 * @param[in]	x	Value whose arc hyperbolic tangent is computed, in the interval [-1,+1].
		 *					If the argument is out of this interval, a domain error occurs. For
		 *					values of -1 and +1, a pole error may occur.
		 * @returns		units::angle::radian_t
		 */
#if !defined(DISABLE_PREDEFINED_UNITS) || defined(ENABLE_PREDEFINED_ANGLE_UNITS)
		template<class ScalarUnit>
		angle::radian_t atanh(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return angle::radian_t(std::atanh(x.value()));
		}
#endif

		//----------------------------------
		//	TRANSCENDENTAL FUNCTIONS
		//----------------------------------

		// it makes NO SENSE to put dimensioned units into a transcendental function, and if you think it does you are
		// demonstrably wrong. https://en.wikipedia.org/wiki/Transcendental_function#Dimensional_analysis

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute exponential function
		 * @details		Returns the base-e exponential function of x, which is e raised to the power x: ex.
		 * @param[in]	x	scalar value of the exponent.
		 * @returns		Exponential value of x.
		 *				If the magnitude of the result is too large to be represented by a value of the return type, the
		 *				function returns HUGE_VAL (or HUGE_VALF or HUGE_VALL) with the proper sign, and an overflow range error occurs
		 */
		template<class ScalarUnit>
		dimensionless::scalar_t exp(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return dimensionless::scalar_t(std::exp(x.value()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute natural logarithm
		 * @details		Returns the natural logarithm of x.
		 * @param[in]	x	scalar value whose logarithm is calculated. If the argument is negative, a
		 *					domain error occurs.
		 * @sa			log10 for more common base-10 logarithms
		 * @returns		Natural logarithm of x.
		 */
		template<class ScalarUnit>
		dimensionless::scalar_t log(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return dimensionless::scalar_t(std::log(x.value()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute common logarithm
		 * @details		Returns the common (base-10) logarithm of x.
		 * @param[in]	x	Value whose logarithm is calculated. If the argument is negative, a
		 *					domain error occurs.
		 * @returns		Common logarithm of x.
		 */
		template<class ScalarUnit>
		dimensionless::scalar_t log10(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return dimensionless::scalar_t(std::log10(x.value()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Break into fractional and integral parts.
		 * @details		The integer part is stored in the object pointed by intpart, and the
		 *				fractional part is returned by the function. Both parts have the same sign
		 *				as x.
		 * @param[in]	x		scalar value to break into parts.
		 * @param[in]	intpart Pointer to an object (of the same type as x) where the integral part
		 *				is stored with the same sign as x.
		 * @returns		The fractional part of x, with the same sign.
		 */
		template<class ScalarUnit>
		dimensionless::scalar_t modf(const ScalarUnit x, ScalarUnit* intpart) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");

			UNIT_LIB_DEFAULT_TYPE intp;
			dimensionless::scalar_t fracpart = dimensionless::scalar_t(std::modf(x.value(), &intp));
			*intpart = intp;
			return fracpart;
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute binary exponential function
		 * @details		Returns the base-2 exponential function of x, which is 2 raised to the power x: 2^x.
		 * 2param[in]	x	Value of the exponent.
		 * @returns		2 raised to the power of x.
		 */
		template<class ScalarUnit>
		dimensionless::scalar_t exp2(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return dimensionless::scalar_t(std::exp2(x.value()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute exponential minus one
		 * @details		Returns e raised to the power x minus one: e^x-1. For small magnitude values
		 *				of x, expm1 may be more accurate than exp(x)-1.
		 * @param[in]	x	Value of the exponent.
		 * @returns		e raised to the power of x, minus one.
		 */
		template<class ScalarUnit>
		dimensionless::scalar_t expm1(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return dimensionless::scalar_t(std::expm1(x.value()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute logarithm plus one
		 * @details		Returns the natural logarithm of one plus x. For small magnitude values of
		 *				x, logp1 may be more accurate than log(1+x).
		 * @param[in]	x	Value whose logarithm is calculated. If the argument is less than -1, a
		 *					domain error occurs.
		 * @returns		The natural logarithm of (1+x).
		 */
		template<class ScalarUnit>
		dimensionless::scalar_t log1p(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return dimensionless::scalar_t(std::log1p(x.value()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute binary logarithm
		 * @details		Returns the binary (base-2) logarithm of x.
		 * @param[in]	x	Value whose logarithm is calculated. If the argument is negative, a
		 *					domain error occurs.
		 * @returns		The binary logarithm of x: log2x.
		 */
		template<class ScalarUnit>
		dimensionless::scalar_t log2(const ScalarUnit x) noexcept
		{
			static_assert(traits::is_dimensionless_unit<ScalarUnit>::value, "Type `ScalarUnit` must be a dimensionless unit derived from `unit_t`.");
			return dimensionless::scalar_t(std::log2(x.value()));
		}

		//----------------------------------
		//	POWER FUNCTIONS
		//----------------------------------

		/* pow is implemented earlier in the library since a lot of the unit definitions depend on it */

		/**
		 * @ingroup		UnitMath
		 * @brief		computes the square root of <i>value</i>
		 * @details		Only implemented for linear_scale units.
		 * @param[in]	value `unit_t` derived type to compute the square root of.
		 * @returns		new unit_t, whose units are the square root of value's. E.g. if values
		 *				had units of `square_meter`, then the return type will have units of
		 *				`meter`.
		 * @note		`sqrt` provides a _rational approximation_ of the square root of <i>value</i>.
		 *				In some cases, _both_ the returned value _and_ conversion factor of the returned
		 *				unit type may have errors no larger than `1e-10`.
		 */
		template<class UnitType, std::enable_if_t<units::traits::has_linear_scale<UnitType>::value, int> = 0>
		inline auto sqrt(const UnitType& value) noexcept -> unit_t<square_root<typename units::traits::unit_t_traits<UnitType>::unit_type>, typename units::traits::unit_t_traits<UnitType>::underlying_type, linear_scale>
		{
			return unit_t<square_root<typename units::traits::unit_t_traits<UnitType>::unit_type>, typename units::traits::unit_t_traits<UnitType>::underlying_type, linear_scale>
				(std::sqrt(value()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Computes the square root of the sum-of-squares of x and y.
		 * @details		Only implemented for linear_scale units.
		 * @param[in]	x	unit_t type value
		 * @param[in]	y	unit_t type value
		 * @returns		square root of the sum-of-squares of x and y in the same units
		 *				as x.
		 */
		template<class UnitTypeLhs, class UnitTypeRhs, std::enable_if_t<units::traits::has_linear_scale<UnitTypeLhs, UnitTypeRhs>::value, int> = 0>
		inline UnitTypeLhs hypot(const UnitTypeLhs& x, const UnitTypeRhs& y)
		{
			static_assert(traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value, "Parameters of hypot() function are not compatible units.");
			return UnitTypeLhs(std::hypot(x(), y.template convert<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type>()()));
		}

		//----------------------------------
		//	ROUNDING FUNCTIONS
		//----------------------------------

		/**
		 * @ingroup		UnitMath
		 * @brief		Round up value
		 * @details		Rounds x upward, returning the smallest integral value that is not less than x.
		 * @param[in]	x	Unit value to round up.
		 * @returns		The smallest integral value that is not less than x.
		 */
		template<class UnitType, class = std::enable_if_t<traits::is_unit_t<UnitType>::value>>
		UnitType ceil(const UnitType x) noexcept
		{
			return UnitType(std::ceil(x()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Round down value
		 * @details		Rounds x downward, returning the largest integral value that is not greater than x.
		 * @param[in]	x	Unit value to round down.
		 * @returns		The value of x rounded downward.
		 */
		template<class UnitType, class = std::enable_if_t<traits::is_unit_t<UnitType>::value>>
		UnitType floor(const UnitType x) noexcept
		{
			return UnitType(std::floor(x()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute remainder of division
		 * @details		Returns the floating-point remainder of numer/denom (rounded towards zero).
		 * @param[in]	numer	Value of the quotient numerator.
		 * @param[in]	denom	Value of the quotient denominator.
		 * @returns		The remainder of dividing the arguments.
		 */
		template<class UnitTypeLhs, class UnitTypeRhs, class = std::enable_if_t<traits::is_unit_t<UnitTypeLhs>::value && traits::is_unit_t<UnitTypeRhs>::value>>
		UnitTypeLhs fmod(const UnitTypeLhs numer, const UnitTypeRhs denom) noexcept
		{
			static_assert(traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value, "Parameters of fmod() function are not compatible units.");
			return UnitTypeLhs(std::fmod(numer(), denom.template convert<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type>()()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Truncate value
		 * @details		Rounds x toward zero, returning the nearest integral value that is not
		 *				larger in magnitude than x. Effectively rounds towards 0.
		 * @param[in]	x	Value to truncate
		 * @returns		The nearest integral value that is not larger in magnitude than x.
		 */
		template<class UnitType, class = std::enable_if_t<traits::is_unit_t<UnitType>::value>>
		UnitType trunc(const UnitType x) noexcept
		{
			return UnitType(std::trunc(x()));
		}


		/**
		 * @ingroup		UnitMath
		 * @brief		Round to nearest
		 * @details		Returns the integral value that is nearest to x, with halfway cases rounded
		 *				away from zero.
		 * @param[in]	x	value to round.
		 * @returns		The value of x rounded to the nearest integral.
		 */
		template<class UnitType, class = std::enable_if_t<traits::is_unit_t<UnitType>::value>>
		UnitType round(const UnitType x) noexcept
		{
			return UnitType(std::round(x()));
		}

		//----------------------------------
		//	FLOATING POINT MANIPULATION
		//----------------------------------

		/**
		 * @ingroup		UnitMath
		 * @brief		Copy sign
		 * @details		Returns a value with the magnitude and dimension of x, and the sign of y.
		 *				Values x and y do not have to be compatible units.
		 * @param[in]	x	Value with the magnitude of the resulting value.
		 * @param[in]	y	Value with the sign of the resulting value.
		 * @returns		value with the magnitude and dimension of x, and the sign of y.
		 */
		template<class UnitTypeLhs, class UnitTypeRhs, class = std::enable_if_t<traits::is_unit_t<UnitTypeLhs>::value && traits::is_unit_t<UnitTypeRhs>::value>>
		UnitTypeLhs copysign(const UnitTypeLhs x, const UnitTypeRhs y) noexcept
		{
			return UnitTypeLhs(std::copysign(x(), y()));	// no need for conversion to get the correct sign.
		}

		/// Overload to copy the sign from a raw double
		template<class UnitTypeLhs, class = std::enable_if_t<traits::is_unit_t<UnitTypeLhs>::value>>
		UnitTypeLhs copysign(const UnitTypeLhs x, const UNIT_LIB_DEFAULT_TYPE y) noexcept
		{
			return UnitTypeLhs(std::copysign(x(), y));
		}

		//----------------------------------
		//	MIN / MAX / DIFFERENCE
		//----------------------------------

		/**
		 * @ingroup		UnitMath
		 * @brief		Positive difference
		 * @details		The function returns x-y if x>y, and zero otherwise, in the same units as x.
		 *				Values x and y do not have to be the same type of units, but they do have to
		 *				be compatible.
		 * @param[in]	x	Values whose difference is calculated.
		 * @param[in]	y	Values whose difference is calculated.
		 * @returns		The positive difference between x and y.
		 */
		template<class UnitTypeLhs, class UnitTypeRhs, class = std::enable_if_t<traits::is_unit_t<UnitTypeLhs>::value && traits::is_unit_t<UnitTypeRhs>::value>>
		UnitTypeLhs fdim(const UnitTypeLhs x, const UnitTypeRhs y) noexcept
		{
			static_assert(traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value, "Parameters of fdim() function are not compatible units.");
			return UnitTypeLhs(std::fdim(x(), y.template convert<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type>()()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Maximum value
		 * @details		Returns the larger of its arguments: either x or y, in the same units as x.
		 *				Values x and y do not have to be the same type of units, but they do have to
		 *				be compatible.
		 * @param[in]	x	Values among which the function selects a maximum.
		 * @param[in]	y	Values among which the function selects a maximum.
		 * @returns		The maximum numeric value of its arguments.
		 */
		template<class UnitTypeLhs, class UnitTypeRhs, class = std::enable_if_t<traits::is_unit_t<UnitTypeLhs>::value && traits::is_unit_t<UnitTypeRhs>::value>>
		UnitTypeLhs fmax(const UnitTypeLhs x, const UnitTypeRhs y) noexcept
		{
			static_assert(traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value, "Parameters of fmax() function are not compatible units.");
			return UnitTypeLhs(std::fmax(x(), y.template convert<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type>()()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Minimum value
		 * @details		Returns the smaller of its arguments: either x or y, in the same units as x.
		 *				If one of the arguments in a NaN, the other is returned.
		 *				Values x and y do not have to be the same type of units, but they do have to
		 *				be compatible.
		 * @param[in]	x	Values among which the function selects a minimum.
		 * @param[in]	y	Values among which the function selects a minimum.
		 * @returns		The minimum numeric value of its arguments.
		 */
		template<class UnitTypeLhs, class UnitTypeRhs, class = std::enable_if_t<traits::is_unit_t<UnitTypeLhs>::value && traits::is_unit_t<UnitTypeRhs>::value>>
		UnitTypeLhs fmin(const UnitTypeLhs x, const UnitTypeRhs y) noexcept
		{
			static_assert(traits::is_convertible_unit_t<UnitTypeLhs, UnitTypeRhs>::value, "Parameters of fmin() function are not compatible units.");
			return UnitTypeLhs(std::fmin(x(), y.template convert<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type>()()));
		}

		//----------------------------------
		//	OTHER FUNCTIONS
		//----------------------------------

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute absolute value
		 * @details		Returns the absolute value of x, i.e. |x|.
		 * @param[in]	x	Value whose absolute value is returned.
		 * @returns		The absolute value of x.
		 */
		template<class UnitType, class = std::enable_if_t<traits::is_unit_t<UnitType>::value>>
		UnitType fabs(const UnitType x) noexcept
		{
			return UnitType(std::fabs(x()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Compute absolute value
		 * @details		Returns the absolute value of x, i.e. |x|.
		 * @param[in]	x	Value whose absolute value is returned.
		 * @returns		The absolute value of x.
		 */
		template<class UnitType, class = std::enable_if_t<traits::is_unit_t<UnitType>::value>>
		UnitType abs(const UnitType x) noexcept
		{
			return UnitType(std::fabs(x()));
		}

		/**
		 * @ingroup		UnitMath
		 * @brief		Multiply-add
		 * @details		Returns x*y+z. The function computes the result without losing precision in
		 *				any intermediate result. The resulting unit type is a compound unit of x* y.
		 * @param[in]	x	Values to be multiplied.
		 * @param[in]	y	Values to be multiplied.
		 * @param[in]	z	Value to be added.
		 * @returns		The result of x*y+z
		 */
		template<class UnitTypeLhs, class UnitMultiply, class UnitAdd, class = std::enable_if_t<traits::is_unit_t<UnitTypeLhs>::value && traits::is_unit_t<UnitMultiply>::value && traits::is_unit_t<UnitAdd>::value>>
		auto fma(const UnitTypeLhs x, const UnitMultiply y, const UnitAdd z) noexcept -> decltype(x * y)
		{
			using resultType = decltype(x * y);
			static_assert(traits::is_convertible_unit_t<compound_unit<typename units::traits::unit_t_traits<UnitTypeLhs>::unit_type, typename units::traits::unit_t_traits<UnitMultiply>::unit_type>, typename units::traits::unit_t_traits<UnitAdd>::unit_type>::value, "Unit types are not compatible.");
			return resultType(std::fma(x(), y(), resultType(z)()));
		}

	}	// end namespace math
}	// end namespace units

//------------------------------
//	std::numeric_limits
//------------------------------

namespace std
{
	template<class Units, typename T, template<typename> class NonLinearScale>
	class numeric_limits<units::unit_t<Units, T, NonLinearScale>>
	{
	public:
		static constexpr units::unit_t<Units, T, NonLinearScale> min()
		{
			return units::unit_t<Units, T, NonLinearScale>(std::numeric_limits<T>::min());
		}
		static constexpr units::unit_t<Units, T, NonLinearScale> denorm_min() noexcept
		{
			return units::unit_t<Units, T, NonLinearScale>(std::numeric_limits<T>::denorm_min());
		}
		static constexpr units::unit_t<Units, T, NonLinearScale> max()
		{
			return units::unit_t<Units, T, NonLinearScale>(std::numeric_limits<T>::max());
		}
		static constexpr units::unit_t<Units, T, NonLinearScale> lowest()
		{
			return units::unit_t<Units, T, NonLinearScale>(std::numeric_limits<T>::lowest());
		}
		static constexpr units::unit_t<Units, T, NonLinearScale> epsilon()
		{
			return units::unit_t<Units, T, NonLinearScale>(std::numeric_limits<T>::epsilon());
		}
		static constexpr units::unit_t<Units, T, NonLinearScale> round_error()
		{
			return units::unit_t<Units, T, NonLinearScale>(std::numeric_limits<T>::round_error());
		}
		static constexpr units::unit_t<Units, T, NonLinearScale> infinity()
		{
			return units::unit_t<Units, T, NonLinearScale>(std::numeric_limits<T>::infinity());
		}
		static constexpr units::unit_t<Units, T, NonLinearScale> quiet_NaN()
		{
			return units::unit_t<Units, T, NonLinearScale>(std::numeric_limits<T>::quiet_NaN());
		}
		static constexpr units::unit_t<Units, T, NonLinearScale> signaling_NaN()
		{
			return units::unit_t<Units, T, NonLinearScale>(std::numeric_limits<T>::signaling_NaN());
		}
		static constexpr bool is_specialized = std::numeric_limits<T>::is_specialized;
		static constexpr bool is_signed = std::numeric_limits<T>::is_signed;
		static constexpr bool is_integer = std::numeric_limits<T>::is_integer;
		static constexpr bool is_exact = std::numeric_limits<T>::is_exact;
		static constexpr bool has_infinity = std::numeric_limits<T>::has_infinity;
		static constexpr bool has_quiet_NaN = std::numeric_limits<T>::has_quiet_NaN;
		static constexpr bool has_signaling_NaN = std::numeric_limits<T>::has_signaling_NaN;
	};

	template<class Units, typename T, template<typename> class NonLinearScale>
	bool isnan(const units::unit_t<Units, T, NonLinearScale>& x)
	{
		return std::isnan(x());
	}

	template<class Units, typename T, template<typename> class NonLinearScale>
	bool isinf(const units::unit_t<Units, T, NonLinearScale>& x)
	{
		return std::isinf(x());
	}

	template<class Units, typename T, template<typename> class NonLinearScale>
	bool signbit(const units::unit_t<Units, T, NonLinearScale>& x)
	{
		return std::signbit(x());
	}
}

#ifdef _MSC_VER
#	if _MSC_VER <= 1800
#		pragma warning(pop)
#		undef constexpr
#		pragma pop_macro("constexpr")
#		undef noexcept
#		pragma pop_macro("noexcept")
#		undef _ALLOW_KEYWORD_MACROS
#	endif // _MSC_VER < 1800
#	pragma pop_macro("pascal")
#endif // _MSC_VER

#if defined(__MINGW64__) || defined(__MINGW32__)
#	pragma pop_macro("pascal")
#endif // __MINGW64__ or __MINGW32__

#endif // units_h__

// For Emacs
// Local Variables:
// Mode: C++
// c-basic-offset: 2
// fill-column: 116
// tab-width: 4
// End: