
Units Conversion
Edition 2.25 for units Version 2.25

Adrian Mariano

This manual is for GNU Units (version 2.25), which performs units conversions and units
calculations.

Copyright c© 1996, 1997, 1999, 2000, 2001, 2002, 2004, 2005, 2007, 2011–2024, 2026 Free
Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Overview of units . 1

2 Interacting with units . 1
2.1 Interactive Commands . 4

3 Using units Non-Interactively 4
3.1 Finding Units . 5

4 Unit Definitions . 6
4.1 Physical Constants . 6
4.2 Atomic Masses of the Elements . 7
4.3 Currency Exchange Rates and Consumer Price Index 7
4.4 English Customary Units . 7
4.5 Miscellaneous Notes on Unit Definitions . 9

5 Unit Expressions . 9
5.1 Operators . 9
5.2 Sums and Differences of Units . 11
5.3 Numbers as Units . 12
5.4 Built-in Functions . 12
5.5 Previous Result . 14
5.6 Complicated Unit Expressions . 15
5.7 Variables Assigned at Run Time . 16
5.8 Backwards Compatibility: ‘*’ and ‘-’ . 18

6 Nonlinear Unit Conversions 19
6.1 Temperature Conversions . 19
6.2 US Consumer Price Index . 20
6.3 Other Nonlinear Units . 21
6.4 Multivariate Functions . 24

7 Unit Lists: Conversion to Sums of Units 25
7.1 Cooking Measure . 27
7.2 Unit List Aliases . 28

8 Alternative Unit Systems . 29
8.1 CGS Units . 29

8.1.1 Specifying CGS Units . 30
8.1.2 CGS Units Systems . 31
8.1.3 Conversions Between Different Systems . 31

8.2 Natural Units . 33
8.3 Prompt Prefix . 34

ii

9 Logging Calculations . 34

10 Invoking units . 35

11 Setting Options Interactively 41

12 Scripting with units . 42

13 Output Styles . 43

14 Adding Your Own Definitions 45
14.1 Units Data Files . 45
14.2 Defining New Units and Prefixes . 46
14.3 Defining Nonlinear Units . 47
14.4 Defining Piecewise Linear Units . 50
14.5 Defining Multivariate Functions . 51
14.6 Defining Unit List Aliases . 52

15 Numeric Output Format . 53
15.1 Format Specification . 53
15.2 Flags . 53
15.3 Field Width . 54
15.4 Precision . 55

16 Localization . 55
16.1 Locale . 56
16.2 Additional Localization . 56

17 Environment Variables . 58

18 Data Files . 59

19 Unicode Support . 60
19.1 Unicode Support on Windows . 61

20 Readline Support . 61

iii

21 Updating Currency Exchange Rates and
CPI . 62

21.1 Currency Exchange Rates . 62
21.2 US Consumer Price Index . 63
21.3 Invoking units_cur . 63

22 Database Command Syntax 64

23 GNU Free Documentation License 65

Index . 73

Units Conversion 1

1 Overview of units

The units program converts quantities expressed in various systems of measurement to their
equivalents in other systems of measurement. Like many similar programs, it can handle
multiplicative scale changes. It can also handle nonlinear conversions such as Fahrenheit
to Celsius;1 see Section 6.1 [Temperature Conversions], page 19. The program can also
perform conversions from and to sums of units, such as converting between meters and feet
plus inches.

Basic operation is simple: you enter the units that you want to convert from and the
units that you want to convert to. You can use the program interactively with prompts, or
you can use it from the command line.

Beyond simple unit conversions, units can be used as a general-purpose scientific cal-
culator that keeps track of units in its calculations. You can form arbitrary complex math-
ematical expressions of dimensions including sums, products, quotients, powers, and even
roots of dimensions. Thus you can ensure accuracy and dimensional consistency when work-
ing with long expressions that involve many different units that may combine in complex
ways; for an illustration, see Section 5.6 [Complicated Unit Expressions], page 15.

The units are defined in several external data files. You can use the extensive data files
that come with the program, or you can provide your own data file to suit your needs. You
can also use your own data file to supplement the standard data files.

You can change the default behavior of units with various options given on the command
line. See Chapter 10 [Invoking Units], page 35, for a description of the available options.

2 Interacting with units

To invoke units for interactive use, type units at your shell prompt. The program will
print something like this:

Currency exchange rates from FloatRates (USD base) on 2023-07-08

3612 units, 109 prefixes, 122 nonlinear units

You have:

At the ‘You have:’ prompt, type the quantity and units that you are converting from. For
example, if you want to convert ten meters to feet, type 10 meters. Next, units will print
‘You want:’. You should type the units you want to convert to. To convert to feet, you
would type feet. If the readline library was compiled in, then tab will complete unit
names. See Chapter 20 [Readline Support], page 61, for more information about readline.
To quit the program type quit or exit at either prompt.

The result will be displayed in two ways. The first line of output, which is marked with
a ‘*’ to indicate multiplication, gives the result of the conversion you have asked for. The

1 But Fahrenheit to Celsius is linear, you insist. Not so. A transformation T is linear if T (x + y) =
T (x)+T (y) and this fails for T (x) = ax+ b. This transformation is affine, but not linear—see https://
en.wikipedia.org/wiki/Linear_map.

https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Linear_map

Units Conversion 2

second line of output, which is marked with a ‘/’ to indicate division, gives the inverse of
the conversion factor. If you convert 10 meters to feet, units will print

* 32.808399

/ 0.03048

which tells you that 10 meters equals about 32.8 feet. The second number gives the con-
version in the opposite direction. In this case, it tells you that 1 foot is equal to about 0.03
dekameters since the dekameter is 10 meters. It also tells you that 1/32.8 is about 0.03.

The units program prints the inverse because sometimes it is a more convenient number.
In the example above, for example, the inverse value is an exact conversion: a foot is exactly
0.03048 dekameters. But the number given the other direction is inexact.

If you convert grains to pounds, you will see the following:

You have: grains

You want: pounds

* 0.00014285714

/ 7000

From the second line of the output, you can immediately see that a grain is equal to a seven
thousandth of a pound. This is not so obvious from the first line of the output. If you find
the output format confusing, try using the --verbose option:

You have: grain

You want: aeginamina

grain = 0.00010416667 aeginamina

grain = (1 / 9600) aeginamina

If you request a conversion between units that measure reciprocal dimensions, then units

will display the conversion results with an extra note indicating that reciprocal conversion
has been done:

You have: 6 ohms

You want: siemens

reciprocal conversion

* 0.16666667

/ 6

Reciprocal conversion can be suppressed by using the --strict option. As usual, use the
--verbose option to get more comprehensible output:

You have: tex

You want: typp

reciprocal conversion

1 / tex = 496.05465 typp

1 / tex = (1 / 0.0020159069) typp

You have: 20 mph

You want: sec/mile

reciprocal conversion

1 / 20 mph = 180 sec/mile

1 / 20 mph = (1 / 0.0055555556) sec/mile

Units Conversion 3

If you enter incompatible unit types, the units program will print a message indicating
that the units are not conformable and it will display the reduced form for each unit:

You have: ergs/hour

You want: fathoms kg^2 / day

conformability error

2.7777778e-11 kg m^2 / sec^3

2.1166667e-05 kg^2 m / sec

If you only want to find the reduced form or definition of a unit, simply press Enter at the
‘You want:’ prompt. Here is an example:

You have: jansky

You want:

Definition: fluxunit = 1e-26 W/m^2 Hz = 1e-26 kg / s^2

The output from units indicates that the jansky is defined to be equal to a fluxunit which
in turn is defined to be a certain combination of watts, meters, and hertz. The fully reduced
(and in this case somewhat more cryptic) form appears on the far right. If the ultimate
definition and the fully reduced form are identical, the latter is not shown:

You have: B

You want:

Definition: byte = 8 bit

The fully reduced form is shown if it and the ultimate definition are equivalent but not
identical:

You have: N

You want:

Definition: newton = kg m / s^2 = 1 kg m / s^2

Some named units are treated as dimensionless in some situations. These units include the
radian and steradian. These units will be treated as equal to 1 in units conversions. Power
is equal to torque times angular velocity. This conversion can only be performed if the
radian is dimensionless.

You have: (14 ft lbf) (12 radians/sec)

You want: watts

* 227.77742

/ 0.0043902509

It is also possible to compute roots and other non-integer powers of dimensionless units;
this allows computations such as the altitude of geosynchronous orbit:

You have: cuberoot(G earthmass / (circle/siderealday)^2) - earthradius

You want: miles

* 22243.267

/ 4.4957425e-05

Named dimensionless units are not treated as dimensionless in other contexts. They cannot
be used as exponents so for example, ‘meter^radian’ is forbidden.

If you want a list of options you can type ? at the ‘You want:’ prompt. The program
will display a list of named units that are conformable with the unit that you entered at
the ‘You have:’ prompt above. Conformable unit combinations will not appear on this list.

Units Conversion 4

2.1 Interactive Commands

Typing help at either prompt displays a short help message. You can also type help

followed by a unit name. This will invoke a pager on the units database at the point where
that unit is defined. You can read the definition and comments that may give more details
or historical information about the unit. If your pager allows, you may want to scroll
backwards, e.g. with ‘b’, because sometimes a longer comment about a unit or group of
units will appear before the definition. You can generally quit out of the pager by pressing
‘q’.

Typing search text will display a list of all units whose names contain text as a substring
along with their definitions. This may help in the case where you aren’t sure of the right
unit name. Typing search . will display a list of all units; this can be helpful if you aren’t
sure of an appropriate substring, though examining the output can be tedious. Here ‘.’
is a special argument to the search command, not a regular expression. If you want to
use a regular expression to search units and their definitions, the --list-units option will
display a list of all units, which can be sent to a filter such as grep. Typing search _

will display a list of all assigned runtime variables—whose names begin with ‘_’—without
including all units whose names simply contain ‘_’. See Section 5.7 [Variables Assigned at
Run Time], page 16, for more information on runtime variables.

Typing version will display the units version number; unlike the --version option,
only the version number is shown, regardless of any other settings. Full information is
available with the info command.

Typing info will display the same information as the --info option, described in Chap-
ter 10 [Invoking Units], page 35.

Many values set by command-line options can also be set interactively by typing
set option=value; typing set option will show the value for that option. Typing set

will show a list of options that can be set; options set to other than default values will
have a prepended ‘*’. See Chapter 11 [Setting Options Interactively], page 41, for more
information.

3 Using units Non-Interactively

The units program can perform units conversions non-interactively from the command
line. To do this, type the command, type the original unit expression, and type the new
units you want. If a units expression contains non-alphanumeric characters, you may need
to protect it from interpretation by the shell using single or double quote characters.

If you type

units "2 liters" quarts

then units will print

* 2.1133764

/ 0.47317647

and then exit. The output tells you that 2 liters is about 2.1 quarts, or alternatively that
a quart is about 0.47 times 2 liters.

Units Conversion 5

units does not require a space between a numerical value and the unit, so the previous
example can be given as

units 2liters quarts

to avoid having to quote the first argument.

If the conversion is successful, units will return success (zero) to the calling environment.
If you enter non-conformable units, then units will print a message giving the reduced form
of each unit and it will return failure (nonzero) to the calling environment.

If the --conformable option is given, only one unit expression is allowed, and units

will print all units conformable with that expression; it is equivalent to giving ? at the
‘You want:’ prompt. For example,

units --conformable gauss

B_FIELD tesla

Gs gauss

T tesla

gauss abvolt sec / cm^2

stT stattesla

statT stattesla

stattesla statWb/cm^2

tesla Wb/m^2

If you give more than one unit expression with the --conformable option, the program
will exit with an error message and return failure. This option has no effect in interactive
mode.

If the --terse (-t) option is given with the --conformable option, conformable units
are shown without definitions; with the previous example, this would give

units --terse --conformable gauss

B_FIELD

Gs

T

gauss

stT

statT

stattesla

tesla

When the --conformable option is not given and you invoke units with only one argument,
units will print the definition of the specified unit. It will return failure if the unit is not
defined and success if the unit is defined.

3.1 Finding Units

The units database includes many units, and it can sometimes be difficult to remember
every name. The interactive search command examines only unit names, so it cannot be
used to find units whose definitions contain a pattern. If units is invoked with the --list-
units option, the output can be sent to a filter such as grep, examining the unit name and
the definition. For example,

Units Conversion 6

units --list-units | grep ';'

dms deg;arcmin;arcsec

ftin ft;in;1|8 in

ftin16 ft;in;1|16 in

ftin32 ft;in;1|32 in

ftin4 ft;in;1|4 in

ftin64 ft;in;1|64 in

ftin8 ft;in;1|8 in

hms hr;min;sec

inchfine in;1|8 in;1|16 in;1|32 in;1|64 in

time year;day;hr;min;sec

uswt lb;oz

. . .

could find all unit lists, which include at least one semicolon in their definitions.

The search command doesn’t support regular expressions, but with the --list-units
option the output can be sent to a filter such as grep, which does. If you expect a long list
of results, you can send the output of the filter to a pager. For example,

units --list-units | grep 'paper[[:space:]]' | more

A0paper 841 mm 1189 mm

A10paper 26 mm 37 mm

A1paper 594 mm 841 mm

A2paper 420 mm 594 mm

A3paper 297 mm 420 mm

A4paper 210 mm 297 mm

A5paper 148 mm 210 mm

A6paper 105 mm 148 mm

A7paper 74 mm 105 mm

A8paper 52 mm 74 mm

A9paper 37 mm 52 mm

. . .

could show a list of all defined paper sizes.

4 Unit Definitions

The conversion information is read from several units data files: definitions.units,
elements.units, currency.units, and cpi.units, which are usually located in the
/usr/share/units directory. If you invoke units with the -V option, it will print the
location of these files. The default main file includes definitions for all familiar units,
abbreviations and metric prefixes. It also includes many obscure or archaic units. Many
common spelled-out numbers (e.g., ‘seventeen’) are recognized.

4.1 Physical Constants

Many constants of nature are defined, including these:

pi ratio of circumference of a circle to its diameter

Units Conversion 7

c speed of light
e charge on an electron
force acceleration of gravity
mole Avogadro’s number
water pressure per unit height of water
Hg pressure per unit height of mercury
au astronomical unit
k Boltzman’s constant
mu0 permeability of vacuum
epsilon0 permittivity of vacuum
G Gravitational constant
mach speed of sound

The standard data file includes numerous other constants. Also included are the densities
of various ingredients used in baking so that ‘2 cups flour_sifted’ can be converted to
‘grams’. This is not an exhaustive list. Consult the units data file to see the complete list,
or to see the definitions that are used.

4.2 Atomic Masses of the Elements

The data file elements.units includes atomic masses for most elements and most known
isotopes. If the mole fractions of constituent isotopes are known, an elemental mass is calcu-
lated from the sum of the products of the mole fractions and the masses of the constituent
isotopes. If the mole fractions are not known, the mass of the most stable isotope—if
known—is given as the elemental mass. For radioactive elements with atomic numbers 95
or greater, the mass number of the most stable isotope is not specified, because the list
of studied isotopes is still incomplete. If no stable isotope is known, no elemental mass is
given, and you will need to choose the most appropriate isotope.

The data are obtained from the US National Institute for Standards and Technology
(NIST): https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&
all=all&ascii=ascii2&isotype=all. The elements.units file can be generated from
these data using the elemcvt command included with the distribution.

4.3 Currency Exchange Rates and Consumer Price Index

The data file currency.units includes currency conversion rates; the file cpi.units in-
cludes the US Consumer Price Index (CPI), published by the US Bureau of Labor Statistics.
The data are updated monthly by the BLS; see Chapter 21 [Updating Currency Exchange
Rates and CPI], page 62, for information on updating currency.units and cpi.units.

4.4 English Customary Units

English customary units differ in various ways among different regions. In Britain a complex
system of volume measurements featured different gallons for different materials such as a
wine gallon and ale gallon that different by twenty percent. This complexity was swept
away in 1824 by a reform that created an entirely new gallon, the British Imperial gallon
defined as the volume occupied by ten pounds of water. Meanwhile in the USA the gallon
is derived from the 1707 Winchester wine gallon, which is 231 cubic inches. These gallons

https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&all=all&ascii=ascii2&isotype=all
https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&all=all&ascii=ascii2&isotype=all

Units Conversion 8

differ by about twenty percent. By default if units runs in the ‘en_GB’ locale you will get
the British volume measures. If it runs in the ‘en_US’ locale you will get the US volume
measures. In other locales the default values are the US definitions. If you wish to force
different definitions, then set the environment variable UNITS_ENGLISH to either ‘US’ or ‘GB’
to set the desired definitions independent of the locale.

Before 1959, the value of a yard (and other units of measure defined in terms of it) differed
slightly among English-speaking countries. In 1959, Australia, Canada, New Zealand, the
United Kingdom, the United States, and South Africa adopted the Canadian value of 1 yard
= 0.9144 m (exactly), which was approximately halfway between the values used by the UK
and the US; it had the additional advantage of making 1 inch = 2.54 cm (exactly). This
new standard was termed the International Yard. Australia, Canada, and the UK then
defined all customary lengths in terms of the International Yard (Australia did not define
the furlong or rod); because many US land surveys were in terms of the pre-1959 units, the
US continued to define customary surveyors’ units (furlong, chain, rod, pole, perch, and
link) in terms of the previous value for the foot, which was termed the US survey foot. The
US defined a US survey mile as 5280 US survey feet, and defined a statute mile as a US
survey mile. The US values for these units differed from the international values by about
2 ppm.

The 1959 redefinition of the foot was legally binding in the US but allowed continued
use of the previous definition of the foot for geodetic surveying. It was assumed that this
use would be temporary, but use persisted, leading to confusion and errors, and it was
at odds with the intent of uniform standards. Since January 1, 2023, the US survey foot
has been officially deprecated (85 FR 62698), with its use limited to historical and legacy
applications.

The units program has always used the international values for these units; the legacy
US values can be obtained by using either the ‘US’ or the ‘survey’ prefix. In either case, the
simple familiar relationships among the units are maintained, e.g., 1 ‘furlong’ = 660 ‘ft’,
and 1 ‘USfurlong’ = 660 ‘USft’, though the metric equivalents differ slightly between the
two cases. The ‘US’ prefix or the ‘survey’ prefix can also be used to obtain the US survey
mile and the value of the US yard prior to 1959, e.g., ‘USmile’ or ‘surveymile’ (but not
‘USsurveymile’). To get the US value of the statute mile, use either ‘USstatutemile’ or
‘USmile’. The pre-1959 UK values for these units can be obtained with the prefix ‘UK’.

Except for distances that extend over hundreds of miles (such as in the US State Plane
Coordinate System), the differences in the miles are usually insignificant:

You have: 100 surveymile - 100 mile

You want: inch

* 12.672025

/ 0.078913984

The US acre was officially defined in terms of the US survey foot, but units has used a
definition based on the international foot; the units definition is now the same as the official
US value. If you want the previous US acre, use ‘USacre’ and similarly use ‘USacrefoot’
for the previous US version of that unit. The difference between these units is about 4 parts
per million.

https://www.govinfo.gov/app/details/FR-2020-10-05/2020-21902

Units Conversion 9

4.5 Miscellaneous Notes on Unit Definitions

The ‘pound’ is a unit of mass. To get force, multiply by the force conversion unit ‘force’ or
use the shorthand ‘lbf’. (Note that ‘g’ is already taken as the standard abbreviation for the
gram.) The unit ‘ounce’ is also a unit of mass. The fluid ounce is ‘fluidounce’ or ‘floz’.
When British capacity units differ from their US counterparts, such as the British Imperial
gallon, the unit is defined both ways with ‘br’ and ‘us’ prefixes. Your locale settings will
determine the value of the unprefixed unit. Currency is prefixed with its country name:
‘belgiumfranc’, ‘britainpound’.

When searching for a unit, if the specified string does not appear exactly as a unit
name, then the units program will try to remove a trailing ‘s’, ‘es’. Next units will
replace a trailing ‘ies’ with ‘y’. If that fails, units will check for a prefix. The database
includes all of the standard metric prefixes. Only one prefix is permitted per unit, so
‘micromicrofarad’ will fail. However, prefixes can appear alone with no unit following
them, so ‘micro*microfarad’ will work, as will ‘micro microfarad’.

To find out which units and prefixes are available, read the default units data files; the
main data file is extensively annotated.

5 Unit Expressions

5.1 Operators

You can enter more complicated units by combining units with operations such as multi-
plication, division, powers, addition, subtraction, and parentheses for grouping. You can
use the customary symbols for these operators when units is invoked with its default op-
tions. Additionally, units supports some extensions, including high priority multiplication
using a space, and a high priority numerical division operator (‘|’) that can simplify some
expressions.

You multiply units using a space or an asterisk (‘*’). The next example shows both
forms:

You have: arabicfoot * arabictradepound * force

You want: ft lbf

* 0.7296

/ 1.370614

You can divide units using the slash (‘/’) or with ‘per’:

You have: furlongs per fortnight

You want: m/s

* 0.00016630986

/ 6012.8727

You can use parentheses for grouping:

You have: (1/2) kg / (kg/meter)

You want: league

* 0.00010356166

/ 9656.0833

Units Conversion 10

White space surrounding operators is optional, so the previous example could have used
‘(1/2)kg/(kg/meter)’. As a consequence, however, hyphenated spelled-out numbers (e.g.,
‘forty-two’) cannot be used; ‘forty-two’ is interpreted as ‘40 - 2’.

Multiplication using a space has a higher precedence than division using a slash and is
evaluated left to right; in effect, the first ‘/’ character marks the beginning of the denomina-
tor of a unit expression. This makes it simple to enter a quotient with several terms in the
denominator: ‘J / mol K’. The ‘*’ and ‘/’ operators have the same precedence, and are eval-
uated left to right; if you multiply with ‘*’, you must group the terms in the denominator
with parentheses: ‘J / (mol * K)’.

The higher precedence of the space operator may not always be advantageous. For
example, ‘m/s s/day’ is equivalent to ‘m / s s day’ and has dimensions of length per time
cubed. Similarly, ‘1/2 meter’ refers to a unit of reciprocal length equivalent to 0.5/meter,
perhaps not what you would intend if you entered that expression. The get a half meter
you would need to use parentheses: ‘(1/2) meter’. The ‘*’ operator is convenient for
multiplying a sequence of quotients. For example, ‘m/s * s/day’ is equivalent to ‘m/day’.
Similarly, you could write ‘1/2 * meter’ to get half a meter.

The units program supports another option for numerical fractions: you can indicate
division of numbers with the vertical bar (‘|’), so if you wanted half a meter you could write
‘1|2 meter’. You cannot use the vertical bar to indicate division of non-numerical units
(e.g., ‘m|s’ results in an error message).

Powers of units can be specified using the ‘^’ character, as shown in the following ex-
ample, or by simple concatenation of a unit and its exponent: ‘cm3’ is equivalent to ‘cm^3’;
if the exponent is more than one digit, the ‘^’ is required. You can also use ‘**’ as an
exponent operator.

You have: cm^3

You want: gallons

* 0.00026417205

/ 3785.4118

Concatenation only works with a single unit name: if you write ‘(m/s)2’, units will treat
it as multiplication by 2. When a unit includes a prefix, exponent operators apply to the
combination, so ‘centimeter3’ gives cubic centimeters. If you separate the prefix from the
unit with any multiplication operator (e.g., ‘centi meter^3’), the prefix is treated as a sep-
arate unit, so the exponent applies only to the unit without the prefix. The second example
is equivalent to ‘centi * (meter^3)’, and gives a hundredth of a cubic meter, not a cubic
centimeter. The units program is limited internally to products of 99 units; accordingly,
expressions like ‘meter^100’ or ‘joule^34’ (represented internally as ‘kg^34 m^68 / s^68’)
will fail.

The ‘|’ operator has the highest precedence, so you can write the square root of two
thirds as ‘2|3^1|2’. The ‘^’ operator has the second highest precedence, and is evaluated
right to left, as usual:

You have: 5 * 2^3^2

You want:

Definition: 2560

Units Conversion 11

With a dimensionless base unit, any dimensionless exponent is meaningful (e.g.,
‘pi^exp(2.371)’). Even though angle is sometimes treated as dimensionless, exponents
cannot have dimensions of angle:

You have: 2^radian

^

Exponent not dimensionless

If the base unit is not dimensionless, the exponent must be a rational number p/q, and the
dimension of the unit must be a power of q, so ‘gallon^2|3’ works but ‘acre^2|3’ fails.
An exponent using the slash (‘/’) operator (e.g., ‘gallon^(2/3)’) is also acceptable; the
parentheses are needed because the precedence of ‘^’ is higher than that of ‘/’. Since units
cannot represent dimensions with exponents greater than 99, a fully reduced exponent must
have q < 100. When raising a non-dimensionless unit to a power, units attempts to convert
a decimal exponent to a rational number with q < 100. If this is not possible units displays
an error message:

You have: ft^1.234

Base unit not dimensionless; rational exponent required

A decimal exponent must match its rational representation to machine precision, so
‘acre^1.5’ works but ‘gallon^0.666’ does not.

5.2 Sums and Differences of Units

You may sometimes want to add values of different units that are outside the SI. You may
also wish to use units as a calculator that keeps track of units. Sums of conformable units
are written with the ‘+’ character, and differences with the ‘-’ character.

You have: 2 hours + 23 minutes + 32 seconds

You want: seconds

* 8612

/ 0.00011611705

You have: 12 ft + 3 in

You want: cm

* 373.38

/ 0.0026782366

You have: 2 btu + 450 ft lbf

You want: btu

* 2.5782804

/ 0.38785542

The expressions that are added or subtracted must reduce to identical expressions in prim-
itive units, or an error message will be displayed:

You have: 12 printerspoint - 4 heredium

^

Invalid sum of non-conformable units

If you add two values of vastly different scale you may exceed the available precision of
floating point (about 15 digits). The effect is that the addition of the smaller value makes
no change to the larger value; in other words, the smaller value is treated as if it were zero.

You have: lightyear + cm

Units Conversion 12

No warning is given, however. As usual, the precedence for ‘+’ and ‘-’ is lower than that
of the other operators. A fractional quantity such as 2 1/2 cups can be given as ‘(2+1|2)
cups’; the parentheses are necessary because multiplication has higher precedence than
addition. If you omit the parentheses, units attempts to add ‘2’ and ‘1|2 cups’, and you
get an error message:

You have: 2+1|2 cups

^

Invalid sum or difference of non-conformable units

The expression could also be correctly written as ‘(2+1/2) cups’. If you write ‘2 1|2 cups’
the space is interpreted as multiplication so the result is the same as ‘1 cup’.

The ‘+’ and ‘-’ characters sometimes appears in exponents like ‘3.43e+8’. This leads to
an ambiguity in an expression like ‘3e+2 yC’. The unit ‘e’ is a small unit of charge, so this
can be regarded as equivalent to ‘(3e+2) yC’ or ‘(3 e)+(2 yC)’. This ambiguity is resolved
by always interpreting ‘+’ and ‘-’ as part of an exponent if possible.

5.3 Numbers as Units

For units, numbers are just another kind of unit. They can appear as many times as you
like and in any order in a unit expression. For example, to find the volume of a box that is
2 ft by 3 ft by 12 ft in steres, you could do the following:

You have: 2 ft 3 ft 12 ft

You want: stere

* 2.038813

/ 0.49048148

You have: $ 5 / yard

You want: cents / inch

* 13.888889

/ 0.072

And the second example shows how the dollar sign in the units conversion can precede the
five. Be careful: units will interpret ‘$5’ with no space as equivalent to ‘dollar^5’.

5.4 Built-in Functions

Several built-in functions are provided: ‘sin’, ‘cos’, ‘tan’, ‘secant’, ‘csc’, ‘cot’, ‘asin’,
‘acos’, ‘atan’, ‘asecant’, ‘acsc’, ‘acot’, ‘sinh’, ‘cosh’, ‘tanh’, ‘sech’, ‘csch’, ‘coth’,
‘asinh’, ‘acosh’, ‘atanh’, ‘asech’, ‘acsch’, ‘acoth’, ‘exp’, ‘ln’, ‘log’, ‘abs’, ‘round’, ‘floor’,
‘ceil’, ‘factorial’, ‘Gamma’, ‘lnGamma’, ‘erf’, and ‘erfc’; the function ‘lnGamma’ is the nat-
ural logarithm of the ‘Gamma’ function.

The ‘sin’, ‘cos’, ‘tan’, ‘secant’, ‘csc’ and ‘cot’ functions require either a dimensionless
argument or an argument with dimensions of angle.

Units Conversion 13

You have: sin(30 degrees)

You want:

Definition: 0.5

You have: sin(pi/2)

You want:

Definition: 1

You have: sin(3 kg)

^

Unit not dimensionless

The other functions on the list require dimensionless arguments. The inverse trigonometric
functions return arguments with dimensions of angle.

The ‘ln’ and ‘log’ functions give natural log and log base 10 respectively. To obtain
logs for any integer base, enter the desired base immediately after ‘log’. For example, to
get log base 2 you would write ‘log2’ and to get log base 47 you could write ‘log47’.

You have: log2(32)

You want:

Definition: 5

You have: log3(32)

You want:

Definition: 3.1546488

You have: log4(32)

You want:

Definition: 2.5

You have: log32(32)

You want:

Definition: 1

You have: log(32)

You want:

Definition: 1.50515

You have: log10(32)

You want:

Definition: 1.50515

If you wish to take roots of units, you may use the ‘sqrt’ or ‘cuberoot’ functions. These
functions require that the argument have the appropriate root. You can obtain higher roots
by using fractional exponents:

Units Conversion 14

You have: sqrt(acre)

You want: feet

* 208.71074

/ 0.0047913202

You have: (400 W/m^2 / stefanboltzmann)^(1/4)

You have:

Definition: 289.80882 K

You have: cuberoot(hectare)

^

Unit not a root

5.5 Previous Result

You can insert the result of the previous conversion using the underscore (‘_’). It is useful
when you want to convert the same input to several different units, for example

You have: 2.3 tonrefrigeration

You want: btu/hr

* 27600

/ 3.6231884e-005

You have: _

You want: kW

* 8.0887615

/ 0.12362832

Suppose you want to do some deep frying that requires an oil depth of 2 inches. You have
1/2 gallon of oil, and want to know the largest-diameter pan that will maintain the required
depth. The nonlinear unit ‘circlearea’ gives the radius of the circle (see Section 6.3 [Other
Nonlinear Units], page 21, for a more detailed description) in SI units; you want the diameter
in inches:

You have: 1|2 gallon / 2 in

You want: circlearea

0.10890173 m

You have: 2 _

You want: in

* 8.5749393

/ 0.1166189

In most cases, surrounding white space is optional, so the previous example could have used
‘2_’. If ‘_’ follows a non-numerical unit symbol, however, the space is required:

You have: m_

^

Parse error

You can use the ‘_’ symbol any number of times; for example,

Units Conversion 15

You have: m

You want:

Definition: 1 m

You have: _ _

You want:

Definition: 1 m^2

Using ‘_’ before a conversion has been performed (e.g., immediately after invocation) gen-
erates an error:

You have: _

^

No previous result; '_' not set

Accordingly, ‘_’ serves no purpose when units is invoked non-interactively.

If units is invoked with the --verbose option (see Chapter 10 [Invoking Units], page 35),
the value of ‘_’ is not expanded:

You have: mile

You want: ft

mile = 5280 ft

mile = (1 / 0.00018939394) ft

You have: _

You want: m

_ = 1609.344 m

_ = (1 / 0.00062137119) m

You can give ‘_’ at the ‘You want:’ prompt, but it usually is not very useful.

5.6 Complicated Unit Expressions

The units program is especially helpful in ensuring accuracy and dimensional consistency
when converting lengthy unit expressions. For example, one form of the Darcy–Weisbach
fluid-flow equation is

ΔP =
8

π2
ρfL

Q2

d5

where ΔP is the pressure drop, ρ is the mass density, f is the (dimensionless) friction factor,
L is the length of the pipe, Q is the volumetric flow rate, and d is the pipe diameter. You
might want to have the equation in the form

ΔP = A1ρfL
Q2

d5

that accepted the user’s normal units; for typical units used in the US, the required con-
version could be something like

You have: (8/pi^2)(lbm/ft^3)ft(ft^3/s)^2(1/in^5)

You want: psi

* 43.533969

/ 0.022970568

The parentheses allow individual terms in the expression to be entered naturally, as they
might be read from the formula. Alternatively, the multiplication could be done with the

Units Conversion 16

‘*’ rather than a space; then parentheses are needed only around ‘ft^3/s’ because of its
exponent:

You have: 8/pi^2 * lbm/ft^3 * ft * (ft^3/s)^2 /in^5

You want: psi

* 43.533969

/ 0.022970568

Without parentheses, and using spaces for multiplication, the previous conversion would
need to be entered as

You have: 8 lb ft ft^3 ft^3 / pi^2 ft^3 s^2 in^5

You want: psi

* 43.533969

/ 0.022970568

5.7 Variables Assigned at Run Time

Unit definitions are fixed once units has finished reading the units data file(s), but at run
time you can assign unit expressions to variables whose names begin with an underscore,
using the syntax

_name = <unit expression>

This can help manage a long calculation by saving intermediate quantities as variables that
you can use later. For example, to determine the shot-noise-limited signal-to-noise ratio
(SNR) of an imaging system using a helium–neon laser, you could do

You have: _lambda = 632.8 nm # laser wavelength

You have: _nu = c / _lambda # optical frequency

You have: _photon_energy = h * _nu

You have: _power = 550 uW

You have: _photon_count = _power * 500 ns / _photon_energy

You have: _snr = sqrt(_photon_count)

You have: _snr

You want:

Definition: sqrt(_photon_count) = 29597.922

Except for beginning with an underscore, runtime variables follow the same naming rules
as units. Because names beginning with ‘_’ are reserved for these variables and unit names
cannot begin with ‘_’, runtime variables can never hide unit definitions. Runtime variables
are undefined until you make an assignment to them, so if you give a name beginning with
an underscore and no assignment has been made, you get an error message.

When you assign a unit expression to a runtime variable, units checks the expression
to determine whether it is valid, but the resulting definition is stored as a text string that
is not reduced to primitive units. The text will be processed anew each time you use the
variable in a conversion or calculation; this means that if your definition depends on other
runtime variables (or the special variable ‘_’), the result of calculating with your variable
will change if any of those variables change. A dependence need not be direct.

Continuing the example of the laser above, suppose you have done the calculation as
shown. You now wonder what happens if you switch to an argon laser:

Units Conversion 17

You have: _lambda = 454.6 nm

You have: _snr

You want:

Definition: sqrt(_photon_count) = 25086.651

If you then change the power:

You have: _power = 1 mW

You have: _snr

You want:

Definition: sqrt(_photon_count) = 33826.834

Instead of having to reenter or edit a lengthy expression when you perform another calcu-
lation, you need only enter values that change; in this respect, runtime variables are similar
to a spreadsheet.

The more times a variable appears in an expression that depends on it, the greater the
benefit of having a calculation using that expression reflect changes to that variable. For
example, the length of daylight—the time the Sun is above the horizon—at a given latitude
and declination of the Sun is given by

L = 2 cos−1
(
sinh− sinφ sin δ

cosφ cos δ

)
where L is the day length, h is the Sun’s altitude (elevation angle), φ is the location’s
latitude, and δ is the Sun’s declination (angle with the equatorial plane). The result above
is in sidereal time; the length in solar time is obtained by multiplying by

siderealday / day

By convention, the Sun’s altitude at rise or set is −50′ to allow for atmospheric refraction
and the semidiameter of its disk. At the summer solstice in the northern hemisphere, the
Sun’s declination is approximately 23.44◦; to find the length of the longest day of the year
for a latitude of 55◦, you could do

You have: _alt = -50 arcmin

You have: _lat = 55 deg

You have: _decl = 23.44 deg

You have: _num = sin(_alt) - sin(_lat) sin(_decl)

You have: _denom = cos(_lat) cos(_decl)

You have: _sday = 2 (acos(_num / _denom) / circle) 24 hr

You have: _day = _sday siderealday / day

You have: _day

You want: hms

17 hr + 19 min + 34.895151 sec

At the winter solstice, the Sun’s declination is approximately −23.44◦, so you could calculate
the length of the shortest day of the year using:

You have: _decl = -23.44 deg

You have: _day

You want: hms

7 hr + 8 min + 40.981084 sec

Latitude and declination each appear twice in the expression for _day; the result in the
examples above is updated by changing only the value of the declination.

Units Conversion 18

It may seem easier—and less subject to error—to simply specify the new value of _decl
as the negative of the current value (e.g., ‘_decl = -_decl’). This doesn’t work; when
you make an assignment with the ‘=’ operator, the definition is stored as entered, including
possible dependencies on variables. But if you attempt an assignment that is ultimately self-
referential, the current definition is retained, and you get an error message. For example,

You have: _decl = 23.44 deg

You have: _decl = -_decl

Circular unit definition

You can overcome this by using the ‘:=’ operator, which reduces the right hand side to
primitive units before making the assignment, eliminating any dependencies on variables.
Returning to the example above,

You have: _decl = 23.44 deg

You have: _decl = -_decl

Circular unit definition

You have: _decl := -_decl

You have: _decl

You want: deg

* -23.44

/ -0.042662116

This works to much the same effect as if the assignment had been entered literally, e.g.,

You have: _decl = -23.44 deg

but the actual definition is in primitive units—in this case, radians:

You have: _decl = 23.44 deg

You have: _decl := -_decl

You have: _decl

You want:

Definition: -0.40910517666747087 radian = -0.40910518 radian

Definitions are text strings, and a redefinition using ‘:=’ is given with enough digits maintain
the full precision of the current definition when converted back to a number; because it is
a string, all digits are displayed when showing the definition, regardless of the numerical
display precision, so you may see more digits than expected.

A runtime variable must be assigned before it can be used in an assignment; in the first
of the three examples above, giving the general equation before the values for _alt, _lat,
and _decl had been assigned would result in an error message.

You can display a list of runtime variables you have assigned by typing search _.

5.8 Backwards Compatibility: ‘*’ and ‘-’

The original units assigned multiplication a higher precedence than division using the slash.
This differs from the usual precedence rules, which give multiplication and division equal
precedence, and can be confusing for people who think of units as a calculator.

The star operator (‘*’) included in this units program has, by default, the same prece-
dence as division, and hence follows the usual precedence rules. For backwards compatibility

Units Conversion 19

you can invoke units with the --oldstar option. Then ‘*’ has a higher precedence than
division, and the same precedence as multiplication using the space.

Historically, the hyphen (‘-’) has been used in technical publications to indicate products
of units, and the original units program treated it as a multiplication operator. Because
units provides several other ways to obtain unit products, and because ‘-’ is a subtrac-
tion operator in general algebraic expressions, units treats the binary ‘-’ as a subtraction
operator by default. For backwards compatibility use the --product option, which causes
units to treat the binary ‘-’ operator as a product operator. When ‘-’ is a multiplica-
tion operator it has the same precedence as multiplication with a space, giving it a higher
precedence than division.

When ‘-’ is used as a unary operator it negates its operand. Regardless of the units

options, if ‘-’ appears after ‘(’ or after ‘+’, then it will act as a negation operator. So you
can always compute 20 degrees minus 12 minutes by entering ‘20 degrees + -12 arcmin’.
You must use this construction when you define new units because you cannot know what
options will be in force when your definition is processed.

6 Nonlinear Unit Conversions

Nonlinear units are represented using functional notation. They make possible nonlinear
unit conversions such as temperature.

6.1 Temperature Conversions

Conversions between temperatures are different from linear conversions between tempera-
ture increments—see the example below. The absolute temperature conversions are handled
by units starting with ‘temp’, and you must use functional notation. The temperature-
increment conversions are done using units starting with ‘deg’ and they do not require
functional notation.

You have: tempF(45)

You want: tempC

7.2222222

You have: 45 degF

You want: degC

* 25

/ 0.04

Think of ‘tempF(x)’ not as a function but as a notation that indicates that x should have
units of ‘tempF’ attached to it. See Section 14.3 [Defining Nonlinear Units], page 47. The
first conversion shows that if it’s 45 degrees Fahrenheit outside, it’s 7.2 degrees Celsius. The
second conversion indicates that a change of 45 degrees Fahrenheit corresponds to a change
of 25 degrees Celsius. The conversion from ‘tempF(x)’ is to absolute temperature, so that

You have: tempF(45)

You want: degR

* 504.67

/ 0.0019814929

Units Conversion 20

gives the same result as

You have: tempF(45)

You want: tempR

* 504.67

/ 0.0019814929

But if you convert ‘tempF(x)’ to ‘degC’, the output is probably not what you expect:

You have: tempF(45)

You want: degC

* 280.37222

/ 0.0035666871

The result is the temperature in K, because ‘degC’ is defined as ‘K’, the kelvin. For consistent
results, use the ‘tempX’ units when converting to a temperature rather than converting a
temperature increment.

The ‘tempC()’ and ‘tempF()’ definitions are limited to positive absolute temperatures,
and giving a value that would result in a negative absolute temperature generates an error
message:

You have: tempC(-275)

^

Argument of function outside domain

6.2 US Consumer Price Index

units includes the US Consumer Price Index published by the US Bureau of Labor
Statistics. Several functions that use this value are provided: ‘cpi’, ‘cpi_now’,
‘inflation_since’, and ‘dollars_in’.

The ‘cpi’ function gives the CPI for a specified decimal year. A decimal year is given
as the year plus the fractional part of the year; because of leap years and the different
lengths of months, calculating an exact value for the fractional part can be tedious, but for
the purposes of CPI, an approximate value is usually adequate. For example, 1 January
2000 is 2000.0, 1 April 2000 is 2000.25, 1 July 2000 is 2000.4986, and 1 October 2000 is
2000.75. Note also that the CPI data update monthly; values in between months are
linearly interpolated.

In the middle of 1975, the CPI was

You have: cpi(1975.5)

You want:

Definition: 53.6

The value of the CPI for a month is usually published sometime around the 20th day of
the following month; the latest value of the CPI is available with ‘cpi_now’. On 7 January
2024, the value was

You have: cpi_now

You want:

Definition: UScpi_now = 307.051

This means that the CPI was 307.015 on 1 December 2023. The ‘cpi_now’ variable can
only present the most recent data available, so it can lag the current CPI by several weeks.
The decimal year of the last update is available with ‘cpi_lastdate’.

Units Conversion 21

The ‘inflation_since’ function provides a convenient way to determine the inflation
factor from a specified decimal year to the latest value in the CPI table. For example, on
7 January 2024:

You have: inflation_since(1970)

You want:

Definition: 8.1445889

In other words, goods that cost 1 US$ in 1970 would cost 8.14 US$ on 1 December 2023.

The ‘inflation_since’ function can be used to determine an annual rate of inflation.
The earliest US CPI data are from about 1913.1; the approximate time between then and
7 January 2024 is 110.9 years. The approximate annual inflation rate for that period is then

You have: inflation_since(1913.1)^1|110.9 - 1

You want: %

* 3.1548115

/ 0.31697614

The inflation rate for any time period can be found from the ratio of the CPI at the end of
the period to that of the beginning:

You have: (cpi(1982)/cpi(1972))^1|10 - 1

You want: %

* 8.6247033

/ 0.11594602

The period 1972–1982 was indeed one of high inflation.

The ‘dollars_in’ function is similar to ‘inflation_since’ but its output is in US$
rather than dimensionless:

You have: dollars_in(1970)

You want:

Definition: 8.1445889 US$

A typical use might be

You have: 250 dollars_in(1970)

You want: $

* 2036.1472

/ 0.00049112362

Because ‘dollars_in’ includes the units, you should not include them at the ‘You have:’
prompt. You can also use ‘dollars_in’ to convert between two specified years:

You have: 250 dollars_in(1970)

You want: dollars_in(1950)

* 156.49867

/ 0.0063898305

which shows that 250 US$ in 1970 would have equivalent purchasing power to 156 US$ in
1950.

6.3 Other Nonlinear Units

Some other examples of nonlinear units are numerous different ring sizes and wire gauges,
screw gauges, pipe and tubing sizes, the grit sizes used for abrasives, the decibel scale, shoe

Units Conversion 22

size, scales for the density of sugar (e.g., baume). The standard data file also supplies units
for computing the area of a circle and the volume of a sphere. See the standard units data
file for more details.

Diameters of American wire sizes can be found using the ‘wiregauge()’ function or its
alias ‘awg()’:

You have: wiregauge(11)

You want: inches

* 0.090742002

/ 11.020255

You have: 1 mm

You want: wiregauge

18.201919

Wire and screw gauges with multiple zeroes are signified using negative numbers, where
two zeroes (“00”; “2/0”) is ‘-1’, three zeros (“000”; “3/0”) is ‘-2’, and so on. Alternatively,
you can use the synonyms ‘g00’, ‘g000’, or ‘g2_0’, ‘g3_0’, and so on that are defined in the
standard units data file.

You have: brwiregauge(g00)

You want: inches

* 0.348

/ 2.8735632

In North America, wire sizes larger than 0000 (“4/0”) are usually given in terms of area,
either in kcmil or the older initialism MCM (thousand circular mils). Outside of North
America, all wire sizes are usually given in terms of area in mm2. Wire area can be obtained
using ‘wiregaugeA()’ or its alias ‘awgA()’:

You have: awgA(g6_0)

You want: kcmil

* 336.45718

/ 0.0029721464

You have: awgA(12)

You want: mm^2

* 3.3087729

/ 0.30222685

The closest standard metric sizes are 2.5 mm2 and 4 mm2; in general, there isn’t an exact
correlation between American and metric wire sizes.

Though based on the long-established iron pipe size (IPS) given in inches, nominal pipe
size (NPS) is a dimensionless quantity that corresponds to the inch size. Pipe size can
be equivalently specified using metric diamètre nominal (DN), which roughly corresponds
to the diameter in mm. For a given pipe size, outside diameter is constant while inside
diameter varies with schedule. For example, for NPS 2 1

2
pipe,

Units Conversion 23

You have: npsOD(2+1|2)

You want: in

* 2.875

/ 0.34782609

You have: nps40(2+1|2)

You want: in

* 2.469

/ 0.40502228

You have: nps80(2+1|2)

You want: in

* 2.323

/ 0.43047783

Pipe size can be given equivalently in terms of the metric DN by using the ‘DN()’ function,
which converts nominal metric size to nominal inch size:

You have: npsOD(DN(65))

You want: mm

* 73.025

/ 0.01369394

You have: _

You want: in

* 2.875

/ 0.34782609

Unlike with wire sizes, actual NPS and metric DN pipe dimensions are the same.

You have: grit_P(600)

You want: grit_ansicoated

342.76923

The last example shows the conversion from P graded sand paper, which is the European
standard and may be marked “P600” on the back, to the USA standard.

You can compute the area of a circle using the nonlinear unit, ‘circlearea’. You can
also do this using the circularinch or circleinch. The next example shows two ways to
compute the area of a circle with a five inch radius and one way to compute the volume of
a sphere with a radius of one meter.

You have: circlearea(5 in)

You want: in2

* 78.539816

/ 0.012732395

You have: 10^2 circleinch

You want: in2

* 78.539816

/ 0.012732395

You have: spherevol(meter)

You want: ft3

* 147.92573

/ 0.0067601492

Units Conversion 24

The inverse of a nonlinear conversion is indicated by prefixing a tilde (‘~’) to the nonlinear
unit name:

You have: ~wiregauge(0.090742002 inches)

You want:

Definition: 11

You can give a nonlinear unit definition without an argument or parentheses, and press
Enter at the ‘You want:’ prompt to get the definition of a nonlinear unit; if the definition
is not valid for all real numbers, the range of validity is also given. If the definition requires
specific units this information is also displayed:

You have: tempC

Definition: tempC(x) = x K + stdtemp

defined for x >= -273.15

You have: ~tempC

Definition: ~tempC(tempC) = (tempC +(-stdtemp))/K

defined for tempC >= 0 K

You have: circlearea

Definition: circlearea(r) = pi r^2

r has units m

To see the definition of the inverse use the ‘~’ notation. In this case the parameter in
the functional definition will usually be the name of the unit. Note that the inverse for
‘tempC’ shows that it requires units of ‘K’ in the specification of the allowed range of values.
Nonlinear unit conversions are described in more detail in Section 14.3 [Defining Nonlinear
Units], page 47.

6.4 Multivariate Functions

The units program supports some multivariate functions for performing calculations with
units. The ‘hypot’ function computes the length of a hypotenuse given two sides. It works
with any pair of values that have compatible dimensions.

You have: hypot(3 m, 4 m)

You want:

Definition: 5 m

You can compute wind chill, based on temperature and wind speed, or heat index, based
on temperature and humidity, with humidity given as a fraction, e.g., 0.5 for a 50% relative
humidity.

You have: windchill(tempF(28), 14 mph)

You want: tempF

16.86826

You have: heatindex(tempC(40),0.5)

You want: tempC

54.767952

Both wind chill and heat index return a value that is nominally a temperature, so you
will want to convert it to Fahrenheit or Celsius as shown in order to get a meaningful
numerical value.

Units Conversion 25

7 Unit Lists: Conversion to Sums of Units

Outside of the SI, it is sometimes desirable to convert a single unit to a sum of units—
for example, feet to feet plus inches. The conversion from sums of units was described in
Section 5.2 [Sums and Differences of Units], page 11, and is a simple matter of adding the
units with the ‘+’ sign:

You have: 12 ft + 3 in + 3|8 in

You want: ft

* 12.28125

/ 0.081424936

Although you can similarly write a sum of units to convert to, the result will not be the
conversion to the units in the sum, but rather the conversion to the particular sum that
you have entered:

You have: 12.28125 ft

You want: ft + in + 1|8 in

* 11.228571

/ 0.089058524

The unit expression given at the ‘You want:’ prompt is equivalent to asking for conversion
to multiples of ‘1 ft + 1 in + 1|8 in’, which is 1.09375 ft, so the conversion in the previous
example is equivalent to

You have: 12.28125 ft

You want: 1.09375 ft

* 11.228571

/ 0.089058524

In converting to a sum of units like miles, feet and inches, you typically want the largest
integral value for the first unit, followed by the largest integral value for the next, and the
remainder converted to the last unit. You can do this conversion easily with units using
a special syntax for lists of units. You must list the desired units in order from largest to
smallest, separated by the semicolon (‘;’) character:

You have: 12.28125 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3|8 in

The conversion always gives integer coefficients on the units in the list, except possibly the
last unit when the conversion is not exact:

You have: 12.28126 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3.00096 * 1|8 in

The order in which you list the units is important:

You have: 3 kg

You want: oz;lb

105 oz + 0.051367866 lb

You have: 3 kg

You want: lb;oz

6 lb + 9.8218858 oz

Units Conversion 26

Listing ounces before pounds produces a technically correct result, but not a very useful
one. You must list the units in descending order of size in order to get the most useful
result.

Ending a unit list with the separator ‘;’ has the same effect as repeating the last unit
on the list, so ‘ft;in;1|8 in;’ is equivalent to ‘ft;in;1|8 in;1|8 in’. With the example
above, this gives

You have: 12.28126 ft

You want: ft;in;1|8 in;

12 ft + 3 in + 3|8 in + 0.00096 * 1|8 in

in effect separating the integer and fractional parts of the coefficient for the last unit. If you
instead prefer to round the last coefficient to an integer you can do this with the --round

(-r) option. With the previous example, the result is

You have: 12.28126 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3|8 in (rounded down to nearest 1|8 in)

When you use the -r option, repeating the last unit on the list has no effect (e.g., ‘ft;in;1|8
in;1|8 in’ is equivalent to ‘ft;in;1|8 in’), and hence neither does ending a list with a ‘;’.
With a single unit and the -r option, a terminal ‘;’ does have an effect: it causes units to
treat the single unit as a list and produce a rounded value for the single unit. Without the
extra ‘;’, the -r option has no effect on single unit conversions. This example shows the
output using the -r option:

You have: 12.28126 ft

You want: in

* 147.37512

/ 0.0067854058

You have: 12.28126 ft

You want: in;

147 in (rounded down to nearest in)

Each unit that appears in the list must be conformable with the first unit on the list, and
of course the listed units must also be conformable with the unit that you enter at the
‘You have:’ prompt.

You have: meter

You want: ft;kg

^

conformability error

ft = 0.3048 m

kg = 1 kg

You have: meter

You want: lb;oz

conformability error

1 m

0.45359237 kg

Units Conversion 27

In the first case, units reports the disagreement between units appearing on the list. In
the second case, units reports disagreement between the unit you entered and the desired
conversion. This conformability error is based on the first unit on the unit list.

Other common candidates for conversion to sums of units are angles and time:

You have: 23.437754 deg

You want: deg;arcmin;arcsec

23 deg + 26 arcmin + 15.9144 arcsec

You have: 7.2319 hr

You want: hr;min;sec

7 hr + 13 min + 54.84 sec

Some applications for unit lists may be less obvious. Suppose that you have a postal scale
and wish to ensure that it’s accurate at 1 oz, but have only metric calibration weights. You
might try

You have: 1 oz

You want: 100 g;50 g; 20 g;10 g;5 g;2 g;1 g;

20 g + 5 g + 2 g + 1 g + 0.34952312 * 1 g

You might then place one each of the 20 g, 5 g, 2 g, and 1 g weights on the scale and hope
that it indicates close to

You have: 20 g + 5 g + 2 g + 1 g

You want: oz;

0.98767093 oz

Appending ‘;’ to ‘oz’ forces a one-line display that includes the unit; here the integer part
of the result is zero, so it is not displayed.

If a non-empty list item differs vastly in scale from the quantity from which the list is
to be converted, you may exceed the available precision of floating point (about 15 digits),
in which case you will get a warning, e.g.,

You have: lightyear

You want: mile;100 inch;10 inch;mm;micron

5.8786254e+12 mile + 390 * 100 inch (at 15-digit precision limit)

7.1 Cooking Measure

In North America, recipes for cooking typically measure ingredients by volume, and use
units that are not always convenient multiples of each other. Suppose that you have a
recipe for 6 and you wish to make a portion for 1. If the recipe calls for 2 1/2 cups of an
ingredient, you might wish to know the measurements in terms of measuring devices you
have available, you could use units and enter

You have: (2+1|2) cup / 6

You want: cup;1|2 cup;1|3 cup;1|4 cup;tbsp;tsp;1|2 tsp;1|4 tsp

1|3 cup + 1 tbsp + 1 tsp

By default, if a unit in a list begins with fraction of the form 1|x and its multiplier is
an integer, the fraction is given as the product of the multiplier and the numerator; for
example,

Units Conversion 28

You have: 12.28125 ft

You want: ft;in;1|8 in;

12 ft + 3 in + 3|8 in

In many cases, such as the example above, this is what is wanted, but sometimes it is not.
For example, a cooking recipe for 6 might call for 5 1/4 cup of an ingredient, but you want
a portion for 2, and your 1-cup measure is not available; you might try

You have: (5+1|4) cup / 3

You want: 1|2 cup;1|3 cup;1|4 cup

3|2 cup + 1|4 cup

This result might be fine for a baker who has a 1 1/2-cup measure (and recognizes the
equivalence), but it may not be as useful to someone with more limited set of measures,
who does want to do additional calculations, and only wants to know “How many 1/2-
cup measures to I need to add?” After all, that’s what was actually asked. With the
--show-factor option, the factor will not be combined with a unity numerator, so that
you get

You have: (5+1|4) cup / 3

You want: 1|2 cup;1|3 cup;1|4 cup

3 * 1|2 cup + 1|4 cup

A user-specified fractional unit with a numerator other than 1 is never overridden, however—
if a unit list specifies ‘3|4 cup;1|2 cup’, a result equivalent to 1 1/2 cups will always be
shown as ‘2 * 3|4 cup’ whether or not the --show-factor option is given.

7.2 Unit List Aliases

A unit list such as

cup;1|2 cup;1|3 cup;1|4 cup;tbsp;tsp;1|2 tsp;1|4 tsp

can be tedious to enter. The units program provides shorthand names for some common
combinations:

hms time: hours, minutes, seconds
dms angle: degrees, minutes, seconds
time time: years, days, hours, minutes and seconds
usvol US cooking volume: cups and smaller
uswt US weight: pounds and ounces
ftin length: feet, inches and 1/8 inches
ftin2 length: feet, inches and 1/2 inches
ftin4 length: feet, inches and 1/4 inches
ftin8 length: feet, inches and 1/8 inches
ftin16 length: feet, inches and 1/16 inches
ftin32 length: feet, inches and 1/32 inches
ftin64 length: feet, inches and 1/64 inches
inchfine length: inches subdivided to 1/64 inch

Using these shorthands, or unit list aliases, you can do the following conversions:

Units Conversion 29

You have: anomalisticyear

You want: time

1 year + 25 min + 3.4653216 sec

You have: 1|6 cup

You want: usvol

2 tbsp + 2 tsp

Suppose you want to drill a clearance hole for a #10 screw and have about 1/64 inch
clearance; you could try

You have: screwgauge(10) + 1|64 in

You want: ftin64

13.16 * 1|64 in

You have: _

You want: ftin32

6.58 * 1|32 in

If a slightly tight fit is acceptable, a 13/64-inch drill would do the job; if not, a 7/32-inch
drill would work with a slightly looser fit.

You can define your own unit list aliases; see Section 14.6 [Defining Unit List Aliases],
page 52.

You cannot combine a unit list alias with other units: it must appear alone at the
‘You want:’ prompt.

You can display the definition of a unit list alias by entering it at the ‘You have:’ prompt:

You have: dms

Definition: unit list, deg;arcmin;arcsec

When you specify compact output with --compact, --terse or -t and perform conversion
to a unit list, units lists the conversion factors for each unit in the list, separated by
semicolons.

You have: year

You want: day;min;sec

365;348;45.974678

Unlike the case of regular output, zeros are included in this output list:

You have: liter

You want: cup;1|2 cup;1|4 cup;tbsp

4;0;0;3.6280454

8 Alternative Unit Systems

8.1 CGS Units

The SI—an extension of the MKS (meter–kilogram–second) system—has largely supplanted
the older CGS (centimeter–gram–second) system, but CGS units are still used in a few
specialized fields, especially in physics where they lead to a more elegant formulation of
Maxwell’s equations. Conversions between SI and CGS involving mechanical units are
straightforward, involving powers of 10 (e.g., 1 m = 100 cm). Conversions involving elec-
tromagnetic units are more complicated, and units supports four different systems of CGS

Units Conversion 30

units: electrostatic units (ESU), electromagnetic units (EMU), the Gaussian system and
the Heaviside–Lorentz system. The differences between these systems arise from different
choices made for proportionality constants in electromagnetic equations. Coulomb’s law
gives electrostatic force between two charges separated by a distance r:

F = kC
q1q2
r2

.

Ampere’s law gives the electromagnetic force per unit length between two current-carrying
conductors separated by a distance r:

F

`
= 2kA

I1I2
r
.

The two constants, kC and kA, are related by the square of the speed of light:

kA = kC/c
2.

In the SI, the constants have dimensions, and an additional base unit, the ampere,
measures electric current. The CGS systems do not define new base units, but express
charge and current as derived units in terms of mass, length, and time. In the ESU system,
the constant for Coulomb’s law is chosen to be unity and dimensionless, which defines the
unit of charge. In the EMU system, the constant for Ampere’s law is chosen to be unity and
dimensionless, which defines a unit of current. The Gaussian system usually uses the ESU
units for charge and current; it chooses another constant so that the units for the electric
and magnetic fields are the same. The Heaviside–Lorentz system is “rationalized” so that
factors of 4π do not appear in Maxwell’s equations. The SI system is similarly rationalized,
but the other CGS systems are not. In the Heaviside–Lorentz (HLU) system the factor
of 4π appears in Coulomb’s law instead; this system differs from the Gaussian system by
factors of

√
4π.

The dimensions of electrical quantities in the various CGS systems are different from
the SI dimensions for the same units; strictly, conversions between these systems and SI are
not possible. But units in different systems relate to the same physical quantities, so there
is a correspondence between these units. The units program defines the units so that you
can convert between corresponding units in the various systems.

8.1.1 Specifying CGS Units

The CGS definitions involve cm1/2 and g1/2, which is problematic because units does not
normally support fractional roots of base units. The --units (-u) option allows selection
of a CGS unit system and works around this restriction by introducing base units for the
square roots of length and mass: ‘sqrt_cm’ and ‘sqrt_g’. The centimeter then becomes
‘sqrt_cm^2’ and the gram, ‘sqrt_g^2’. This allows working from equations using the units
in the CGS system, and enforcing dimensional conformity within that system. Recognized
CGS arguments to the --units option are ‘gauss[ian]’, ‘esu’, ‘emu’, ‘lhu’; the argument is
case insensitive. You can also give ‘si’ which just enforces the default SI mode and displays
‘(SI)’ at the ‘You have:’ prompt to emphasize the units mode. Some other types of units
are also supported as described below. Giving an unrecognized system generates a warning,
and units uses SI units.

Units Conversion 31

The changes resulting from the --units option are actually controlled by the UNITS_

SYSTEM environment variable. If you frequently work with one of the supported CGS units
systems, you may set this environment variable rather than giving the --units option at
each invocation. As usual, an option given on the command line overrides the setting of the
environment variable. For example, if you would normally work with Gaussian units but
might occasionally work with SI, you could set UNITS_SYSTEM to ‘gaussian’ and specify SI
with the --units option. Unlike the argument to the --units option, the value of UNITS_
SYSTEM is case sensitive, so setting a value of ‘EMU’ will have no effect other than to give an
error message and set SI units.

The CGS definitions appear as conditional settings in the standard units data file, which
you can consult for more information on how these units are defined, or on how to define
an alternate units system.

8.1.2 CGS Units Systems

The ESU system derives the electromagnetic units from its unit of charge, the statcoulomb,
which is defined from Coulomb’s law. The statcoulomb equals dyne1/2 cm or cm3/2 g1/2 s−1.
The unit of current, the statampere, is statcoulomb sec, analogous to the relationship in SI.
Other electrical units are then derived in a manner similar to that for SI units; the units
use the SI names prefixed by ‘stat-’, e.g., ‘statvolt’ or ‘statV’. The prefix ‘st-’ is also
recognized (e.g., ‘stV’).

The EMU system derives the electromagnetic units from its unit of current, the abam-
pere, which is defined in terms of Ampere’s law. The abampere is equal to dyne1/2 or
cm1/2g1/2s−1. The unit of charge, the abcoulomb, is abampere sec, again analogous to the
SI relationship. Other electrical units are then derived in a manner similar to that for SI
units; the units use the SI names prefixed by ‘ab-’, e.g., ‘abvolt’ or ‘abV’. The magnetic
field units include the gauss, the oersted and the maxwell.

The Gaussian units system, which was also known as the Symmetric System, uses the
same charge and current units as the ESU system (e.g., ‘statC’, ‘statA’); it differs by
defining the magnetic field so that it has the same units as the electric field. The resulting
magnetic field units are the same ones used in the EMU system: the gauss, the oersted and
the maxwell.

The Heaviside–Lorentz system appears to lack named units. We define five basic units,
‘hlu_charge’, ‘hlu_current’, ‘hlu_volt’, ‘hlu_efield’ and ‘hlu_bfield’ for conversions
with this system. It is important to remember that with all of the CGS systems, the units
may look the same but mean something different. The HLU system and Gaussian systems
both measure magnetic field using the same CGS dimensions, but the amount of magnetic
field with the same units is different in the two systems.

8.1.3 Conversions Between Different Systems

The CGS systems define units that measure the same thing but may have conflicting dimen-
sions. Furthermore, the dimensions of the electromagnetic CGS units are never compatible
with SI. But if you measure charge in two different systems you have measured the same
physical thing, so there is a correspondence between the units in the different systems, and
units supports conversions between corresponding units. When running with SI, units
defines all of the CGS units in terms of SI. When you select a CGS system, units defines
the SI units and the other CGS system units in terms of the system you have selected.

Units Conversion 32

(Gaussian) You have: statA

You want: abA

* 3.335641e-11

/ 2.9979246e+10

(Gaussian) You have: abA

You want: sqrt(dyne)

conformability error

2.9979246e+10 sqrt_cm^3 sqrt_g / s^2

1 sqrt_cm sqrt_g / s

In the above example, units converts between the current units statA and abA even though
the abA, from the EMU system, has incompatible dimensions. This works because in
Gaussian mode, the abA is defined in terms of the statA, so it does not have the correct
definition for EMU; consequently, you cannot convert the abA to its EMU definition.

One challenge of conversion is that because the CGS system has fewer base units, quan-
tities that have different dimensions in SI may have the same dimension in a CGS system.
And yet, they may not have the same conversion factor. For example, the unit for the E
field and B fields are the same in the Gaussian system, but the conversion factors to SI
are quite different. This means that correct conversion is only possible if you keep track of
what quantity is being measured. You cannot convert statV/cm to SI without indicating
which type of field the unit measures. To aid in dimensional analysis, units defines various
dimension units such as ‘LENGTH’, ‘TIME’, and ‘CHARGE’ to be the appropriate dimension in
SI. The electromagnetic dimensions such as ‘B_FIELD’ or ‘E_FIELD’ may be useful aids both
for conversion and dimensional analysis in CGS. You can convert them to or from CGS in
order to perform SI conversions that in some cases will not work directly due to dimensional
incompatibilities. This example shows how the Gaussian system uses the same units for all
of the fields, but they all have different conversion factors with SI.

(Gaussian) You have: statV/cm

You want: E_FIELD

* 29979.246

/ 3.335641e-05

(Gaussian) You have: statV/cm

You want: B_FIELD

* 0.0001

/ 10000

(Gaussian) You have: statV/cm

You want: H_FIELD

* 79.577472

/ 0.012566371

(Gaussian) You have: statV/cm

You want: D_FIELD

* 2.6544187e-07

/ 3767303.1

The next example shows that the oersted cannot be converted directly to the SI unit of
magnetic field, A/m, because the dimensions conflict. We cannot redefine the ampere to
make this work because then it would not convert with the statampere. But you can still
do this conversion as shown below.

Units Conversion 33

(Gaussian) You have: oersted

You want: A/m

conformability error

1 sqrt_g / s sqrt_cm

29979246 sqrt_cm sqrt_g / s^2

(Gaussian) You have: oersted

You want: H_FIELD

* 79.577472

/ 0.012566371

8.2 Natural Units

Like the CGS units, “natural” units are an alternative to the SI system used primarily
physicists in different fields, with different systems tailored to different fields of study.
These systems are “natural” because the base measurements are defined using physical
constants instead of arbitrary values such as the meter or second. In different branches of
physics, different physical constants are more fundamental, which has given rise to a variety
of incompatible natural unit systems.

The supported systems are the “natural” units (which seem to have no better name) used
in high energy physics and cosmology, the Planck units, often used by scientists working with
gravity, and the Hartree atomic units are favored by those working in physical chemistry
and condensed matter physics.

You can select the various natural units using the --units option in the same way that
you select the CGS units. The “natural” units come in two types, a rationalized system
derived from the Heaviside–Lorentz units and an unrationalized system derived from the
Gaussian system. You can select these using ‘natural’ and ‘natural-gauss’ respectively.
For conversions in SI mode, several unit names starting with ‘natural’ are available. This
“natural” system is defined by setting h̄, c and the Boltzman constant to 1. Only a single
base unit remains: the electron volt.

The Planck units exist in a variety of forms, and units supports two. Both supported
forms are rationalized, in that factors of 4π do not appear in Maxwell’s equations. However,
Planck units can also differ based on how the gravitational constant is treated. This system
is similar to the natural units in that c, h̄, and Boltzman’s constant are set to 1, but in this
system, Newton’s gravitational constant, G, is also fixed. In the “reduced” Planck system,
8πG = 1 whereas in the unreduced system G = 1. The reduced system eliminates factors
of 8π from the Einstein field equations for gravitation, so this is similar to the process
of forming rationalized units to simplify Maxwell’s equations. To obtain the unreduced
system use the name ‘planck’ and for the reduced Planck units, ‘planck-red’. Units
such as ‘planckenergy’ and ‘planckenergy_red’ enable you to convert the unreduced and
reduced Planck energy unit in SI mode between the various systems. In Planck units, all
measurements are dimensionless.

The final natural unit system is the Hartree atomic units. Like the Planck units, all
measurements in the Hartree units are dimensionless, but this system is defined by defined
from completely different physical constants: the electron mass, Planck’s constant, the
electron charge, and the Coulomb constant are the defining physical quantities, which are
all set to unity. To invoke this system with the --units option use the name ‘hartree’.

Units Conversion 34

8.3 Prompt Prefix

If a unit system is specified with the --units option, the selected system’s name is
prepended to the ‘You have:’ prompt as a reminder, e.g.,

(Gaussian) You have: stC

You want:

Definition: statcoulomb = sqrt(dyne) cm = 1 sqrt_cm^3 sqrt_g / s

You can suppressed the prefix by including a line

!prompt

with no argument in a site or personal units data file. The prompt can be conditionally
suppressed by including such a line within ‘!var’ ... ‘!endvar’ constructs, e.g.,

!var UNITS_SYSTEM gaussian gauss

!prompt

!endvar

This might be appropriate if you normally use Gaussian units and find the prefix distracting
but want to be reminded when you have selected a different CGS system.

9 Logging Calculations

The --log option allows you to save the results of calculations in a file; this can be useful
if you need a permanent record of your work. For example, the fluid-flow conversion in
Section 5.6 [Complicated Unit Expressions], page 15, is lengthy, and if you were to use
it in designing a piping system, you might want a record of it for the project file. If the
interactive session

Conversion factor A1 for pressure drop

dP = A1 rho f L Q^2/d^5

You have: (8/pi^2) (lbm/ft^3)ft(ft^3/s)^2(1/in^5) # Input units

You want: psi

* 43.533969

/ 0.022970568

were logged, the log file would contain

Log started Fri Oct 02 15:55:35 2015

Conversion factor A1 for pressure drop

dP = A1 rho f L Q^2/d^5

From: (8/pi^2) (lbm/ft^3)ft(ft^3/s)^2(1/in^5) # Input units

To: psi

* 43.533969

/ 0.022970568

The time is written to the log file when the file is opened.

The use of comments can help clarify the meaning of calculations for the log. The
log includes conformability errors between the units at the ‘You have:’ and ‘You want:’
prompts, but not other errors, including lack of conformability of items in sums or differences

Units Conversion 35

or among items in a unit list. For example, a conversion between zenith angle and elevation
angle could involve

You have: 90 deg - (5 deg + 22 min + 9 sec)

^

Invalid sum or difference of non-conformable units

You have: 90 deg - (5 deg + 22 arcmin + 9 arcsec)

You want: dms

84 deg + 37 arcmin + 51 arcsec

You have: _

You want: deg

* 84.630833

/ 0.011816024

You have:

The log file would contain

From: 90 deg - (5 deg + 22 arcmin + 9 arcsec)

To: deg;arcmin;arcsec

84 deg + 37 arcmin + 51 arcsec

From: _

To: deg

* 84.630833

/ 0.011816024

The initial entry error (forgetting that minutes have dimension of time, and that arcminutes
must be used for dimensions of angle) does not appear in the output. When converting to
a unit list alias, units expands the alias in the log file.

The ‘From:’ and ‘To:’ tags are written to the log file even if the --quiet option is given.
If the log file exists when units is invoked, the new results are appended to the log file.
The time is written to the log file each time the file is opened. The --log option is ignored
when units is used non-interactively.

10 Invoking units

You invoke units like this:

units [options] [from-unit [to-unit]]

If the from-unit and to-unit are omitted, the program will use interactive prompts to de-
termine which conversions to perform. See Chapter 2 [Interactive Use], page 1. If both
from-unit and to-unit are given, units will print the result of that single conversion and
then exit. If only from-unit appears on the command line, units will display the definition
of that unit and exit. Units specified on the command line may need to be quoted to protect
them from shell interpretation and to group them into two arguments. Note also that the
--quiet option is enabled by default if you specify from-unit on the command line. See
Chapter 3 [Command Line Use], page 4.

The default behavior of units can be changed by various options given on the command
line. In most cases, the options may be given in either short form (a single ‘-’ followed by
a single character) or long form (-- followed by a word or hyphen-separated words). Short-
form options are cryptic but require less typing; long-form options require more typing but

Units Conversion 36

are more explanatory and may be more mnemonic. With long-form options you need only
enter sufficient characters to uniquely identify the option to the program. For example,
--out %f works, but --o %f fails because units has other long options beginning with ‘o’.
However, --q works because --quiet is the only long option beginning with ‘q’.

Some options require arguments to specify a value (e.g., -d 12 or --digits 12). Short-
form options that do not take arguments may be concatenated (e.g., -erS is equivalent
to -e -r -S); the last option in such a list may be one that takes an argument (e.g.,
-ed 12). With short-form options, the space between an option and its argument is optional
(e.g., -d12 is equivalent to -d 12). Long-form options may not be concatenated, and the
space between a long-form option and its argument is required. Short-form and long-form
options may be intermixed on the command line. Options may be given in any order,
but when incompatible options (e.g., --output-format and --exponential) are given in
combination, behavior is controlled by the last option given. For example, -o%.12f -e

gives exponential format with the default eight significant digits).

Many options can be set interactively; this can be especially helpful for Windows users
who start units from a shortcut. See Chapter 11 [Setting Options Interactively], page 41,
for more information.

The following options are available:

-c

--check Check that all units and prefixes defined in units data files reduce to primitive
units. Display a list of all units that cannot be reduced and a list of units
with circular definitions. Also display some other diagnostics about suspicious
definitions in the units data file. Only definitions active in the current locale
are checked. You should always run units with this option after modifying a
units data file.

Some errors may hide other errors, so you should run units with this option
again after correcting any errors, and keep doing so until there are no errors.

--check-verbose

--verbose-check

Like the --check option, this option displays a list of units that cannot be
reduced. But it also lists the units as they are checked. Because the --check

option now catches circular unit definitions that previously caused units to
hang, this option is no longer necessary. It is retained only for compatibility
with previous versions.

--list-units

This option displays a list of all units and exits. With output redirected to
a file, it can produce a list of all units in the database, which may comprise
multiple units data files. It can also be useful if you aren’t sure of the name
of a unit or want to find all units of a particular type and you want a more
advanced search than is available with the interactive search command. See
Section 3.1 [Finding Units], page 5, for some examples of how this option can
be used.

Units Conversion 37

-d ndigits

--digits ndigits

Set the number of significant digits in the output to the value specified (which
must be greater than zero). For example, -d 12 sets the number of significant
digits to 12. With exponential output, units displays one digit to the left of
the decimal point and eleven digits to the right of the decimal point. On most
systems, the maximum number of internally meaningful digits is 15; if you spec-
ify a greater number than your system’s maximum, units will print a warning
and set the number to the largest meaningful value. To directly set the maxi-
mum value, give an argument of max (e.g., -d max). Be aware, of course, that
“significant” here refers only to the display of numbers; if results depend on
physical constants not known to this precision, the physically meaningful pre-
cision may be less than that shown. The --digits option is incompatible with
the --output-format option; if you give them both, the format is controlled
by the last option given.

-e

--exponential

Set the numeric output format to exponential (i.e., scientific notation), like
that used in the Unix units program. The default precision is eight significant
digits (seven digits to the right of the decimal point); this can be changed
with the --digits option. The --exponential option is incompatible with
the --output-format option; if you give them both, the format is controlled
by the last option given.

-o format

--output-format format

This option affords complete control over the numeric output format using the
specified format. The format is a single floating point numeric format for the
printf function in the C programming language. All compilers support the
format types ‘g’ and ‘G’ to specify significant digits, ‘e’ and ‘E’ for scientific
notation, and ‘f’ for fixed-point decimal. The ISO C99 standard introduced
the ‘F’ type for fixed-point decimal and the ‘a’ and ‘A’ types for hexadecimal
floating point; these types are allowed with compilers that support them. The
default format is ‘%.8g’; for greater precision, you could specify -o %.15g.
Unlike with the --digits option, you can specify any desired precision, though
not all digits may be meaningful. See Chapter 15 [Numeric Output Format],
page 53, and the documentation for printf for more detailed descriptions of the
format specification. The --output-format option affords the greatest control
of the output appearance, but requires at least rudimentary knowledge of the
printf format syntax. If you don’t want to bother with the printf syntax,
you can specify greater precision more simply with the --digits option or
select exponential format with --exponential. The --output-format option
is incompatible with the --exponential and --digits options; if you give
either in combination with --output-format, the format is controlled by the
last option given.

Units Conversion 38

-f filename

--file filename

Instruct units to load the units file filename. You can specify up to 25 units
files on the command line. When you use this option, units will load only
the files you list on the command line; it will not load the standard file or
your personal units file unless you explicitly list them. If filename is the empty
string (-f ""), the default main units file (or that specified by UNITSFILE) will
be loaded in addition to any others specified with -f.

-L logfile

--log logfile

Save the results of calculations in the file logfile; this can be useful if it is
important to have a record of unit conversions or other calculations that are to
be used extensively or in a critical activity such as a program or design project.
If logfile exits, the new results are appended to the file. This option is ignored
when units is used non-interactively. See Chapter 9 [Logging Calculations],
page 34, for a more detailed description and some examples.

-H filename

--history filename

Instruct units to save history to filename, so that a record of your commands is
available for retrieval across different units invocations. To prevent the history
from being saved set filename to the empty string (-H ""). This option has no
effect if readline is not available.

-h

--help Print out a summary of the options for units.

-m

--minus Causes ‘-’ to be interpreted as a subtraction operator. This is the default
behavior.

-p

--product

Causes ‘-’ to be interpreted as a multiplication operator when it has two
operands. It will act as a negation operator when it has only one operand:
‘(-3)’. By default ‘-’ is treated as a subtraction operator.

--oldstar

Causes ‘*’ to have the old-style precedence, higher than the precedence of divi-
sion so that ‘1/2*3’ will equal ‘1/6’.

--newstar

Forces ‘*’ to have the new (default) precedence that follows the usual rules
of algebra: the precedence of ‘*’ is the same as the precedence of ‘/’, so that
‘1/2*3’ will equal ‘3/2’.

-r

--round When converting to a combination of units given by a unit list, round the value
of the last unit in the list to the nearest integer.

Units Conversion 39

-S

--show-factor

When converting to a combination of units specified in a list, always show a
non-unity factor before a unit that begins with a fraction with a unity denomi-
nator. By default, if the unit in a list begins with fraction of the form 1|x and
its multiplier is an integer other than 1, the fraction is given as the product of
the multiplier and the numerator (e.g., ‘3|8 in’ rather than ‘3 * 1|8 in’). In
some cases, this is not what is wanted; for example, the results for a cooking
recipe might show ‘3 * 1|2 cup’ as ‘3|2 cup’. With the --show-factor op-
tion, a result equivalent to 1.5 cups will display as ‘3 * 1|2 cup’ rather than
‘3|2 cup’. A user-specified fractional unit with a numerator other than 1 is
never overridden, however—if a unit list specifies ‘3|4 cup;1|2 cup’, a result
equivalent to 1 1/2 cups will always be shown as ‘2 * 3|4 cup’ whether or not
the --show-factor option is given.

--conformable

In non-interactive mode, show all units conformable with the original unit ex-
pression. Only one unit expression is allowed; if you give more than one, units
will exit with an error message and return failure.

-v

--verbose

Give slightly more verbose output when converting units. When combined with
the -c option this gives the same effect as --check-verbose. When combined
with --version produces a more detailed output, equivalent to the --info

option.

-V

--version

Print the program version number, tell whether the readline library has been
included, tell whether UTF-8 support has been included; give the locale, the
location of the default main units data file, and the location of the personal
units data file; indicate if the personal units data file does not exist.

When given in combination with the --terse option, the program prints only
the version number and exits.

When given in combination with the --verbose option, the program, the
--version option has the same effect as the --info option below.

-I

--info Print the information given with the --version option, show the pathname
of the units program, show the status of the UNITSFILE and MYUNITSFILE

environment variables, and additional information about how units locates
the related files. On systems running Microsoft Windows, the status of the
UNITSLOCALE environment variable and information about the related locale
map are also given. This option is usually of interest only to developers and
administrators, but it can sometimes be useful for troubleshooting.

Combining the --version and --verbose options has the same effect as giving
--info.

Units Conversion 40

-U

--unitsfile

Print the location of the default main units data file and exit; if the file cannot
be found, print “Units data file not found”.

-u units-system

--units units-system

Specify a CGS units system or natural units system. The supported units
systems are: gauss[ian], esu, emu, hlu, natural, natural-gauss, hartree, planck,
planck-red, and si. See Chapter 8 [Alternative Unit Systems], page 29, for
further information about these unit systems.

-l locale

--locale locale

Force a specified locale such as ‘en_GB’ to get British definitions by default. This
overrides the locale determined from system settings or environment variables.
See Section 16.1 [Locale], page 56, for a description of locale format.

-n

--nolists

Disable conversion to unit lists.

-s

--strict Suppress conversion of units to their reciprocal units. For example, units will
normally convert hertz to seconds because these units are reciprocals of each
other. The strict option requires that units be strictly conformable to perform
a conversion, and will give an error if you attempt to convert hertz to seconds.

-1

--one-line

Give only one line of output (the forward conversion); do not print the reverse
conversion. If a reciprocal conversion is performed, then units will still print
the “reciprocal conversion” line.

-t

--terse Print only a single conversion factor without any clutter, or if you request a def-
inition, prints just the definition (including its units). This option can be used
when calling units from another program so that the output is easy to parse.
The command units --terse mile m produces the output ‘1690.344’. This
option has the combined effect of these options: --strict --quiet --one-line
--compact. When combined with --version it produces a display showing only
the program name and version number.

--compact

Give compact output featuring only the conversion factor; the multiplication
and division signs are not shown, and there is no leading whitespace. If you
convert to a unit list, then the output is a semicolon separated list of factors.
This turns off the --verbose option.

Units Conversion 41

-q

--quiet

--silent Suppress the display of statistics about the number of units loaded, any mes-
sages printed by the units database, and the prompting of the user for units.
This option does not affect how units displays the results. This option is turned
on by default if you invoke units with a unit expression on the command line.

11 Setting Options Interactively

Many command-line options can also be set interactively, obviating the need to quit and
restart units to change the values. This can be especially helpful for Windows users who
start units from a shortcut.

Typing set will display a list of all options that can be set interactively, as well as the
current and possible values; options set to other than default values have an asterisk (‘*’)
prepended. For example,

You have: set

q[uiet] = no (y|n) do/don't suppress prompting

o[neline] = no (y|n) do/don't suppress the second line of output

st[rict] = no (y|n) do/don't suppress reciprocal unit conversion

(e.g. Hz<->s)

t[erse] = no (y|n) do/don't give very terse output

c[ompact] = no (y|n) do/don't suppress printing tab, SETFLAG, and '/'

characters in results

v[erbose] = 1 (0|1|2) amount of information shown

*d[igits] = 9 number of significant digits in output

e[xponential] = no (y|n) do/don't use exponential ("scientific") notation

*f[ormat] = %.9g printf(3) format specification

u[nitlists] = yes (y|n) do/don't allow conversion to unit lists

r[ound] = no (y|n) do/don't round last element of unit list output

to an integer

sh[owfactor] = no (y|n) do/don't show non-unity factor before 1|x

in multi-unit output

Characters within the square brackets are optional, so settings can be changed by entering
only one or two characters.

The syntax for setting options is set option = value; the spaces around the ‘=’ sign are
optional.

Some settings are Boolean, enabled by entering yes (or just y) and disabled by entering
no (or just n). For example,

You have: set quiet = y

quiet = yes

Other settings take an integer value; for example,

You have: set d=11

digits = 11

format = %.11g

Units Conversion 42

The format setting takes a string, the format specification for the printf function in the
C programming language; for example,

You have: set format = %.9g

format = %.9g

Typing set option will display the current value of option, for example

You have: set u

unitlists = yes

You have: set d

digits = 8

format = %.8g

For the digits and exponential options, the value of format is also shown.

12 Scripting with units

Despite its numerous options, units cannot cover every conceivable unit-conversion task.
For example, suppose we have found some mysterious scale, but cannot figure out the units
in which it is reporting. We reach into our pocket, place a 3.75-gram coin on the scale, and
observe the scale reading ‘0.120’. How do we quickly determine the units? Or we might
wonder if a unit has any “synonyms,” i.e., other units with the same value.

The capabilities of units are easily extended with simple scripting. Both questions above
involve conformable units; on a system with Unix-like utilities, conversions to conformable
units could be shown accomplished with the following script:

#!/bin/sh

progname=`basename $0 .sh`

umsg="Usage: $progname [<number>] unit"

if [$# -lt 1]

then

echo "$progname: missing quantity to convert"

echo "$umsg"

exit 1

fi

for unit in `units --conformable "$*" | cut -f 1 -d ' '`

do

echo "$*" # have -- quantity to convert

echo $unit # want -- conformable unit

done | units --terse --verbose

When units is invoked with no non-option arguments, it reads have/want pairs, on al-
ternating lines, from its standard input, so the task can be accomplished with only two
invocations of units. This avoids the computational overhead of needlessly reprocessing
the units database for each conformable unit, as well as the inherent system overhead of
process invocation.

Units Conversion 43

By itself, the script is not very useful. But it could be used in combination with other
commands to address specific tasks. For example, running the script through a simple
output filter could help solve the scale problem above. If the script is named conformable,
running

$ conformable 3.75g | grep 0.120

gives

3.75g = 0.1205653 apounce

3.75g = 0.1205653 fineounce

3.75g = 0.1205653 ozt

3.75g = 0.1205653 tradewukiyeh

3.75g = 0.1205653 troyounce

So we might conclude that the scale is calibrated in troy ounces.

We might run

$ units --verbose are

Definition: 100 m^2 = 100 m^2

and wonder if ‘are’ has any synonyms, value. To find out, we could run

$ conformable are | grep "= 1 "

are = 1 a

are = 1 are

13 Output Styles

The output can be tweaked in various ways using command line options. With no options,
the output looks like this

$ units

Currency exchange rates from FloatRates (USD base) on 2023-07-08

3612 units, 109 prefixes, 122 nonlinear units

You have: 23ft

You want: m

* 7.0104

/ 0.14264521

You have: m

You want: ft;in

3 ft + 3.3700787 in

This is arguably a bit cryptic; the --verbose option makes clear what the output means:

Units Conversion 44

$ units --verbose

Currency exchange rates from FloatRates (USD base) on 2023-07-08

3612 units, 109 prefixes, 122 nonlinear units

You have: 23 ft

You want: m

23 ft = 7.0104 m

23 ft = (1 / 0.14264521) m

You have: meter

You want: ft;in

meter = 3 ft + 3.3700787 in

The --quiet option suppresses the clutter displayed when units starts, as well as the
prompts to the user. This option is enabled by default when you give units on the command
line.

$ units --quiet

23 ft

m

* 7.0104

/ 0.14264521

$ units 23ft m

* 7.0104

/ 0.14264521

The remaining style options allow you to display only numerical values without the tab or
the multiplication and division signs, or to display just a single line showing the forward
conversion:

$ units --compact 23ft m

7.0104

0.14264521

$ units --compact m 'ft;in'

3;3.3700787

$ units --one-line 23ft m

* 7.0104

$ units --one-line 23ft 1/m

reciprocal conversion

* 0.14264521

$ units --one-line 23ft kg

conformability error

7.0104 m

1 kg

Note that when converting to a unit list, the --compact option displays a semicolon sepa-
rated list of results. Also be aware that the one-line option doesn’t live up to its name if

Units Conversion 45

you execute a reciprocal conversion or if you get a conformability error. The former case can
be prevented using the --strict option, which suppresses reciprocal conversions. Similarly
you can suppress unit list conversion using --nolists. It is impossible to prevent the three
line error output.

$ units --compact --nolists m 'ft;in'

Error in 'ft;in': Parse error

$ units --one-line --strict 23ft 1/m

The various style options can be combined appropriately. The ultimate combination is
the --terse option, which combines --strict, --quiet, --one-line, and --compact to
produce the minimal output, just a single number for regular conversions and a semicolon
separated list for conversion to unit lists. This will likely be the best choice for programs
that want to call units and then process its result.

$ units --terse 23ft m

7.0104

$ units --terse m 'ft;in'

3;3.3700787

$ units --terse 23ft 1/m

conformability error

7.0104 m

1 / m

$ units --terse '1 mile'

1609.344 m

$ units --terse mile

5280 ft = 1609.344 m

14 Adding Your Own Definitions

14.1 Units Data Files

The units and prefixes that units can convert are defined in the units data file, typically
/usr/share/units/definitions.units. If you can’t find this file, run units --version

to get information on the file locations for your installation. Although you can extend
or modify this data file if you have appropriate user privileges, it’s usually better to put
extensions in separate files so that the definitions will be preserved if you update units.

You can include additional data files in the units database using the ‘!include’ command
in the standard units data file. For example

!include /usr/local/share/units/local.units

might be appropriate for a site-wide supplemental data file. The location of the ‘!include’
statement in the standard units data file is important; later definitions replace earlier ones,

Units Conversion 46

so any definitions in an included file will override definitions before the ‘!include’ state-
ment in the standard units data file. With normal invocation, no warning is given about
redefinitions; to ensure that you don’t have an unintended redefinition, run units -c after
making changes to any units data file.

If you want to add your own units in addition to or in place of standard or site-wide
supplemental units data files, you can include them in the .units file in your home directory.
If this file exists it is read after the standard units data file, so that any definitions in this
file will replace definitions of the same units in the standard data file or in files included
from the standard data file. This file will not be read if any units files are specified on the
command line. (Under Windows the personal units file is named unitdef.units.) Running
units -V will display the location and name of your personal units file.

The units program first tries to determine your home directory from the HOME envi-
ronment variable. On systems running Microsoft Windows, if HOME does not exist, units
attempts to find your home directory from HOMEDRIVE, HOMEPATH and USERPROFILE. You
can specify an arbitrary file as your personal units data file with the MYUNITSFILE environ-
ment variable; if this variable exists, its value is used without searching your home directory.
The default units data files are described in more detail in Chapter 18 [Data Files], page 59.

14.2 Defining New Units and Prefixes

A unit is specified on a single line by giving its name and an equivalence. Comments start
with a ‘#’ character, which can appear anywhere in a line. The backslash character (‘\’) acts
as a continuation character if it appears as the last character on a line, making it possible
to spread definitions out over several lines if desired. A file can be included by giving the
command ‘!include’ followed by the file’s name. The ‘!’ must be the first character on the
line. The file will be sought in the same directory as the parent file unless you give a full
path. The name of the file to be included cannot contain spaces or the comment character
‘#’.

Unit names cannot begin or end with an underscore (‘_’) or a decimal point (‘.’), and
cannot contain any of the operator characters ‘+’, ‘-’, ‘*’, ‘/’, ‘|’, ‘^’, ‘;’, ‘~’, a comma
(‘,’), the comment character ‘#’, or parentheses. To facilitate copying and pasting from
documents, several typographical characters are converted to operators: the figure dash
(U+2012), minus (‘−’; U+2212), and en dash (‘–’; U+2013) are converted to the operator
‘-’; the multiplication sign (‘×’; U+00D7), N-ary times operator (U+2A09), dot operator (‘·’;
U+22C5), and middle dot (‘·’; U+00B7) are converted to the operator ‘*’; the division sign
(‘÷’; U+00F7) is converted to the operator ‘/’; and the fraction slash (U+2044) is converted
to the operator ‘|’; accordingly, none of these characters can appear in unit names.

Names cannot begin with a digit, and if a name ends in a digit other than zero or one,
then the name must end with an underscore followed by a string consisting only of digits
and decimal points. For example, ‘foo_2’, ‘foo_3.14’, and ‘foo_3...9’ are valid names
but ‘foo2’ or ‘foo_a2’ are invalid. The underscore is necessary because without it, units
cannot determine whether ‘foo2’ is a unit name or represents ‘foo^2’. Zero and one are
exceptions because units never interprets them as exponents.

You could define nitrous oxide as

N2O nitrogen 2 + oxygen

Units Conversion 47

but would need to define nitrogen dioxide as

NO_2 nitrogen + oxygen 2

Be careful to define new units in terms of old ones so that a reduction leads to the primitive
units, which are marked with ‘!’ characters. Dimensionless units are indicated by using the
string ‘!dimensionless’ for the unit definition.

When adding new units, be sure to use the -c option to check that the new units reduce
properly and that there are no circular definitions that lead to endless loops. Because some
errors may hide other errors, you should run units with the -c option again after correcting
any errors, and keep doing so until no errors are displayed.

If you define any units that contain ‘+’ characters in their definitions, carefully check
them because the -c option will not catch non-conformable sums. Be careful with the ‘-’
operator as well. When used as a binary operator, the ‘-’ character can perform addition
or multiplication depending on the options used to invoke units. To ensure consistent
behavior use ‘-’ only as a unary negation operator when writing units definitions. To
multiply two units leave a space or use the ‘*’ operator with care, recalling that it has two
possible precedence values and may require parentheses to ensure consistent behavior. To
compute the difference of ‘foo’ and ‘bar’ write ‘foo+(-bar)’ or even ‘foo+-bar’.

You may wish to intentionally redefine a unit. When you do this, and use the -c option,
units displays a warning message about the redefinition. You can suppress these warnings
by redefining a unit using a ‘+’ at the beginning of the unit name. Do not include any white
space between the ‘+’ and the redefined unit name.

Here is an example of a short data file that defines some basic units:

m ! # The meter is a primitive unit

sec ! # The second is a primitive unit

rad !dimensionless # A dimensionless primitive unit

micro- 1e-6 # Define a prefix

minute 60 sec # A minute is 60 seconds

hour 60 min # An hour is 60 minutes

inch 72 m # Inch defined incorrectly terms of meters

ft 12 inches # The foot defined in terms of inches

mile 5280 ft # And the mile

+inch 0.0254 m # Correct redefinition, warning suppressed

A unit that ends with a ‘-’ character is a prefix. If a prefix definition contains any ‘/’
characters, be sure they are protected by parentheses. If you define ‘half- 1/2’, then
‘halfmeter’ would be equivalent to ‘1 / (2 meter)’.

14.3 Defining Nonlinear Units

Some unit conversions of interest are nonlinear; for example, temperature conversions be-
tween the Fahrenheit and Celsius scales cannot be done by simply multiplying by conversion
factors.

When you give a linear unit definition such as ‘inch 2.54 cm’ you are providing in-
formation that units uses to convert values in inches into primitive units of meters. For
nonlinear units, you give a functional definition that provides the same information.

Units Conversion 48

Nonlinear units are represented using a functional notation. It is best to regard this
notation not as a function call but as a way of adding units to a number, much the same
way that writing a linear unit name after a number adds units to that number. Internally,
nonlinear units are defined by a pair of functions that convert to and from linear units in
the database, so that an eventual conversion to primitive units is possible.

Here is an example nonlinear unit definition:

tempF(x) units=[1;K] domain=[-459.67,) range=[0,) \

(x+(-32)) degF + stdtemp ; (tempF+(-stdtemp))/degF + 32

A nonlinear unit definition comprises a unit name, a formal parameter name, two functions,
and optional specifications for units, the domain, and the range (the domain of the inverse
function). The functions tell units how to convert to and from the new unit. To produce
valid results, the arguments of these functions need to have the correct dimensions and be
within the domains for which the functions are defined.

The definition begins with the unit name followed immediately (with no spaces) by
a ‘(’ character. In the parentheses is the name of the formal parameter. Next is an
optional specification of the units required by the functions in the definition. In the example
above, the ‘units=[1;K]’ specification indicates that the ‘tempF’ function requires an input
argument conformable with ‘1’ (i.e., the argument is dimensionless), and that the inverse
function requires an input argument conformable with ‘K’. For normal nonlinear units
definition, the forward function will always take a dimensionless argument; in general, the
inverse function will need units that match the quantity measured by your nonlinear unit.
Specifying the units enables units to perform error checking on function arguments, and
also to assign units to domain and range specifications, which are described later.

Next the function definitions appear. In the example above, the ‘tempF’ function is
defined by

tempF(x) = (x+(-32)) degF + stdtemp

This gives a rule for converting ‘x’ in the units ‘tempF’ to linear units of absolute tempera-
ture, which makes it possible to convert from tempF to other units.

To enable conversions to Fahrenheit, you must give a rule for the inverse conversions.
The inverse will be ‘x(tempF)’ and its definition appears after a ‘;’ character. In our
example, the inverse is

x(tempF) = (tempF+(-stdtemp))/degF + 32

This inverse definition takes an absolute temperature as its argument and converts it to the
Fahrenheit temperature. The inverse can be omitted by leaving out the ‘;’ character and
the inverse definition, but then conversions to the unit will not be possible. If the inverse
definition is omitted, the --check option will display a warning. It is up to you to calculate
and enter the correct inverse function to obtain proper conversions; the --check option
tests the inverse at one point and prints an error if it is not valid there, but this is not a
guarantee that your inverse is correct.

With some definitions, the units may vary. For example, the definition

square(x) x^2

can have any arbitrary units, and can also take dimensionless arguments. In such a case,
you should not specify units. If a definition takes a root of its arguments, the definition is
valid only for units that yield such a root. For example,

Units Conversion 49

squirt(x) sqrt(x)

is valid for a dimensionless argument, and for arguments with even powers of units.

Some definitions may not be valid for all real numbers. In such cases, units can handle
errors better if you specify an appropriate domain and range. You specify the domain and
range as shown below:

baume(d) units=[1;g/cm^3] domain=[0,130.5] range=[1,10] \

(145/(145-d)) g/cm^3 ; (baume+-g/cm^3) 145 / baume

In this example the domain is specified after ‘domain=’ with the two numerical endpoints
given in brackets. No spaces can appear before the ‘=’. In accord with mathematical
convention, square brackets indicate a closed interval (one that includes its endpoints), and
parentheses indicate an open interval (one that does not include its endpoints). An interval
can be open or closed on one or both ends; an interval that is unbounded on either end is
indicated by omitting the limit on that end. For example, a quantity to which decibel (dB)
is applied may have any value greater than zero, so the range is indicated by ‘(0,)’:

decibel(x) units=[1;1] range=(0,) 10^(x/10); 10 log(decibel)

If the domain or range is given, the second endpoint must be greater than the first. The
intervals given for the domain and range must be numbers and cannot include units or any
calculations.

The domain and range specifications can appear independently and in any order along
with the units specification. The values for the domain and range endpoints are attached to
the units given in the units specification, and if necessary, the parameter value is adjusted
for comparison with the endpoints. For example, if a definition includes ‘units=[1;ft]’
and ‘range=[3,)’, the range will be taken as 3 ft to infinity. If the function is passed a
parameter of ‘900 mm’, that value will be adjusted to 2.9527559 ft, which is outside the
specified range. If you omit the units specification from the previous example, units can
not tell whether you intend the lower endpoint to be 3 ft or 3 microfurlongs, and can not
adjust the parameter value of 900 mm for comparison. Without units, numerical values
other than zero or plus or minus infinity for domain or range endpoints are meaningless,
and accordingly they are not allowed. If you give other values without units, then the
definition will be ignored and you will get an error message.

Although the units, domain, and range specifications are optional, it’s best to give them
when they are applicable; doing so allows units to perform better error checking and give
more helpful error messages. Giving the domain and range also enables the --check option
to find a point in the domain to use for its point check of your inverse definition.

You can make synonyms for nonlinear units by providing both the forward and inverse
functions; inverse functions can be obtained using the ‘~’ operator. So to create a synonym
for ‘tempF’ you could write

fahrenheit(x) units=[1;K] tempF(x); ~tempF(fahrenheit)

This is useful for creating a nonlinear unit definition that differs slightly from an existing
definition without having to repeat the original functions. For example,

dBW(x) units=[1;W] range=[0,) dB(x) W ; ~dB(dBW/W)

If you wish a synonym to refer to an existing nonlinear unit without modification, you can
do so more simply by adding the synonym with appended parentheses as a new unit, with

Units Conversion 50

the existing nonlinear unit—without parentheses—as the definition. So to create a synonym
for ‘tempF’ you could write

fahrenheit() tempF

The definition must be a nonlinear unit; for example, the synonym

fahrenheit() meter

will result in an error message when units starts.

You may occasionally wish to define a function that operates on units. This can be done
using a nonlinear unit definition. For example, the definition below provides conversion
between radius and the area of a circle. This definition requires a length as input and
produces an area as output, as indicated by the ‘units=’ specification. Specifying the range
as the nonnegative numbers can prevent cryptic error messages.

circlearea(r) units=[m;m^2] range=[0,) pi r^2 ; sqrt(circlearea/pi)

14.4 Defining Piecewise Linear Units

Sometimes you may be interested in a piecewise linear unit such as many wire gauges.
Piecewise linear units can be defined by specifying conversions to linear units on a list of
points. Conversion at other points will be done by linear interpolation. A partial definition
of zinc gauge is

zincgauge[in] 1 0.002, 10 0.02, 15 0.04, 19 0.06, 23 0.1

In this example, ‘zincgauge’ is the name of the piecewise linear unit. The definition of such
a unit is indicated by the embedded ‘[’ character. After the bracket, you should indicate
the units to be attached to the numbers in the table. No spaces can appear before the ‘]’
character, so a definition like ‘foo[kg meters]’ is invalid; instead write ‘foo[kg*meters]’.
The definition of the unit consists of a list of pairs optionally separated by commas. This
list defines a function for converting from the piecewise linear unit to linear units. The first
item in each pair is the function argument; the second item is the value of the function at
that argument (in the units specified in brackets). In this example, we define ‘zincgauge’
at five points. For example, we set ‘zincgauge(1)’ equal to ‘0.002 in’. Definitions like
this may be more readable if written using continuation characters as

zincgauge[in] \

1 0.002 \

10 0.02 \

15 0.04 \

19 0.06 \

23 0.1

With the preceding definition, the following conversion can be performed:

You have: zincgauge(10)

You want: in

* 0.02

/ 50

You have: .01 inch

You want: zincgauge

5

Units Conversion 51

If you define a piecewise linear unit that is not strictly monotonic, then the inverse will not
be well defined. If the inverse is requested for such a unit, units will return the smallest
inverse.

After adding nonlinear units definitions, you should normally run ‘units --check’ to
check for errors. If the ‘units’ keyword is not given, the --check option checks a nonlinear
unit definition using a dimensionless argument, and then checks using an arbitrary combi-
nation of units, as well as the square and cube of that combination; a warning is given if
any of these tests fail. For example,

Warning: function 'squirt(x)' defined as 'sqrt(x)'

failed for some test inputs:

squirt(7(kg K)^1): Unit not a root

squirt(7(kg K)^3): Unit not a root

Running ‘units --check’ will print a warning if a non-monotonic piecewise linear unit is
encountered. For example, the relationship between ANSI coated abrasive designation and
mean particle size is non-monotonic in the vicinity of 800 grit:

ansicoated[micron] \

. . .

600 10.55 \

800 11.5 \

1000 9.5 \

Running ‘units --check’ would give the error message

Table 'ansicoated' lacks unique inverse around entry 800

Although the inverse is not well defined in this region, it’s not really an error. Viewing
such error messages can be tedious, and if there are enough of them, they can distract from
true errors. Error checking for nonlinear unit definitions can be suppressed by giving the
‘noerror’ keyword; for the examples above, this could be done as

squirt(x) noerror domain=[0,) range=[0,) sqrt(x); squirt^2

ansicoated[micron] noerror \

. . .

Use the ‘noerror’ keyword with caution. The safest approach after adding a nonlinear
unit definition is to run ‘units --check’ and confirm that there are no actual errors before
adding the ‘noerror’ keyword.

14.5 Defining Multivariate Functions

Some common dimensional calculations such as wind chill or body mass index have more
than one parameter. To support these calculations, units allows multivariate functions as
unit definitions. Unlike the nonlinear units described above, multivariate functions provide
only a forward evaluation and are not invertible: it is impossible to convert a wind chill
output back to the temperature and wind speed that generated it.

A multivariate function definition is similar to that for other nonlinear units. For ex-
ample, you could define ‘bmi’ like this, starting with the unit’s name followed immediately
without white space by a comma-separated parameter list:

bmi(ht,wt) units=[m,kg] domain=(0,)(0,) (wt/kg)/(ht/m)^2

Units Conversion 52

This defines a new unit, ‘bmi’, that has two parameters, ‘height’, and ‘weight’. You
are allowed to use white space in the parameter list. The optional ‘units=’ specification
(with no space before the ‘=’) provides a comma-separated list in square brackets of units
that provide the dimensions of the parameters. (Since multivariate units require the use
of commas, you cannot use them to specify the units in the ‘units=’ specification.) If you
list fewer units than the number of parameters, the remaining parameters will allow any
unit. For univariate nonlinear units, a semicolon introduces the units of the inverse. The
semicolon is not permitted in the ‘units=’ list for multivariate functions.

You specify the domain, if desired, using ‘domain=’, followed (without white space) by
the intervals defining the domain of each parameter, either juxtaposed or separated by
commas. The above example requires that both arguments be strictly positive. As usual,
use square brackets to indicate closed intervals. The rules for domain intervals are the same
as those described above for nonlinear units. If you need to indicate an unconstrained input
give the interval ‘(,)’. The intervals in the domain specification must use numerical values;
you cannot use units or calculations in the domain.

The final part of the definition is the expression that defines the unit. Since inverses are
not well-defined for multivariate units, you cannot provide an inverse. Since you cannot
provide an inverse, you also cannot provide a range, so the ‘range=’ specification is invalid
for multivariate functions.

If you need to specify that a particular unit is of arbitrary dimension when units ap-
pearing after it in the parameter list are of specified dimension, you can do this using the
special dimension specification, ‘*’. Here is a toy example:

func(a,b) units=[*,1] domain=(,),[-1,1] a asin(b)

In this example the first argument is permitted to be of any dimension, but the second
argument must be dimensionless. The first argument has no domain bounds, but the second
one must lie in the domain of the arcsine function.

14.6 Defining Unit List Aliases

Unit list aliases are treated differently from unit definitions, because they are a data entry
shorthand rather than a true definition for a new unit. A unit list alias definition begins
with ‘!unitlist’ and includes the alias and the definition; for example, the aliases included
in the standard units data file are

!unitlist hms hr;min;sec

!unitlist time year;day;hr;min;sec

!unitlist dms deg;arcmin;arcsec

!unitlist ftin ft;in;1|8 in

!unitlist usvol cup;3|4 cup;2|3 cup;1|2 cup;1|3 cup;1|4 cup;\

tbsp;tsp;1|2 tsp;1|4 tsp;1|8 tsp

Unit list aliases are only for unit lists, so the definition must include a ‘;’. Unit list aliases
can never be combined with units or other unit list aliases, so the definition of ‘time’ shown
above could not have been shortened to ‘year;day;hms’.

As usual, be sure to run ‘units --check’ to ensure that the units listed in unit list
aliases are conformable.

Units Conversion 53

15 Numeric Output Format

By default, units shows results to eight significant digits in general number format. You can
change this with the --exponential, --digits, and --output-format options. The first
sets an exponential format (i.e., scientific notation) like that used in the original Unix units

program, the second allows you to specify a different number of significant digits, and the
last allows you to control the output appearance using the format for the printf function
in the C programming language. If you only want to change the number of significant
digits or specify exponential format type, use the --digits and --exponential options.
The --output-format option affords the greatest control of the output appearance, but
requires at least rudimentary knowledge of the printf format syntax. See Chapter 10
[Invoking Units], page 35, for descriptions of these options.

15.1 Format Specification

The format specification recognized with the --output-format option is a subset of that
for printf. The format specification has the form %[flags][width][.precision]type; it must
begin with ‘%’, and must end with a floating-point type specifier: ‘g’ or ‘G’ to specify the
number of significant digits, ‘e’ or ‘E’ for scientific notation, and ‘f’ for fixed-point decimal.
The ISO C99 standard added the ‘F’ type for fixed-point decimal and the ‘a’ and ‘A’ types
for hexadecimal floating point; these types are allowed with compilers that support them.
Type length modifiers (e.g., ‘L’ to indicate a long double) are inapplicable and are not
allowed.

The default format for units is ‘%.8g’; for greater precision, you could specify -o %.15g.
The ‘g’ and ‘G’ format types use exponential format whenever the exponent would be less
than −4, so the value 0.000013 displays as ‘1.3e-005’. These types also use exponential
notation when the exponent is greater than or equal to the precision, so with the default
format, the value 5× 107 displays as ‘50000000’ and the value 5× 108 displays as ‘5e+008’.
If you prefer fixed-point display, you might specify -o %.8f; however, small numbers will
display very few significant digits, and values less than 5×10−8 will show nothing but zeros.

The format specification may include one or more optional flags: ‘+’, ‘ ’ (space), ‘#’, ‘-’,
or ‘0’ (the digit zero). The digit-grouping flag ‘'’ (apostrophe) is allowed with compilers
that support it. Flags are followed by an optional value for the minimum field width,
and an optional precision specification that begins with a period (e.g., ‘.6’). The field
width includes the digits, decimal point, the exponent, thousands separators (with the
digit-grouping flag), and the sign if any of these are shown.

15.2 Flags

The ‘+’ flag causes the output to have a sign (‘+’ or ‘-’). The space flag ‘ ’ is similar to
the ‘+’ flag, except that when the value is positive, it is prefixed with a space rather than
a plus sign; this flag is ignored if the ‘+’ flag is also given. The ‘+’ or ‘ ’ flag could be
useful if conversions might include positive and negative results, and you wanted to align
the decimal points in exponential notation. The ‘#’ flag causes the output value to contain
a decimal point in all cases; by default, the output contains a decimal point only if there
are digits (which can be trailing zeros) to the right of the point. With the ‘g’ or ‘G’ types,
the ‘#’ flag also prevents the suppression of trailing zeros. The digit-grouping flag ‘'’ shows

Units Conversion 54

a thousands separator in digits to the left of the decimal point. This can be useful when
displaying large numbers in fixed-point decimal; for example, with the format ‘%f’,

You have: mile

You want: microfurlong

* 8000000.000000

/ 0.000000

the magnitude of the first result may not be immediately obvious without counting the
digits to the left of the decimal point. If the thousands separator is the comma (‘,’), the
output with the format ‘%'f’ might be

You have: mile

You want: microfurlong

* 8,000,000.000000

/ 0.000000

making the magnitude readily apparent. Unfortunately, few compilers support the digit-
grouping flag.

With the ‘-’ flag, the output value is left aligned within the specified field width. If a field
width greater than needed to show the output value is specified, the ‘0’ (zero) flag causes
the output value to be left padded with zeros until the specified field width is reached; for
example, with the format ‘%011.6f’,

You have: troypound

You want: grain

* 5760.000000

/ 0000.000174

The ‘0’ flag has no effect if the ‘-’ (left align) flag is given.

15.3 Field Width

By default, the output value is left aligned and shown with the minimum width necessary
for the specified (or default) precision. If a field width greater than this is specified, the
value shown is right aligned, and padded on the left with enough spaces to provide the
specified field width. A width specification is typically used with fixed-point decimal to
have columns of numbers align at the decimal point; this arguably is less useful with units

than with long columnar output, but it may nonetheless assist in quickly assessing the
relative magnitudes of results. For example, with the format ‘%12.6f’,

You have: km

You want: in

* 39370.078740

/ 0.000025

You have: km

You want: rod

* 198.838782

/ 0.005029

You have: km

You want: furlong

* 4.970970

/ 0.201168

Units Conversion 55

15.4 Precision

The meaning of “precision” depends on the format type. With ‘g’ or ‘G’, it specifies the
number of significant digits (like the --digits option); with ‘e’, ‘E’, ‘f’, or ‘F’, it specifies
the maximum number of digits to be shown after the decimal point.

With the ‘g’ and ‘G’ format types, trailing zeros are suppressed, so the results may
sometimes have fewer digits than the specified precision (as indicated above, the ‘#’ flag
causes trailing zeros to be displayed).

The default precision is 6, so ‘%g’ is equivalent to ‘%.6g’, and would show the output to
six significant digits. Similarly, ‘%e’ or ‘%f’ would show the output with six digits after the
decimal point.

The C printf function allows a precision of arbitrary size, whether or not all of the
digits are meaningful. With most compilers, the maximum internal precision with units

is 15 decimal digits (or 13 hexadecimal digits). With the --digits option, you are limited
to the maximum internal precision; with the --output-format option, you may specify a
precision greater than this, but it may not be meaningful. In some cases, specifying excess
precision can result in rounding artifacts. For example, a pound is exactly 7000 grains, but
with the format ‘%.18g’, the output might be

You have: pound

You want: grain

* 6999.9999999999991

/ 0.00014285714285714287

With the format ‘%.25g’ you might get the following:

You have: 1/3

You want:

Definition: 0.333333333333333314829616256247

In this case the displayed value includes a series of digits that represent the underlying binary
floating-point approximation to 1/3 but are not meaningful for the desired computation.
In general, the result with excess precision is system dependent. The precision affects only
the display of numbers; if a result relies on physical constants that are not known to the
specified precision, the number of physically meaningful digits may be less than the number
of digits shown.

See the documentation for printf for more detailed descriptions of the format specifi-
cation.

The --output-format option is incompatible with the --exponential or --digits op-
tions; if the former is given in combination with either of the latter, the format is controlled
by the last option given.

16 Localization

Some units have different values in different locations. The localization feature accommo-
dates this by allowing a units data file to specify definitions that depend on the user’s
locale.

Units Conversion 56

16.1 Locale

A locale is a subset of a user’s environment that indicates the user’s language and country,
and some attendant preferences, such as the formatting of dates. The units program
attempts to determine the locale from the POSIX setlocale function; if this cannot be
done, units examines the environment variables LC_CTYPE and LANG. On POSIX systems,
a locale is of the form language_country, where language is the two-character code from ISO
639-1 and country is the two-character code from ISO 3166-1; language is lower case and
country is upper case. For example, the POSIX locale for the United Kingdom is en_GB.

On systems running Microsoft Windows, the value returned by setlocale is different
from that on POSIX systems; units attempts to map the Windows value to a POSIX
value by means of a table in the file locale_map.txt in the same directory as the other
data files. The file includes entries for many combinations of language and country, and
can be extended to include other combinations. The locale_map.txt file comprises two
tab-separated columns; each entry is of the form

Windows-locale POSIX-locale

where POSIX-locale is as described above, and Windows-locale typically spells out both
the language and country. For example, the entry for the United States is

English_United States en_US

You can force units to run in a desired locale by using the -l option.

In order to create unit definitions for a particular locale you begin a block of definitions
in a unit datafile with ‘!locale’ followed by a locale name. The ‘!’ must be the first
character on the line. The units program reads the following definitions only if the current
locale matches. You end the block of localized units with ‘!endlocale’. Here is an example,
which defines the British gallon.

!locale en_GB

gallon 4.54609 liter

!endlocale

16.2 Additional Localization

Sometimes the locale isn’t sufficient to determine unit preferences. There could be regional
preferences, or a company could have specific preferences. Though probably uncommon,
such differences could arise with the choice of English customary units outside of English-
speaking countries. To address this, units allows specifying definitions that depend on
environment variable settings. The environment variables can be controlled based on the
current locale, or the user can set them to force a particular group of definitions.

A conditional block of definitions in a units data file begins with either ‘!var’ or
‘!varnot’ following by an environment variable name and then a space separated list of
values. The leading ‘!’ must appear in the first column of a units data file, and the con-
ditional block is terminated by ‘!endvar’. Definitions in blocks beginning with ‘!var’ are
executed only if the environment variable is exactly equal to one of the listed values. Def-
initions in blocks beginning with ‘!varnot’ are executed only if the environment variable
does not equal any of the list values.

The inch has long been a customary measure of length in many places. The word comes
from the Latin uncia meaning “one twelfth,” referring to its relationship with the foot. By

Units Conversion 57

the 20th century, the inch was officially defined in English-speaking countries relative to
the yard, but until 1959, the yard differed slightly among those countries. In France the
customary inch, which was displaced in 1799 by the meter, had a different length based on
a french foot. These customary definitions could be accommodated as follows:

!var INCH_UNIT usa

yard 3600|3937 m

!endvar

!var INCH_UNIT canada

yard 0.9144 meter

!endvar

!var INCH_UNIT uk

yard 0.91439841 meter

!endvar

!var INCH_UNIT canada uk usa

foot 1|3 yard

inch 1|12 foot

!endvar

!var INCH_UNIT france

foot 144|443.296 m

inch 1|12 foot

line 1|12 inch

!endvar

!varnot INCH_UNIT usa uk france canada

!message Unknown value for INCH_UNIT

!endvar

When units reads the above definitions it will check the environment variable INCH_UNIT

and load only the definitions for the appropriate section. If INCH_UNIT is unset or is not set
to one of the four values listed, then units will run the last block. In this case that block
uses the ‘!message’ command to display a warning message. Alternatively that block could
set default values.

In order to create default values that are overridden by user settings the data file can
use the ‘!set’ command, which sets an environment variable only if it is not already set ;
these settings are only for the current units invocation and do not persist. So if the
example above were preceded by ‘!set INCH_UNIT france’, then this would make ‘france’
the default value for INCH_UNIT. If the user had set the variable in the environment before
invoking units, then units would use the user’s value.

To link these settings to the user’s locale you combine the ‘!set’ command with the
‘!locale’ command. If you wanted to combine the above example with suitable locales you
could do by preceding the above definition with the following:

Units Conversion 58

!locale en_US

!set INCH_UNIT usa

!endlocale

!locale en_GB

!set INCH_UNIT uk

!endlocale

!locale en_CA

!set INCH_UNIT canada

!endlocale

!locale fr_FR

!set INCH_UNIT france

!endlocale

!set INCH_UNIT france

These definitions set the overall default for INCH_UNIT to ‘france’ and set default values
for four locales appropriately. The overall default setting comes last so that it only applies
when INCH_UNIT was not set by one of the other commands or by the user.

If the variable given after ‘!var’ or ‘!varnot’ is undefined, then units prints an error
message and ignores the definitions that follow. Use ‘!set’ to create defaults to prevent
this situation from arising. The -c option only checks the definitions that are active for the
current environment and locale, so when adding new definitions take care to check that all
cases give rise to a well defined set of definitions.

17 Environment Variables

The units program uses the following environment variables:

HOME Specifies the location of your home directory; it is used by units to
find a personal units data file ‘.units’. On systems running Microsoft
Windows, the file is ‘unitdef.units’, and if HOME does not exist, units

tries to determine your home directory from the HOMEDRIVE and HOMEPATH

environment variables; if these variables do not exist, units finally tries
USERPROFILE—typically C:\Users\username (Windows Vista and Windows 7)
or C:\Documents and Settings\username (Windows XP).

LC_CTYPE, LANG

Checked to determine the locale if units cannot obtain it from the operating
system. Sections of the default main units data file are specific to certain locales.

MYUNITSFILE

Specifies your personal units data file. If this variable exists, units uses its
value rather than searching your home directory for ‘.units’. The personal
units file will not be loaded if any data files are given using the -f option.

PAGER Specifies the pager to use for help and for displaying the conformable units.
The help function browses the units database and calls the pager using the
‘+n’n syntax for specifying a line number. The default pager is more; PAGER can
be used to specify alternatives such as less, pg, emacs, or vi.

Units Conversion 59

UNITS_ENGLISH

Set to either ‘US’ or ‘GB’ to choose United States or British volume definitions,
overriding the default from your locale.

UNITSFILE

Specifies the units data file to use (instead of the default). You can only specify
a single units data file using this environment variable. If units data files are
given using the -f option, the file specified by UNITSFILE will be not be loaded
unless the -f option is given with the empty string (‘units -f ""’).

UNITSLOCALEMAP

Windows only; this variable has no effect on Unix-like systems. Specifies the
units locale map file to use (instead of the default). This variable seldom needs
to be set, but you can use it to ensure that the locale map file will be found if
you specify a location for the units data file using either the -f option or the
UNITSFILE environment variable, and that location does not also contain the
locale map file.

UNITS_SYSTEM

This environment variable is used in the default main data file to select
CGS measurement systems. Currently supported systems are ‘esu’, ‘emu’,
‘gauss[ian]’, ‘hlu’, ‘natural’, ‘natural-gauss’, ‘planck’, ‘planck-red’,
‘hartree’ and ‘si’. The default is ‘si’.

18 Data Files

The units program uses four default data files: the main data file, definitions.units;
the atomic masses of the elements, elements.units; currency exchange rates,
currency.units, and the US Consumer Price Index, cpi.units. The last three files
are loaded by means of ‘!include’ directives in the main file (see Chapter 22 [Database
Command Syntax], page 64). The program can also use an optional personal units data
file .units (unitdef.units under Windows) located in the user’s home directory. The
personal units data file is described in more detail in Section 14.1 [Units Data Files],
page 45.

On Unix-like systems, the data files are typically located in /usr/share/units if units
is provided with the operating system, or in /usr/local/share/units if units is compiled
from the source distribution. Note that the currency file currency.units is a symbolic link
to another location.

On systems running Microsoft Windows, the files may be in the same locations if Unix-
like commands are available, a Unix-like file structure is present (e.g., C:/usr/local), and
units is compiled from the source distribution. If Unix-like commands are not available,
a more common location is C:\Program Files (x86)\GNU\units (for 64-bit Windows in-
stallations) or C:\Program Files\GNU\units (for 32-bit installations).

If units is obtained from the GNU Win32 Project (http://gnuwin32.sourceforge.
net/), the files are commonly in C:\Program Files\GnuWin32\share\units.

If the default main units data file is not an absolute pathname, units will look for the
file in the directory that contains the units program; if the file is not found there, units
will look in a directory ../share/units relative to the directory with the units program.

http://gnuwin32.sourceforge.net/
http://gnuwin32.sourceforge.net/

Units Conversion 60

You can determine the location of the files by running ‘units --version’. Running
‘units --info’ will give you additional information about the files, how units will attempt
to find them, and the status of the related environment variables.

19 Unicode Support

The standard units data file is in Unicode, using UTF-8 encoding. Most definitions use only
ASCII characters (i.e., code points U+0000 through U+007F); definitions using non-ASCII
characters appear in blocks beginning with ‘!utf8’ and ending with ‘!endutf8’.

The non-ASCII definitions are loaded only if the platform and the locale support UTF-8.
Platform support is determined when units is compiled; the locale is checked at every
invocation of units. To see if your version of units includes Unicode support, invoke the
program with the --version option.

When Unicode support is available, units checks every line within UTF-8 blocks in all
of the units data files for invalid or non-printing UTF-8 sequences; if such sequences occur,
units ignores the entire line. In addition to checking validity, units determines the display
width of non-ASCII characters to ensure proper positioning of the pointer in some error
messages and to align columns for the ‘search’ and ‘?’ commands.

Microsoft Windows supports UTF-8 in console applications running in Windows Termi-
nal; UTF-8 is not supported in applications running in the older Windows Console Host—see
Section 19.1 [Unicode Support on Windows], page 61. The UTF-16 and UTF-32 encodings
are not supported on any platforms.

If Unicode support is available and definitions that contain non-ASCII UTF-8 characters
are added to a units data file, those definitions should be enclosed within ‘!utf8’ . . .
‘!endutf8’ to ensure that they are only loaded when Unicode support is available. As
usual, the ‘!’ must appear as the first character on the line. As discussed in Section 14.1
[Units Data Files], page 45, it’s usually best to put such definitions in supplemental data
files linked by an ‘!include’ command or in a personal units data file.

When Unicode support is not available, units makes no assumptions about character
encoding, except that characters in the range 00–7F hexadecimal correspond to ASCII en-
coding. Non-ASCII characters are simply sequences of bytes, and have no special meanings;
for definitions in supplementary units data files, you can use any encoding consistent with
this assumption. For example, if you wish to use non-ASCII characters in definitions when
running units under Windows, you can use a character set such as Windows “ANSI” (code
page 1252 in the US and Western Europe); if this is done, the console code page must be
set to the same encoding for the characters to display properly. You can even use UTF-8,
though some messages may be improperly aligned, and units will not detect invalid UTF-8
sequences. If you use UTF-8 encoding when Unicode support is not available, you should
place any definitions with non-ASCII characters outside ‘!utf8’ . . . ‘!endutf8’ blocks—
otherwise, they will be ignored.

Except for code examples, typeset material usually uses the Unicode symbols for mathe-
matical operators. To facilitate copying and pasting from such sources, several typographical
characters are converted to the ASCII operators used in units: the figure dash (U+2012),
minus (‘−’; U+2212), and en dash (‘–’; U+2013) are converted to the operator ‘-’; the mul-
tiplication sign (‘×’; U+00D7), N-ary times operator (U+2A09), dot operator (‘·’; U+22C5),

Units Conversion 61

and middle dot (‘·’; U+00B7) are converted to the operator ‘*’; the division sign (‘÷’;
U+00F7) is converted to the operator ‘/’; and the fraction slash (U+2044) is converted to
the operator ‘|’.

19.1 Unicode Support on Windows

Microsoft Windows supports UTF-8 in console applications running in Windows Terminal
but not in applications running in the older Windows Console Host. In Windows Terminal,
the code page must be set to 65001 for UTF-8 to be enabled. With the UTF-8 code page,
running units -V might show

GNU Units version 2.24

Without readline, with UTF-8, locale English_United States (en_US)

Two values are shown for the locale: the first is the one returned by the system; the second
is the POSIX value to which the system value is mapped.

With a different code page, the result might be

GNU Units version 2.24

Without readline, with UTF-8 (disabled), locale English_United States (en_US)

To enable UTF-8: set code page to 65001

If units is running in Windows Console Host, regardless of the code page, the result might
be

GNU Units version 2.24

Without readline, with UTF-8 (disabled), locale English_United States (en_US)

To enable UTF-8: run in Windows Terminal and set code page to 65001

The UTF-8 code page can be set by running chcp 65001.

As of late 2024, the Windows build of units does not identify characters—typically East
Asian—that occupy more than one column, and error messages involving those characters
may not be properly aligned.

20 Readline Support

If the readline package has been compiled in, then when units is used interactively,
numerous command line editing features are available. To check if your version of units
includes readline, invoke the program with the --version option.

For complete information about readline, consult the documentation for the readline
package. Without any configuration, units will allow editing in the style of emacs. Of
particular use with units are the completion commands.

If you type a few characters and then hit ESC followed by ?, then units will display a
list of all the units that start with the characters typed. For example, if you type metr and
then request completion, you will see something like this:

You have: metr

metre metriccup metrichorsepower metrictenth

metretes metricfifth metricounce metricton

metriccarat metricgrain metricquart metricyarncount

You have: metr

Units Conversion 62

If there is a unique way to complete a unit name, you can hit the TAB key and units

will provide the rest of the unit name. If units beeps, it means that there is no unique
completion. Pressing the TAB key a second time will print the list of all completions.

The readline library also keeps a history of the values you enter. You can move through
this history using the up and down arrows. The history is saved to the file .units_history
in your home directory so that it will persist across multiple units invocations. If you wish
to keep work for a certain project separate you can change the history filename using the
--history option. You could, for example, make an alias for units to units --history

.units_history so that units would save separate history in the current directory. The
length of each history file is limited to 5000 lines. Note also that if you run several concurrent
copies of units each one will save its new history to the history file upon exit.

21 Updating Currency Exchange Rates and CPI

21.1 Currency Exchange Rates

The units program database includes currency exchange rates and prices for some
precious metals. Of course, these values change over time, sometimes very rapidly, and
units cannot provide real-time values. To update the exchange rates, run units_cur,
which rewrites the file containing the currency rates, typically /var/lib/units/

currency.units or /usr/local/com/units/currency.units on a Unix-like system or
C:\Program Files (x86)\GNU\units\definitions.units on a Windows system.

This program requires Python 3 (https://www.python.org). The program must be run
with suitable permissions to write the file. To keep the rates updated automatically, run
it using a cron job on a Unix-like system, or a similar scheduling program on a different
system.

Reliable free sources of currency exchange rates have been annoyingly ephemeral. The
program currently supports several sources:

• ExchangeRate-API.com (https://www.exchangerate-api.com).
The default currency server. Allows open access without an API key, with unlimited
API requests. Rates update once a day, the US dollar (‘USD’) is the default base cur-
rency, and you can choose your base currency with the -b option described below. You
can optionally sign up for an API key to access paid benefits such as faster data update
rates.

• FloatRates (https://www/floatrates.com).
The US dollar (‘USD’) is the default base currency. You can change the base cur-
rency with the -b option described below. Allowable base currencies are listed on the
FloatRates website. Exchange rates update daily.

• The European Central Bank (https://www.ecb.europa.eu).
The base currency is always the euro (‘EUR’). Exchange rates update daily. This source
offers a more limited list of currencies than the others.

• Fixer (https://fixer.io).
Registration for a free API key is required. With a free API key, base currency is the
euro; exchange rates are updated hourly, the service has a limit of 1,000 API calls per

https://www.python.org
https://www.exchangerate-api.com
https://www/floatrates.com
https://www.ecb.europa.eu
https://fixer.io

Units Conversion 63

month, and SSL encryption (https protocol) is not available. Most of these restrictions
are eliminated or reduced with paid plans.

• open exchange rates (https://openexchangerates.org).
Registration for a free API key is required. With a free API key, the base currency
is the US dollar; exchange rates are updated hourly, and there is a limit of 1,000 API
calls per month. Most of these restrictions are eliminated or reduced with paid plans.

The default source is FloatRates; you can select a different one using -s option described
below.

Precious metals pricing is obtained from Packetizer (www.packetizer.com). This site
updates once per day.

21.2 US Consumer Price Index

The units program includes the US Consumer Price Index (CPI) published by the US Bu-
reau of Labor Statistics: specifically, the Consumer Price Index for All Urban Consumers
(CPI-U), not seasonally adjusted—Series CUUR0000SA0. The units_cur command up-
dates the CPI and saves the result in cpi.units in the same location as currency.units.
The data are obtained via the BLS Public Data API (https://www.bls.gov/developers/
). These data update once a month. When units_cur runs it will only attempt to update
the CPI data if the current CPI data file is from a previous month, or if the current date is
after the 18th of the month.

21.3 Invoking units_cur

You invoke units_cur like this:

units_cur [options] [currency_file] [cpi_file]

By default, the output is written to the default currency and CPI files described above; this
is usually what you want, because this is where units looks for the files. If you wish, you
can specify different filenames on the command line and units_cur will write the data to
those files. If you give ‘-’ for a file it will write to standard output.

The following options are available:

-h

--help Print a summary of the options for units_cur.

-V

--version

Print the units_cur version number.

-v

--verbose

Give slightly more verbose output when attempting to update currency ex-
change rates.

-s source

--source source

Specify the source for currency exchange rates; currently supported values
are ‘floatrates’ (for FloatRates), ‘eubank’ (for the European Central Bank),

https://openexchangerates.org
www.packetizer.com
https://www.bls.gov/developers/
https://www.bls.gov/developers/

Units Conversion 64

‘fixer’ (for Fixer), and ‘openexchangerates’ (for open exchange rates); the
last two require an API key to be given with the -k option.

-b base

--base base

Set the base currency (when allowed by the site providing the data). base
should be a 3-letter ISO currency code, e.g., ‘USD’. The specified currency will
be the primitive currency unit used by units. You may find it convenient to
specify your local currency. Conversions may be more accurate and you will
be able to convert to your currency by simply hitting Enter at the ‘You want:’
prompt. This option is ignored if the source does not allow specifying the base
currency. (Currently only floatrates supports this option.)

-k key

--key key Set the API key to key for currency sources that require it.

--blskey BLSkey

Set the US Bureau of Labor Statistics (BLS) key for fetching CPI data. Without
a BLS key you should be able to fetch the CPI data exactly one time per day.
If you want to use a key you must request a personal key from BLS.

22 Database Command Syntax

unit definition

Define a regular unit.

prefix- definition

Define a prefix.

funcname(var) noerror units=[in-units,out-units] domain=[x1,x2]

range=[y1,y2] definition(var) ; inverse(funcname)

Define a nonlinear unit or unit function. The four optional keywords noerror,
‘units=’, ‘range=’ and ‘domain=’ can appear in any order. The definition of
the inverse is optional.

tabname[out-units] noerror pair-list

Define a piecewise linear unit. The pair list gives the points on the table listed
in ascending order. The noerror keyword is optional.

!endlocale

End a block of definitions beginning with ‘!locale’

!endutf8 End a block of definitions begun with ‘!utf8’

!endvar End a block of definitions begun with ‘!var’ or ‘!varnot’

!include file

Include the specified file.

!locale value

Load the following definitions only of the locale is set to value.

Units Conversion 65

!message text

Display text when the database is read unless the quiet option (-q) is enabled.
If you omit text, then units will display a blank line. Messages will also appear
in the log file.

!prompt text

Prefix the ‘You have:’ prompt with the specified text. If you omit text, then
any existing prefix is canceled.

!set variable value

Sets the environment variable, variable, to the specified value only if it is not
already set.

!unitlist alias definition

Define a unit list alias.

!utf8 Load the following definitions only if units is running with UTF-8 enabled.

!var envar value-list

Load the block of definitions that follows only if the environment variable envar
is set to one of the values listed in the space-separated value list. If envar is
not set, units prints an error message and ignores the block of definitions.

!varnot envar value-list

Load the block of definitions that follows only if the environment variable envar
is set to value that is not listed in the space-separated value list. If envar is not
set, units prints an error message and ignores the block of definitions.

23 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to

http://fsf.org/

Units Conversion 66

software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

Units Conversion 67

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

Units Conversion 68

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document

Units Conversion 69

as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

Units Conversion 70

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

Units Conversion 71

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

http://www.gnu.org/copyleft/

Units Conversion 72

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Units Conversion 73

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index

!
‘!’ to indicate primitive units 46
‘!endlocale’ . 55
‘!endutf8’ . 60
‘!include’ . 45
‘!locale’ . 55
‘!unitlist’ . 52
‘!utf8’ . 60

*
‘*’ operator . 9
‘**’ operator . 10

+
‘+’ operator . 11

–
‘-’ as multiplication operator 19
‘-’ as subtraction operator . 11
--check (option for units) . 36
--check-verbose (option for units) 36
--compact (option for units) 40
--conformable (option for units) 39
--digits (option for units) . 37
--exponential (option for units) 37
--file (option for units) . 38
--help (option for units) . 38
--history (option for units) 38
--info (option for units) . 39
--list-units (option for units) 36
--locale (option for units) . 40
--log (option for units) . 38
--minus (option for units) . 38
--newstar (option for units) 38
--oldstar (option for units) 38
--one-line (option for units) 40
--output-format (option for units) 37
--product (option for units) 38
--quiet (option for units) . 41
--silent (option for units) . 41
--strict (option for units) . 40
--terse (option for units) . 40
--units (option for units) . 40
--unitsfile (option for units) 40

Units Conversion 74

--verbose (option for units) 39
--verbose-check (option for units) 36
--version (option for units) 39
-1 (option for units) . 40
-c (option for units) . 36
-d (option for units) . 37
-e (option for units) . 37
-f (option for units) . 38
-h (option for units) . 38
-H (option for units) . 38
-I (option for units) . 39
-l (option for units) . 40
-L (option for units) . 38
-m (option for units) . 38
-o (option for units) . 37
-p (option for units) . 38
-q (option for units) . 41
-s (option for units) . 40
-t (option for units) . 40
-u (option for units) . 40
-U (option for units) . 40
-v (option for units) . 39
-V (option for units) . 39

:
‘:=’ operator . 18

=
‘=’ operator . 16, 18

?
‘?’ for unit completion with readline 61
‘?’ to show conformable units 3

‘_’ to use result of previous conversion 14

|
‘|’ operator . 10

A
abrasive grit size . 23
addition of units . 11
additional units data files . 45
American Wire Gauge (AWG) 22

B
backwards compatibility . 18
British Imperial measure . 9
built-in functions . 12

C
CGS Units Systems . 31
CGS units, prompt prefix . 34
CGS units, specifying . 30
CGS units, using . 29
circle, area of . 23
command, ‘!’ to indicate primitive units 46
command, ‘!endlocale’ . 55
command, ‘!endutf8’ . 60
command, ‘!endvar’ . 55
command, ‘!include’ . 45
command, ‘!locale’ . 55
command, ‘!message’ . 55
command, ‘!set’ . 55
command, ‘!unitlist’ . 52
command, ‘!utf8’ . 60
command, ‘!var’ . 55
command, ‘!varnot’ . 55
command-line options . 35
command-line unit conversion 4
commands in units database 64
commands, interactive . 4
compatibility . 18
compatibility with earlier versions 18
completion, unit, using ‘?’ (readline only) 61
conformable units, ‘?’ to show 3
Consumer Price Index . 20
CPI . 20
CPI, updating . 62
currency, updating . 62

D
Darcy–Weisbach equation . 15
data files . 59
data files, additional . 45
database syntax summary . 64
defining multivariate functions 51
defining nonlinear units . 47
defining piecewise linear units 50
defining prefixes . 46
defining unit list aliases . 52
defining units . 46
defining units with ‘-’ . 19
differences of units . 11
dimensionless units . 3
dimensionless units, defining 47
division of numbers . 10
division of units . 9
domain, nonlinear unit definitions 49

Units Conversion 75

E
environment dependent definitions 55
environment variable, HOME 58
environment variable, LANG 58
environment variable, LC CTYPE 58
environment variable, MYUNITSFILE 46, 58
environment variable, PAGER 58
environment variable, UNITS ENGLISH 59
environment variable, UNITS SYSTEM 59
environment variable, UNITSFILE 59
environment variable, UNITSLOCALEMAP 59
environment variables . 58
exchange rates, updating . 62
exponent operator . 10

F
files, data . 59
finding units . 5
flags, output format . 53
format specification, output . 53
fractions, numerical . 10
functions of units . 50
functions, built in . 12
functions, multivariate . 51

H
help . 4, 58
HOME environment variable 58
hyphen as multiplication operator 19

I
Imperial measure . 9
include files . 46
including additional units data files 45
incompatible units . 3
info . 4
interactive commands . 4
interactive use . 1
international mile . 8
international yard . 8
invoking units . 35
iron pipe size (IPS) . 22

L
LANG environment variable 58
LC CTYPE environment variable 58
length measure, English customary 8
length measure, UK . 8
linear interpolation . 50
locale . 56
locale_map.txt . 56
localization . 55
log file . 34
logging calculations . 34
logs . 13

M
measure, Imperial . 9
mile, international . 8
minus (‘-’) operator, subtraction 11
multiplication of units . 9
multiplication, hyphen . 19
multivariate functions . 24
multivariate functions, defining 51
MYUNITSFILE environment variable 46, 58

N
Natural units, using . 33
nominal pipe size (NPS) . 22
non-conformable units . 3
non-interactive unit conversion 4
nonlinear unit conversions 19, 47
nonlinear units, defining . 47
nonlinear units, other . 21
numbers as units . 12
numeric output format . 53
numerical fractions . 10

O
operator precedence . 9
operator, (‘**’) . 10
operator, ‘:=’ . 18
operator, ‘=’ . 16, 18
operator, caret (‘^’) . 10
operator, hyphen (‘-’) as multiplication 19
operator, hyphen (‘-’) as subtraction 11
operator, minus (‘-’) . 11
operator, ‘per’ . 9
operator, plus (‘+’) . 11
operator, slash (‘/’) . 9
operator, solidus (‘/’) . 9
operator, space . 9
operator, star (‘*’) . 9
operator, vertical bar (‘|’) . 10
operators . 9
options, setting interactively 41
output field width . 54
output format . 53

Units Conversion 76

output format flags . 53
output format specification . 53
output precision . 55

P
PAGER environment variable 58
parentheses 9, 10, 11, 15, 47, 48
‘per’ operator . 9
personal units data file . 46
piecewise linear units . 50
pipe size . 22
plus (‘+’) operator . 11
powers . 10
precision, output . 55
prefixes . 9
prefixes and exponents . 10
prefixes, definition of . 46
previous result . 14
primitive units . 46
products of units . 9
prompt prefix with CGS units 34

Q
quotients of units . 9

R
range, nonlinear unit definitions 49
readline, use with units . 61
reciprocal conversion . 2
roots . 13
runtime variables . 16

S
scripting with units . 42
search . 4
set . 41
setlocale function . 56
setting options interactively . 41
slash (‘/’) operator . 9
solidus (‘/’) operator . 9
sphere, volume of . 23
square roots . 13
star (‘*’) operator . 9
State Plane Coordinate System, US 8
strict conversion . 2
subtraction of units . 11
sums and differences of units 11
sums of units . 11, 25
survey foot, US . 8
survey measure, US . 8
survey mile, US . 8
syntax of units database . 64

T
temperature conversions . 19

U
Unicode support . 60
unit completion using ‘?’ (readline only) 61
unit definitions . 6
unit expressions . 9
unit expressions, complicated 15
unit list aliases . 28
unit list aliases, defining . 52
unit lists . 25
unit name completion . 61
units data file, personal . 46
units data files, additional . 45
units definitions, adding . 46
units definitions, changing . 46
units functions . 50
units quotients . 9
units systems, CGS . 31
units, definition of . 46
units, English customary . 8
units, lookup method . 9
units, piecewise linear . 50
units, primitive . 46
units, sums and differences . 11
units, sums of . 25
units, US customary . 8
UNITS ENGLISH environment variable 59
UNITS SYSTEM environment variable 59
UNITSFILE environment variable 59
UNITSLOCALEMAP environment variable 59
US Consumer Price Index . 20
US State Plane Coordinate System 8
US survey foot . 8
US survey measure . 8
US survey mile . 8
UTF-8 . 60

V
variables assigned at run time 16
verbose output . 2
version . 4
vertical bar (‘|’) operator . 10
volume measure, English customary 7

W
white space . 9, 14
wire gauge . 22
wire size . 22

Y
yard, international . 8

	1 Overview of units
	2 Interacting with units
	Interactive Commands

	3 Using units Non-Interactively
	Finding Units

	4 Unit Definitions
	Physical Constants
	Atomic Masses of the Elements
	Currency Exchange Rates and Consumer Price Index
	English Customary Units
	Miscellaneous Notes on Unit Definitions

	5 Unit Expressions
	Operators
	Sums and Differences of Units
	Numbers as Units
	Built-in Functions
	Previous Result
	Complicated Unit Expressions
	Variables Assigned at Run Time
	Backwards Compatibility: * and -

	6 Nonlinear Unit Conversions
	Temperature Conversions
	US Consumer Price Index
	Other Nonlinear Units
	Multivariate Functions

	7 Unit Lists: Conversion to Sums of Units
	Cooking Measure
	Unit List Aliases

	8 Alternative Unit Systems
	CGS Units
	Specifying CGS Units
	CGS Units Systems
	Conversions Between Different Systems

	Natural Units
	Prompt Prefix

	9 Logging Calculations
	10 Invoking units
	11 Setting Options Interactively
	12 Scripting with units
	13 Output Styles
	14 Adding Your Own Definitions
	Units Data Files
	Defining New Units and Prefixes
	Defining Nonlinear Units
	Defining Piecewise Linear Units
	Defining Multivariate Functions
	Defining Unit List Aliases

	15 Numeric Output Format
	Format Specification
	Flags
	Field Width
	Precision

	16 Localization
	Locale
	Additional Localization

	17 Environment Variables
	18 Data Files
	19 Unicode Support
	Unicode Support on Windows

	20 Readline Support
	21 Updating Currency Exchange Rates and CPI
	Currency Exchange Rates
	US Consumer Price Index
	Invoking units_cur

	22 Database Command Syntax
	23 GNU Free Documentation License
	Index

