File: cwlib.c

package info (click to toggle)
unixcw 2.0-6
  • links: PTS
  • area: main
  • in suites: woody
  • size: 764 kB
  • ctags: 645
  • sloc: ansic: 5,693; cpp: 1,736; makefile: 333; sh: 213; awk: 209
file content (3934 lines) | stat: -rw-r--r-- 117,453 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
/*
 * UnixCW - Unix CW (Morse code) training program
 * Copyright (C) 2001  Simon Baldwin (simonb@caldera.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 *
 * cwlib.c - C library of extensive low-level Morse code services
 *
 */

/* Include files. */
#include <sys/time.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <stdlib.h>
#include <signal.h>
#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#include <errno.h>

#if defined(HAVE_STRING_H)
#	include <string.h>
#endif /* HAVE_STRING_H */
#if defined(HAVE_STRINGS_H)
#	include <strings.h>
#endif /* HAVE_STRINGS_H */

#if defined(HAVE_SYS_KD_H)
#	include <sys/kd.h>			/* Linux, UnixWare */
#else /* not HAVE_SYS_KD_H */
#	if defined(HAVE_SYS_VTKD_H)
#		include <sys/vtkd.h>		/* OpenServer */
#	else /* not HAVE_SYS_VTKD_H */
#		error "Neither sys/kd.h nor sys/vtkd.h header files available"
#	endif /* not HAVE_SYS_VTKD_H */
#endif /* not HAVE_SYS_KD_H */

/* Library include file for the library we are implementing. */
#include "cwlib.h"

#define	MAJOR_VERSION	2
#define	MINOR_VERSION	0
#define	VERSION		"cwlib version 2.0"
#define	COPYRIGHT	"Copyright (C) 2001  Simon Baldwin\n"		\
"This program comes with ABSOLUTELY NO WARRANTY; for details\n"		\
"please see the file 'COPYING' supplied with the source code.\n"	\
"This is free software, and you are welcome to redistribute it\n"	\
"under certain conditions; again, see 'COPYING' for details.\n"		\
"This program is released under the GNU General Public License."

#define	ASC_NUL		'\0'		/* End of string */
#define	ASC_SPACE	' '		/* ASCII space char */

/* Tone and timing magic numbers. */
#define	TONE_MAGIC 	1190000		/* Kernel tone delay magic number */
#define	DOT_MAGIC	1200000		/* Dot length magic number.  The Dot
					   length is 1200000/WPM Usec */
#define	TONE_SILENT	0		/* 0Hz = silent 'tone' */
#define	USECS_PER_SEC	1000000		/* Microseconds in a second */

/* True/False macros, for use with int-type (lazy person) "booleans". */
#define	FALSE		(0)
#define	TRUE		(!FALSE)

/* Success/Error macros for return codes from public library routines. */
#define	RC_SUCCESS	CWLIB_SUCCESS
#define	RC_ERROR	CWLIB_ERROR

/* Other general macros. */
#define	INITIAL_FD		1	/* Initial stdout */
#define	INITIAL_SEND_SPEED	12	/* Initial send speed in WPM */
#define	INITIAL_RECEIVE_SPEED	12	/* Initial receive speed in WPM */
#define	INITIAL_FREQUENCY	800	/* Initial tone in Hz */
#define	INITIAL_GAP		0	/* Initial gap setting */
#define	INITIAL_TOLERANCE	50	/* Initial tolerance setting */
#define	INITIAL_ADAPTIVE	FALSE	/* Initial adaptive receive setting */
#define	INITIAL_THRESHOLD	(DOT_MAGIC / INITIAL_RECEIVE_SPEED) * 2
					/* Initial adaptive speed threshold */
#define	INITIAL_NOISE_THRESHOLD	(DOT_MAGIC / CW_MAX_SPEED) / 2
					/* Initial noise filter threshold */

/*
 * Library variables, indicating the user-selected parameters for generating
 * Morse code output and receiving Morse code input.
 */
static int cw_file_descriptor
			= INITIAL_FD;	/* Initially stdout */
static int cw_send_speed= INITIAL_SEND_SPEED;
					/* Initially 12 WPM */
static int cw_frequency	= INITIAL_FREQUENCY;
					/* Initially 800 Hz */
static int cw_gap	= INITIAL_GAP;	/* Initially no 'Farnsworth' gap */
static int cw_receive_speed
			= INITIAL_RECEIVE_SPEED;
					/* Initially 12 WPM, fixed speed */
static int cw_tolerance	= INITIAL_TOLERANCE;
					/* Initially +/-50% on timings */
static int cw_adaptive_receive_enabled
			= INITIAL_ADAPTIVE;
					/* Initially do fixed speed receive */
static int cw_noise_spike_threshold
			= INITIAL_NOISE_THRESHOLD;
					/* Initially ignore any tone < 10mS */

/*
 * Library variable which is automatically maintained from the Morse input
 * stream, rather than being settable by the user.
 */
static int cw_adaptive_receive_threshold
			= INITIAL_THRESHOLD;
					/* Initially 2-dot threshold for
					   adaptive speed */

/*
 * The following variables must be recalculated each time any of the above
 * Morse parameters associated with speeds, gap, tolerance, or threshold
 * change.  Keeping these in step means that we then don't have to spend time
 * calculating them on the fly.
 *
 * Since they have to be kept in sync, the problem of how to have them
 * calculated on first call if none of the above parameters has been
 * changed is taken care of with a synchronization flag.  Doing this saves
 * us from otherwise having to have a 'library initialize' function.
 */
static int cw_in_sync		= FALSE;/* Synchronization flag */
					/* Sending parameters: */
static int cw_send_dot_length	= 0;	/* Length of a send Dot, in Usec */
static int cw_send_dash_length	= 0;	/* Length of a send Dash, in Usec */
static int cw_end_of_ele_delay	= 0;	/* Extra delay at the end of element */
static int cw_end_of_char_delay	= 0;	/* Extra delay at the end of a char */
static int cw_additional_delay	= 0;	/* More delay at the end of a char */
static int cw_end_of_word_delay	= 0;	/* Extra delay at the end of a word */
					/* Receiving parameters: */
static int cw_receive_dot_length= 0;	/* Length of a receive Dot, in Usec */
static int cw_receive_dash_length
				= 0;	/* Length of a receive Dash, in Usec */
static int cw_dot_range_minimum	= 0;	/* Shortest dot period allowable */
static int cw_dot_range_maximum	= 0;	/* Longest dot period allowable */
static int cw_dash_range_minimum= 0;	/* Shortest dot period allowable */
static int cw_dash_range_maximum= 0;	/* Longest dot period allowable */
static int cw_eoe_range_minimum	= 0;	/* Shortest end of ele allowable */
static int cw_eoe_range_maximum	= 0;	/* Longest end of ele allowable */
static int cw_eoc_range_minimum	= 0;	/* Shortest end of char allowable */
static int cw_eoc_range_maximum	= 0;	/* Longest end of char allowable */

/*
 * Debugging flags variable.
 */
static int cw_debug_flags	= 0;	/* No debug unless requested */

/*
 * Morse code characters table.  This table allows lookup of the Morse
 * shape of a given alphanumeric character.  Shapes are held as a string,
 * with '-' representing dash, and '.' representing dot.  The table ends
 * with a NULL entry.
 */
typedef struct {
	const unsigned char
			character;	/* The character represented */
	const char	*representation;/* Dot-dash shape of the character */
} cw_entry_t;
static const cw_entry_t cw_table[] = {
					/* ASCII 7bit letters */
	{ 'A', ".-"     }, { 'B', "-..."   }, { 'C', "-.-."   },
	{ 'D', "-.."    }, { 'E', "."      }, { 'F', "..-."   },
	{ 'G', "--."    }, { 'H', "...."   }, { 'I', ".."     },
	{ 'J', ".---"   }, { 'K', "-.-"    }, { 'L', ".-.."   },
	{ 'M', "--"     }, { 'N', "-."     }, { 'O', "---"    },
	{ 'P', ".--."   }, { 'Q', "--.-"   }, { 'R', ".-."    },
	{ 'S', "..."    }, { 'T', "-"      }, { 'U', "..-"    },
	{ 'V', "...-"   }, { 'W', ".--"    }, { 'X', "-..-"   },
	{ 'Y', "-.--"   }, { 'Z', "--.."   },
					/* Numerals */
	{ '0', "-----"  }, { '1', ".----"  }, { '2', "..---"  },
	{ '3', "...--"  }, { '4', "....-"  }, { '5', "....."  },
	{ '6', "-...."  }, { '7', "--..."  }, { '8', "---.."  },
	{ '9', "----."  },
					/* Punctuation */
	{ '"', ".-..-." }, { '\'',".----." }, { '$', "...-..-"},
	{ '(', "-.--."  }, { ')', "-.--.-" }, { '+', ".-.-."  },
	{ ',', "--..--" }, { '-', "-....-" }, { '.', ".-.-.-" },
	{ '/', "-..-."  }, { ':', "---..." }, { ';', "-.-.-." },
	{ '=', "-...-"  }, { '?', "..--.." }, { '_', "..--.-" },
					/* ISO 8859-1 accented characters */
	{ 0334,"..--"   },	/* U with diaresis */
	{ 0304,".-.-"   },	/* A with diaeresis */
	{ 0307,"-.-.."  },	/* C with cedilla */
	{ 0326,"---."   },	/* O with diaresis */
	{ 0311,"..-.."  },	/* E with acute */
	{ 0310,".-..-"  },	/* E with grave */
	{ 0300,".--.-"  },	/* A with grave */
	{ 0321,"--.--"  },	/* N with tilde */
					/* ISO 8859-2 accented characters */
	{ 0252,"----"   },	/* S with cedilla */
	{ 0256,"--..-"  },	/* Z with dot above */
					/* Sentinel end of table value */
	{ ASC_NUL, NULL } };

/*
 * External keying function.  It is useful for a client to be able to have
 * this library control an external keying device, for example, an oscill-
 * ator, or a transmitter.  Here is where we keep the address of a function
 * that is passed to us for this purpose.
 */
static void	(*cw_kk_key_callback) (int) = NULL;
					/* Callback function for key control */

/*
 * The library registers a single central SIGALRM handler.  This handler will
 * call all of the functions on a list sequentially on each SIGALRM received.
 * This is where the list is kept.  We also use a flag to tell us if the
 * SIGALRM handler is installed, and a place to keep the old SIGALRM
 * disposition, just so we can tidy it back up to how it was when the library
 * decides it can stop handling SIGALRM for a while.
 */
#define	SIGALRM_HANDLERS	32	/* More than enough handlers */
static void	(*cw_request_handlers[ SIGALRM_HANDLERS ]) (int);
					/* List of low level handlers */
static int	cw_sigalrm_handler_installed	= FALSE;
					/* Flag indicating handler installed */
static struct sigaction
		cw_sigalrm_original_disposition;
					/* Saved SIGALRM disposition */

/*
 * Tone queue.  This is a circular list of tone durations and frequencies
 * pending, and a pair of indexes, head (enqueue) and tail (dequeue) to
 * manage additions and asynchronous sending.
 */
#define	TONE_QUEUE_CAPACITY	3000	/* ~= 5 minutes at 12 WPM */
#define	TONE_QUEUE_HIGH_WATER_MARK	\
				2900	/* Refuse characters if <100 free*/
typedef struct {
	int		usec;		/* Tone duration in usecs */
	int		frequency;	/* Frequency of the tone */
} cw_queued_tone_t;
static cw_queued_tone_t	cw_tone_queue[ TONE_QUEUE_CAPACITY ];
static int		cw_tq_head = 0;	/* Tone queue head index */
static int		cw_tq_tail = 0;	/* Tone queue head index */

/*
 * It's useful to have the tone queue dequeue function call a client-
 * supplied callback routine when the amount of data in the queue drops
 * below a defined low water mark.  This routine can then refill the
 * buffer, as required.
 */
static int		cw_tq_low_water_mark = 0;
					/* Low water mark definition */
static void		(*cw_tq_low_water_callback) (void) = NULL;
					/* Callback function for low water */

/*
 * Receive buffering.  This is a fixed-length representation, filled in
 * as tone on/off timings are taken.
 */
#define	RECEIVE_CAPACITY	256	/* Way longer than any representation */
static char		cw_receive_representation_buffer[ RECEIVE_CAPACITY ];
static int		cw_rr_current = 0;
					/* Receive buffer current location */
static struct timeval	cw_rr_start_timestamp = {0, 0};
					/* Tone start timestamp */
static struct timeval	cw_rr_end_timestamp = {0, 0};
					/* Tone end timestamp */

/*
 * Receive adaptive speed tracking.  We keep a small array of dot lengths,
 * and a small array of dash lengths.  We also keep a running sum of the
 * elements of each array, and an index to the current array position.
 */
#define	AVERAGE_ARRAY_LENGTH	4	/* Keep four dot/dash lengths */
static int	cw_dot_tracking_array[ AVERAGE_ARRAY_LENGTH ];
static int	cw_dash_tracking_array[ AVERAGE_ARRAY_LENGTH ];
					/* Dot and dash length arrays */
static int	cw_dt_dot_index = 0;
static int	cw_dt_dash_index = 0;	/* Circular indexes into the arrays */
static int	cw_dt_dot_tracking_sum = 0;
static int	cw_dt_dash_tracking_sum = 0;
					/* Running sum of array members */

/*
 * Iambic keyer status.  The keyer functions maintain the current known state
 * of the paddles, and latch FALSE-to-TRUE transitions while busy, to form the
 * iambic effect.  For Curtis mode B, the keyer also latches any point where
 * both paddle states are TRUE at the same time.
 */
static int	cw_ik_dot_paddle	= FALSE;/* Current dot paddle state */
static int	cw_ik_dash_paddle	= FALSE;/* Current dash paddle state */
static int	cw_ik_dot_latch		= FALSE;/* Dot FALSE->TRUE latch */
static int	cw_ik_dash_latch	= FALSE;/* Dash FALSE->TRUE latch */
static int	cw_ik_curtis_b_latch	= FALSE;/* Curtis Dot&&Dash latch */

/*
 * Iambic keyer "Curtis" mode A/B selector.  Mode A and mode B timings differ
 * slightly, and some people have a preference for one or the other.  Mode A
 * is a bit less timing-critical, so we'll make that the default.
 */
static int	cw_ik_curtis_mode_b	= FALSE;

/*
 * Straight key status.  Just a key-up or key-down indication.  Real simple.
 */
static int	cw_sk_key_down		= FALSE;/* Indicates key up or down */


/**
 * cw_version()
 *
 * Returns the version number of the library.  Version numbers are returned
 * as an int, composed of Major_version << 16 | Minor_version.
 */
int
cw_version ()
{
	return MAJOR_VERSION << 16 | MINOR_VERSION;
}


/**
 * cw_license()
 *
 * Prints a short library licensing message to stdout.
 */
void
cw_license ()
{
	printf ("%s, ", VERSION);
	printf ("%s\n", COPYRIGHT);
}


/**
 * cw_set_debug_flags()
 *
 * Sets a value for the library debug flags.  Debug output is generally
 * strings printed on stderr.  There is no validation of flags.
 */
void
cw_set_debug_flags (int new_value)
{
	cw_debug_flags = new_value;
}


/**
 * cw_get_debug_flags()
 *
 * Retrieves library debug flags.  If no flags are set, then on first
 * call, it will check the environment variable CWLIB_DEBUG, and if it
 * is available, will set debug flags to its value.  The provides a way
 * for a program to set the debug flags without needing to make any source
 * code changes.
 */
int
cw_get_debug_flags ()
{
	static int	cwlib_debug_checked
					= FALSE;/* Initialization flag */
	char		*debug_value;		/* Value of CWLIB_DEBUG */

	/* If already done, simply ignore the call. */
	if (!cwlib_debug_checked)
	    {
		/* Do not overwrite any debug flags already set. */
		if (cw_debug_flags == 0)
		    {
			/*
			 * Set the debug flags from CWLIB_DEBUG.  If it is
			 * an invalid numeric, treat it as 0; there is no
			 * error checking.
			 */
			debug_value = getenv ("CWLIB_DEBUG");
			if (debug_value != NULL)
				cw_debug_flags = atoi (debug_value);
		    }

		/* Set checked flag, so we never do this again. */
		cwlib_debug_checked = TRUE;
	    }

	/* Return the flags setting. */
	return cw_debug_flags;
}


/**
 * cw_get_[speed|frequency|gap|tolerance]_limits()
 *
 * Return the limits on the speed, frequency, gap, and tolerance parameters.
 * Normal values are speed 4-60 WPM, frequency 0-10,000 Hz, gap 0-20 dots,
 * and tolerance 0-90 %.
 */
void
cw_get_speed_limits (int *min_speed, int *max_speed)
{
	if (min_speed != NULL)
		*min_speed	= CW_MIN_SPEED;
	if (max_speed != NULL)
		*max_speed	= CW_MAX_SPEED;
}
void
cw_get_frequency_limits (int *min_frequency, int *max_frequency)
{
	if (min_frequency != NULL)
		*min_frequency	= CW_MIN_FREQUENCY;
	if (max_frequency != NULL)
		*max_frequency	= CW_MAX_FREQUENCY;
}
void
cw_get_gap_limits (int *min_gap, int *max_gap)
{
	if (min_gap != NULL)
		*min_gap	= CW_MIN_GAP;
	if (max_gap != NULL)
		*max_gap	= CW_MAX_GAP;
}
void
cw_get_tolerance_limits (int *min_tolerance, int *max_tolerance)
{
	if (min_tolerance != NULL)
		*min_tolerance	= CW_MIN_TOLERANCE;
	if (max_tolerance != NULL)
		*max_tolerance	= CW_MAX_TOLERANCE;
}


/**
 * cw_sync_parameters_internal()
 *
 * Synchronize the dot, dash, end of element, end of character, and end
 * of word timings and ranges to new values of Morse speed, 'Farnsworth'
 * gap, or receive tolerance.
 */
static void
cw_sync_parameters_internal ()
{
	/* Do nothing if we are already synchronized with speed/gap. */
	if (!cw_in_sync)
	    {
		/*
		 * Send parameters:
		 *
		 * Calculate the length of a Dot as 1200000 / speed in wpm,
		 * and the length of a Dash as three Dot lengths.
		 */
		cw_send_dot_length	= DOT_MAGIC / cw_send_speed;
		cw_send_dash_length	= 3 * cw_send_dot_length;

		/*
		 * An end of element length is one Dot, end of character is
		 * three Dots total, and end of word is seven Dots total.
		 */
		cw_end_of_ele_delay	= cw_send_dot_length;
		cw_end_of_char_delay	= 3 * cw_send_dot_length
						- cw_end_of_ele_delay;
		cw_end_of_word_delay	= 7 * cw_send_dot_length
		       				- cw_end_of_char_delay;
		cw_additional_delay	= cw_gap * cw_send_dot_length;

		/* Print out if debug requested. */
		if (cw_get_debug_flags () & CW_DEBUG_PARAMETERS)
			fprintf (stderr,
			    "cw: send usec timings <%d>:"
			    " %d, %d, %d, %d, %d, %d\n",
			    	cw_send_speed,
				cw_send_dot_length, cw_send_dash_length,
				cw_end_of_ele_delay,  cw_end_of_char_delay,
				cw_end_of_word_delay, cw_additional_delay);

		/*
		 * Receive parameters:
		 *
		 * First, depending on whether we are set for fixed speed or
		 * adaptive speed, calculate either the threshold from the
		 * receive speed, or the receive speed from the threshold,
		 * knowing that the threshold is always, effectively, two
		 * dot lengths.
		 */
		if (cw_adaptive_receive_enabled)
			cw_receive_speed = DOT_MAGIC
					/ (cw_adaptive_receive_threshold / 2);
		else
			cw_adaptive_receive_threshold = 2 * DOT_MAGIC
					/ cw_receive_speed;

		/*
		 * Calculate the basic receive dot and dash lengths.
		 */
		cw_receive_dot_length	= DOT_MAGIC / cw_receive_speed;
		cw_receive_dash_length	= 3 * cw_receive_dot_length;

		/*
		 * Set the ranges of respectable timing elements depending
		 * very much on whether we are required to adapt to the
		 * incoming Morse code speeds.
		 */
		if (cw_adaptive_receive_enabled)
		    {
			/*
			 * For adaptive timing, calculate the Dot and Dash
			 * timing ranges as zero to two Dots is a Dot, and
			 * anything, anything at all, larger than this is a
			 * Dash.
			 */
			cw_dot_range_minimum	= 0;
			cw_dot_range_maximum	= 2 * cw_receive_dot_length;
			cw_dash_range_minimum	= cw_dot_range_maximum;
			cw_dash_range_maximum	= INT_MAX;

			/*
			 * Make the inter-element gap be anything up to the
			 * adaptive threshold lengths - that is two Dots.  And
			 * the end of character gap is anything longer than
			 * that, and shorter than two receive thresholds (that
			 * is, four Dots).
			 */
			cw_eoe_range_minimum	= cw_dot_range_minimum;
			cw_eoe_range_maximum	= cw_dot_range_maximum;
			cw_eoc_range_minimum	= cw_eoe_range_maximum;
			cw_eoc_range_maximum	= 4 * cw_receive_dot_length;
		    }
		else
		    {
			/*
			 * For fixed speed receiving, calculate the Dot timing
			 * range as the Dot length +/- dot*tolerance%, and the
			 * Dash timing range as the Dash length including
			 * +/- dot*tolerance% as well.
			 */
			cw_dot_range_minimum	= cw_receive_dot_length
				- (cw_receive_dot_length * cw_tolerance) / 100;
			cw_dot_range_maximum	= cw_receive_dot_length
				+ (cw_receive_dot_length * cw_tolerance) / 100;
			cw_dash_range_minimum	= cw_receive_dash_length
				- (cw_receive_dot_length * cw_tolerance) / 100;
			cw_dash_range_maximum	= cw_receive_dash_length
				+ (cw_receive_dot_length * cw_tolerance) / 100;

			/*
			 * Make the inter-element gap the same as the Dot range.
			 * Make the inter-character gap, expected to be three
			 * Dots, the same as Dash range at the lower end, but
			 * make it the same as the Dash range _plus_ the
			 * 'Farnsworth' delay at the top of the range.
			 *
			 * Any gap longer than this is by implication
			 * inter-word.
			 */
			cw_eoe_range_minimum	= cw_dot_range_minimum;
			cw_eoe_range_maximum	= cw_dot_range_maximum;
			cw_eoc_range_minimum	= cw_dash_range_minimum;
			cw_eoc_range_maximum	= cw_dash_range_maximum
							+ cw_additional_delay;
		    }

		/* Print out if debug requested. */
		if (cw_get_debug_flags () & CW_DEBUG_PARAMETERS)
			fprintf (stderr,
			    "cw: receive usec timings <%d>: "
			    "%d-%d, %d-%d, %d-%d, %d-%d, %d\n",
			    	cw_receive_speed,
				cw_dot_range_minimum, cw_dot_range_maximum,
				cw_dash_range_minimum, cw_dash_range_maximum,
				cw_eoe_range_minimum, cw_eoe_range_maximum,
				cw_eoc_range_minimum, cw_eoc_range_maximum,
				cw_adaptive_receive_threshold);

		/* Set the parameters in sync flag. */
		cw_in_sync = TRUE;
	    }
}


/**
 * cw_[gs]et_[send_speed|receive_speed|frequency|gap|tolerance|device]()
 *
 * Get and set routines for all the Morse code parameters available to
 * control the library.  Set routines return 0 on success, or -1 on failure,
 * with errno set to indicate the problem, usually EINVAL, except for
 * cw_set_device, which returns the errno from the KIOCSOUND ioctl call,
 * and cw_set_receive_speed, which returns EINVAL if the new value is
 * invalid, or EPERM if the receive mode is currently set for adaptive
 * receive speed tracking.  Get routines simply return the current value.
 *
 * The default values of the parameters where none are explicitly set are
 * send/receive speed 12 WPM, frequency 800 Hz, gap 0 dots, tolerance 50 %,
 * and device set to standard output (file descriptor 1).
 */
int
cw_set_send_speed (int new_value)
{
	if (new_value < CW_MIN_SPEED || new_value > CW_MAX_SPEED)
	    {
		errno = EINVAL;
		return RC_ERROR;
	    }
	cw_send_speed = new_value;

	/* Changes of speed, gap, and tolerance require resynchronization. */
	cw_in_sync = FALSE; cw_sync_parameters_internal ();

	return RC_SUCCESS;
}
int
cw_set_receive_speed (int new_value)
{
	if (cw_adaptive_receive_enabled)
	    {
		errno = EPERM;
		return RC_ERROR;
	    }
	else
	    {
		if (new_value < CW_MIN_SPEED || new_value > CW_MAX_SPEED)
		    {
			errno = EINVAL;
			return RC_ERROR;
		    }
	    }
	cw_receive_speed = new_value;

	/* Changes of speed, gap, and tolerance require resynchronization. */
	cw_in_sync = FALSE; cw_sync_parameters_internal ();

	return RC_SUCCESS;
}
int
cw_set_frequency (int new_value)
{
	if (new_value < CW_MIN_FREQUENCY || new_value > CW_MAX_FREQUENCY)
	    {
		errno = EINVAL;
		return RC_ERROR;
	    }
	cw_frequency = new_value;
	return RC_SUCCESS;
}
int
cw_set_gap (int new_value)
{
	if (new_value < CW_MIN_GAP || new_value > CW_MAX_GAP)
	    {
		errno = EINVAL;
		return RC_ERROR;
	    }
	cw_gap = new_value;

	/* Changes of speed, gap, and tolerance require resynchronization. */
	cw_in_sync = FALSE; cw_sync_parameters_internal ();

	return RC_SUCCESS;
}
int
cw_set_tolerance (int new_value)
{
	if (new_value < CW_MIN_TOLERANCE || new_value > CW_MAX_TOLERANCE)
	    {
		errno = EINVAL;
		return RC_ERROR;
	    }
	cw_tolerance = new_value;

	/* Changes of speed, gap, and tolerance require resynchronization. */
	cw_in_sync = FALSE; cw_sync_parameters_internal ();

	return RC_SUCCESS;
}
int
cw_set_file_descriptor (int new_value)
{
	if (!(cw_get_debug_flags () & CW_DEBUG_SILENT))
	    {
		if (ioctl (new_value, KIOCSOUND, 0) == -1)
		    {
			return RC_ERROR;
		    }
	    }
	cw_file_descriptor = new_value;
	return RC_SUCCESS;
}
int
cw_get_send_speed ()
{
	return cw_send_speed;
}
int
cw_get_receive_speed ()
{
	return cw_receive_speed;
}
int
cw_get_frequency ()
{
	return cw_frequency;
}
int
cw_get_gap ()
{
	return cw_gap;
}
int
cw_get_tolerance ()
{
	return cw_tolerance;
}
int
cw_get_file_descriptor ()
{
	return cw_file_descriptor;
}


/**
 * cw_set_adaptive_receive_internal()
 *
 * Set the value of the flag that controls whether, on receive, the receive
 * functions do fixed speed receive, or track the speed of the received Morse
 * code by adapting to the input stream.
 */
static void
cw_set_adaptive_receive_internal (int flag)
{
	int			index;		/* Averaging arrays index */

	/* Look for change of adaptive receive state. */
	if ((cw_adaptive_receive_enabled && !flag)
			|| (!cw_adaptive_receive_enabled && flag))
	    {
		cw_adaptive_receive_enabled = flag;

		/* Changing the flag forces a change in low-level parameters. */
		cw_in_sync = FALSE; cw_sync_parameters_internal ();

		/* 
		 * If we have just switched to adaptive mode, (re-)initialize
		 * the averages array to the current dot/dash lengths, so that
		 * initial averages match the current speed.  And reset the
		 * running sums too.
		 */
		if (cw_adaptive_receive_enabled)
		    {
			for (index = 0; index < AVERAGE_ARRAY_LENGTH; index++)
			    {
				cw_dot_tracking_array[index]
						= cw_receive_dot_length;
				cw_dash_tracking_array[index]
						= cw_receive_dash_length;
			    }
			cw_dt_dot_tracking_sum	= cw_receive_dot_length
							* AVERAGE_ARRAY_LENGTH;
			cw_dt_dash_tracking_sum	= cw_receive_dash_length
							* AVERAGE_ARRAY_LENGTH;
		    }
	    }
}


/**
 * cw_enable_adaptive_receive()
 * cw_disable_adaptive_receive()
 * cw_get_adaptive_receive_state()
 *
 * Enable and disable adaptive receive speeds.  If adaptive speed tracking
 * is enabled, the receive functions will attempt to automatically adjust
 * the receive speed setting to match the speed of the incoming Morse code.
 * If it is disabled, the receive functions will use fixed speed settings,
 * and reject incoming Morse which is not at the expected speed.  The
 * cw_get_adaptive_receive_state function returns TRUE if adaptive speed
 * tracking is enabled, FALSE otherwise.  The default state is adaptive
 * speed tracking disabled.
 */
void
cw_enable_adaptive_receive ()
{
	cw_set_adaptive_receive_internal (TRUE);
}
void
cw_disable_adaptive_receive ()
{
	cw_set_adaptive_receive_internal (FALSE);
}
int
cw_get_adaptive_receive_state ()
{
	return cw_adaptive_receive_enabled;
}


/**
 * cw_enable_iambic_curtis_mode_b()
 * cw_disable_iambic_curtis_mode_b()
 * cw_get_iambic_curtis_mode_b_state()
 *
 * Normally, the iambic keying functions will emulate Curtis 8044 Keyer
 * mode A.  In this mode, when both paddles are pressed together, the last
 * dot or dash being sent on release is completed, and nothing else is sent.
 * In mode B, when both paddles are pressed together, the last dot or dash
 * being sent on release is completed, then an opposite element is also sent.
 * Some operators prefer mode B, but timing is more critical in this mode.
 * The default mode is Curtis mode A.
 */
void
cw_enable_iambic_curtis_mode_b ()
{
	cw_ik_curtis_mode_b = TRUE;
}
void
cw_disable_iambic_curtis_mode_b ()
{
	cw_ik_curtis_mode_b = FALSE;
}
int
cw_get_iambic_curtis_mode_b ()
{
	return cw_ik_curtis_mode_b;
}


/**
 * cw_[gs]et_noise_spike_threshold()
 *
 * Set and get the period shorter than which, on receive, received tones are
 * ignored.  This allows the receive tone functions to apply noise cancelling
 * for very short apparent tones.  For useful results the value should never
 * exceed the dot length of a dot at maximum speed; 20,000 Usec (the dot
 * length at 60WPM).  Setting a noise threshold of zero turns off receive
 * tone noise cancelling.  The default noise spike threshold is 10,000 Usec.
 */
int
cw_set_noise_spike_threshold (int threshold)
{
	if (threshold < 0)
	    {
		errno = EINVAL;
		return RC_ERROR;
	    }
	cw_noise_spike_threshold = threshold;

	return RC_SUCCESS;
}
int
cw_get_noise_spike_threshold ()
{
	return cw_noise_spike_threshold;
}


/**
 * cw_get_send_parameters()
 * cw_get_receive_parameters()
 *
 * Return the low-level timing parameters calculated from the speed, gap,
 * and tolerance set.  Parameter values are returned in usecs.  Use NULL
 * for the pointer argument to any parameter value not required.
 */
void
cw_get_send_parameters (int *dot_usecs,		   int *dash_usecs,
			int *end_of_element_usecs, int *end_of_character_usecs,
			int *end_of_word_usecs,    int *additional_usecs)
{
	cw_sync_parameters_internal ();
	if (dot_usecs != NULL)
		*dot_usecs			= cw_send_dot_length;
	if (dash_usecs != NULL)
		*dash_usecs			= cw_send_dash_length;
	if (end_of_element_usecs != NULL)
		*end_of_element_usecs		= cw_end_of_ele_delay;
	if (end_of_character_usecs != NULL)
		*end_of_character_usecs		= cw_end_of_char_delay;
	if (end_of_word_usecs != NULL)
		*end_of_word_usecs		= cw_end_of_word_delay;
	if (additional_usecs != NULL)
		*additional_usecs		= cw_additional_delay;
}
void
cw_get_receive_parameters (int *dot_usecs,	int *dash_usecs,
			   int *dot_min_usecs,	int *dot_max_usecs,
			   int *dash_min_usecs,	int *dash_max_usecs,
			   int *end_of_element_min_usecs,
			   int *end_of_element_max_usecs,
			   int *end_of_character_min_usecs,
			   int *end_of_character_max_usecs,
			   int *adaptive_threshold)
{
	cw_sync_parameters_internal ();
	if (dot_usecs != NULL)
		*dot_usecs			= cw_receive_dot_length;
	if (dash_usecs != NULL)
		*dash_usecs			= cw_receive_dash_length;
	if (dot_min_usecs != NULL)
		*dot_min_usecs			= cw_dot_range_minimum;
	if (dot_max_usecs != NULL)
		*dot_max_usecs			= cw_dot_range_maximum;
	if (dash_min_usecs != NULL)
		*dash_min_usecs			= cw_dash_range_minimum;
	if (dash_max_usecs != NULL)
		*dash_max_usecs			= cw_dash_range_maximum;
	if (end_of_element_min_usecs != NULL)
		*end_of_element_min_usecs	= cw_eoe_range_minimum;
	if (end_of_element_max_usecs != NULL)
		*end_of_element_max_usecs	= cw_eoe_range_maximum;
	if (end_of_character_min_usecs != NULL)
		*end_of_character_min_usecs	= cw_eoc_range_minimum;
	if (end_of_character_max_usecs != NULL)
		*end_of_character_max_usecs	= cw_eoc_range_maximum;
	if (adaptive_threshold != NULL)
		*adaptive_threshold		= cw_adaptive_receive_threshold;
}


/**
 * cw_set_console_sound()
 *
 * Routine to enable/disable console sound.  This function simply sets the
 * value of the related debug flag.  The default is enabled sound.
 */
void
cw_set_console_sound (int sound_state)
{
	/* Get flags the proper way to read CWLIB_DEBUG. */
	cw_get_debug_flags ();

	/* Or in, or and out, the silent running bit. */
	if (!sound_state)
		cw_debug_flags |=  CW_DEBUG_SILENT;
	else
		cw_debug_flags &= ~CW_DEBUG_SILENT;
}


/**
 * cw_sound_internal()
 *
 * Call the console kiocsound ioctl to start a particular tone generating
 * in the kernel, and return the status.  Routines running inside signal
 * handlers are free to ignore the status.  The routine does nothing if
 * silence is requested in the library flags.
 */
static int
cw_sound_internal (int frequency)
{
	int		kiocsound_arg;		/* Argument for KIOCSOUND */

	/* If silence requested, then ignore the call. */
	if (!(cw_get_debug_flags () & CW_DEBUG_SILENT))
	    {
		/* Calculate the correct argument for KIOCSOUND. */
		if (frequency != TONE_SILENT)
			kiocsound_arg = TONE_MAGIC / frequency;
		else
			kiocsound_arg = 0;

		/* Print out any requested debug on sound. */
		if (cw_get_debug_flags () & CW_DEBUG_SOUND)
			fprintf (stderr, "cw: kiocsound %d Hz, %d\n",
						frequency, kiocsound_arg);

		/* Call the ioctl, and return any error status. */
		if (ioctl (cw_file_descriptor, KIOCSOUND, kiocsound_arg) == -1)
		    {
			perror ("cw: ioctl KIOCSOUND");
			return RC_ERROR;
		    }
	    }

	return RC_SUCCESS;
}


/**
 * cw_keying_callback()
 *
 * Register a function that should be called when a tone state changes
 * from key-up to key-down, or vice-versa.  The argument passed out to
 * the registered function is the key state: TRUE for down, FALSE for up.
 * Calling this routine with an NULL function address disables keying
 * callbacks.
 */
void
cw_keying_callback (void (*callback_func) (int))
{
	cw_kk_key_callback = callback_func;
}


/**
 * cw_key_control_internal()
 *
 * Control function that calls any requested keying callback only when
 * there is a change of keying state.  This function filters successive
 * key-down or key-up actions into a single action.
 */
static void
cw_key_control_internal (int requested_key_state)
{
	static	int		current_key_state = FALSE;
						/* Maintain key control state */

	/* Ignore the call if there is no change of keying state. */
	if (current_key_state != requested_key_state)
	{
		/* Print out any requested debug on keying. */
		if (cw_get_debug_flags () & CW_DEBUG_KEYING)
			fprintf (stderr, "cw: keying state %d->%d\n",
					current_key_state, requested_key_state);

		/* Set the new keying state, and call any requested callback. */
		current_key_state = requested_key_state;
		if (cw_kk_key_callback != NULL)
			(*cw_kk_key_callback) (current_key_state);
	}
}


/**
 * cw_sigalrm_handler_internal()
 *
 * Common SIGALRM handler.  This function calls the signal handlers of
 * the library subsystems, expecting them to ignore unexpected calls.
 */
static void
cw_sigalrm_handler_internal (int sig)
{
	int			index;		/* Low level handler index */

	/*
	 * Call the known functions that are interested in this signal.
	 * Stop on the first free slot found; valid because the array is
	 * filled in order from index 0, and there are no deletions.
	 */
	for (index = 0; index < SIGALRM_HANDLERS
			&& cw_request_handlers[index] != NULL; index++)
		(*(cw_request_handlers[index])) (sig);
}


/**
 * cw_request_timeout_internal()
 *
 * Install the SIGALRM handler, if not yet installed.  Add any given lower
 * level handler to the list of registered handlers.  Then set an itimer
 * to expire after the requested number of usecs.
 */
static int
cw_request_timeout_internal (int usec, void (*request_handler) (int))
{
	int			error;		/* Error status */
	int			index;		/* Low level handler index */
	struct sigaction	action;		/* Sigaction structure */
	struct itimerval	itimer;		/* Itimer control structure */

	/* Don't install the handler if we have already done it. */
	if (!cw_sigalrm_handler_installed)
	    {
		/*
		 * Register the SIGALRM handler routine, and keep the old
		 * information so we can put it back when useful to do so.
		 */
		action.sa_handler	= cw_sigalrm_handler_internal;
		action.sa_flags		= SA_RESTART;
		sigemptyset (&action.sa_mask);
		error = sigaction (SIGALRM, &action,
					&cw_sigalrm_original_disposition);
		if (error == -1)
		    {
			perror ("cw: sigaction");
			return RC_ERROR;
		    }

		/* Set the flag so we don't do this again. */
		cw_sigalrm_handler_installed = TRUE;
	    }

	/*
	 * If it's not already present, and one was given, add the request
	 * handler address to the list of known handlers.
	 */
	if (request_handler != NULL)
	    {
		/* Search for this handler, or the first free entry. */
		for (index = 0; index < SIGALRM_HANDLERS
				&& cw_request_handlers[index] != request_handler
				&& cw_request_handlers[index] != NULL; )
			index++;

		/*
		 * If the handler is already there, do no more.  Otherwise,
		 * add it to the list of lower level handlers.
		 */
		if (cw_request_handlers[index] != request_handler)
		    {
			if (cw_request_handlers[index] != NULL)
			    {
				errno = ENOMEM;
				return RC_ERROR;
			    }
			cw_request_handlers[index] = request_handler;
		    }
	    }

	/* 
	 * Depending on the value of usec, either set an itimer, or send
	 * ourselves SIGALRM right away.
	 */
	if (usec <= 0)
	    {
		/* Send ourselves the SIGALRM immediately. */
		if (kill (getpid(), SIGALRM) != 0)
		    {
			perror ("cw: kill");
			return RC_ERROR;
		    }
	    }
	else
	    {
		/*
		 * Set the itimer to produce a single interrupt after the given
		 * duration.
		 */
		itimer.it_interval.tv_sec	= 0;
		itimer.it_interval.tv_usec	= 0;
		itimer.it_value.tv_sec		= usec / USECS_PER_SEC;
		itimer.it_value.tv_usec		= usec % USECS_PER_SEC;
		error = setitimer (ITIMER_REAL, &itimer, NULL);
		if (error == -1)
		    {
			perror ("cw: setitimer");
			return RC_ERROR;
		    }
	    }

	return RC_SUCCESS;
}


/**
 * cw_release_timeouts_internal()
 *
 * Uninstall the SIGALRM handler, if installed.  Return SIGALRM's disposition
 * for the system to the state we found it in before we installed our own
 * SIGALRM handler.
 */
static int
cw_release_timeouts_internal ()
{
	int			error;		/* Error status */

	/* Ignore the call if we haven't installed our handler. */
	if (cw_sigalrm_handler_installed)
	    {
		/* Put back the SIGALRM information saved earlier. */
		error = sigaction (SIGALRM, &cw_sigalrm_original_disposition,
									NULL );
		if (error == -1)
		    {
			perror ("cw: sigaction");
			return RC_ERROR;
		    }

		/*
		 * Clear the flag so we know to reinstall the handler when
		 * we get the next timeout request.
		 */
		cw_sigalrm_handler_installed = FALSE;
	    }

	return RC_SUCCESS;
}


/**
 * cw_check_signal_mask_internal()
 *
 * Check the signal mask of the process, and return an error, with errno
 * set to EDEADLK, if SIGALRM is blocked.
 */
static int
cw_check_signal_mask_internal ()
{
	int			error;		/* Error status */
	sigset_t 		emptyset;	/* Empty sigset structure */
	sigset_t 		currset;	/* Sigset for current state */

	/* Block a empty set of signals to obtain the current mask. */
	sigemptyset (&emptyset);
	error = sigprocmask (SIG_BLOCK, &emptyset, &currset);
	if (error == -1)
	    {
		perror ("cw: sigprocmask");
		return RC_ERROR;
	    }

	/* Check that SIGALRM is not blocked in the current mask. */
	if (sigismember (&currset, SIGALRM))
	    {
		errno = EDEADLK;
		return RC_ERROR;
	    }

	return RC_SUCCESS;
}


/**
 * cw_block_signal_internal()
 *
 * Block SIGALRM for the duration of certain critical sections, or unblock
 * after; passed TRUE to block SIGALRM, and FALSE to unblock.
 */
static int
cw_block_signal_internal (int block)
{
	int			error;		/* Error status */
	sigset_t 		blockset;	/* Block sigset structure */

	/* Block SIGALRM for the process. */
	sigemptyset (&blockset);
	sigaddset (&blockset, SIGALRM);
	error = sigprocmask (block ? SIG_BLOCK : SIG_UNBLOCK, &blockset, NULL);
	if (error == -1)
	    {
		perror ("cw: sigprocmask");
		return RC_ERROR;
	    }

	return RC_SUCCESS;
}


/**
 * cw_signal_wait_internal()
 *
 * Wait for a signal, usually a SIGALRM.  Assumes SIGALRM is not blocked.
 */
static int
cw_signal_wait_internal ()
{
	int			error;		/* Error status */
	sigset_t 		emptyset;	/* Empty sigset structure */
	sigset_t 		currset;	/* Sigset for current state */

	/* Block a empty set of signals to obtain the current mask. */
	sigemptyset (&emptyset);
	error = sigprocmask (SIG_BLOCK, &emptyset, &currset);
	if (error == -1)
	    {
		perror ("cw: sigprocmask");
		return RC_ERROR;
	    }

	/* Wait on the current mask. */
	error = sigsuspend (&currset);
	if (error == -1 && errno != EINTR)
	    {
		perror ("cw: sigsuspend");
		return RC_ERROR;
	    }

	return RC_SUCCESS;
}


/*
 * cw_dequeue_tone_internal implements the following (trivial) state graph:
 *
 *          (queue empty)
 *        +-------------------------------+
 *        |                               |
 *        v    (queue started)            |
 * --> QS_IDLE ---------------> QS_BUSY --+
 *                              ^     |
 *                              |     |
 *                              +-----+ 
 *                          (queue not empty)
 */
static	enum {QS_IDLE,QS_BUSY}	cw_dequeue_state = QS_IDLE;
						/* Indicates empty queue */

/**
 * cw_dequeue_tone_internal()
 *
 * Signal handler for itimer.  Dequeue a tone request, and send the ioctl
 * to generate the tone.  If the queue is empty when we get the signal,
 * then we're at the end of the work list, so set the dequeue state to
 * idle and return.
 */
static void
cw_dequeue_tone_internal (int sig)
{
	int			usec;		/* Next tone duration */
	int			frequency;	/* Next tone frequency */
	int			queue_length;	/* Queued tones at the start */
	int			now_length;	/* Queued tones after scan */

	/* Ignore the call if the current state is idle. */
	if (cw_dequeue_state == QS_IDLE)
		return;

	/* See if the queue contains any pending tones. */
	if (cw_tq_tail != cw_tq_head)
	    {
		/*
		 * Calculate the current queue length.  Later on, we'll
		 * compare with the length after we've scanned over every
		 * tone we can omit, and use this to see if we've crossed
		 * the low water mark, if any.
		 */
		if (cw_tq_head >= cw_tq_tail)
			queue_length = cw_tq_head - cw_tq_tail;
		else
			queue_length = cw_tq_head - cw_tq_tail
						+ TONE_QUEUE_CAPACITY;

		/*
		 * Advance over the tones list until we find the first tone
		 * with a duration of more than zero usecs, or until the end
		 * of the list.
		 */
		do
		    {
			if (cw_tq_tail + 1 < TONE_QUEUE_CAPACITY)
				cw_tq_tail++;
			else
				cw_tq_tail = 0;
		    }
		while (cw_tq_tail != cw_tq_head
			       	&& cw_tone_queue[cw_tq_tail].usec == 0);

		/* Dequeue the next tone to send. */
		usec		= cw_tone_queue[cw_tq_tail].usec;
		frequency	= cw_tone_queue[cw_tq_tail].frequency;

		/* Print out any requested debug on the tone started. */
		if (cw_get_debug_flags () & CW_DEBUG_TONE_QUEUE)
			fprintf (stderr, "cw: dequeue tone %d usec, %d Hz\n",
							usec, frequency);

		/*
		 * Start the tone.  If the ioctl fails, there's nothing we
		 * can do at this point, in the way of returning error codes.
		 */
		cw_sound_internal (frequency);

		/*
		 * Notify the key control function that there might have
		 * been a change of keying state (and then again, there
		 * might not have been - it will sort this out for us).
		 */
		if (frequency != TONE_SILENT)
			cw_key_control_internal (TRUE);
		else
			cw_key_control_internal (FALSE);

		/*
		 * If microseconds is zero, leave it at that.  This way, a
		 * queued tone of 0 usec implies leaving the sound in this
		 * state, and 0 usec and 0 frequency leaves silence.
		 */
		if (usec > 0)
			/*
			 * Request a timeout.  If it fails, there's little
			 * we can do at this point.  But it shouldn't fail.
			 */
			cw_request_timeout_internal (usec, NULL);
		else
		    {
			/* Autonomous dequeuing has finished for the moment. */
			cw_dequeue_state = QS_IDLE;
			cw_release_timeouts_internal();
		    }

		/*
		 * If there is a low water mark callback registered, and if
		 * we passed under the water mark, call the callback here.
		 * We want to be sure to call this late in the processing,
		 * especially after setting the state to idle, since the most
		 * likely action of this routine is to queue tones, and we
		 * don't want to play with the state here after that.
		 */
		if (cw_tq_low_water_callback != NULL)
		    {
			/* Calculate the current queue length. */
			if (cw_tq_head >= cw_tq_tail)
				now_length = cw_tq_head - cw_tq_tail;
			else
				now_length = cw_tq_head - cw_tq_tail
							+ TONE_QUEUE_CAPACITY;

			/*
			 * If the length we originally calculated was above
			 * the low water mark, and the one we have now is
			 * below or equal to it, call the callback.
			 */
			if (queue_length > cw_tq_low_water_mark
					&& now_length <= cw_tq_low_water_mark)
				(cw_tq_low_water_callback) ();
		    }
	    }
	else
	    {
		/*
		 * This is the end of the last tone on the queue, and since
		 * we got a signal we know that it had a usec greater than
		 * zero.  So this is the time to return to silence.
		 */
		cw_sound_internal (TONE_SILENT);

		/* Notify the keying control function, as above. */
		cw_key_control_internal (FALSE);

		/*
		 * Set the flag that indicates that autonomous dequeueing
		 * has finished for the moment.  We need this set whenever
		 * the queue indexes are equal and there is no pending
		 * itimeout.
		 */
		cw_dequeue_state = QS_IDLE;
		cw_release_timeouts_internal();
	    }
}


/**
 * cw_queue_tone_internal()
 *
 * Enqueue a tone for specified frequency and number of microseconds.  This
 * routine adds the new tone to the queue, and if necessary starts the
 * itimer process to have the tone sent.  The routine returns 0 on success.
 * If the tone queue is full, the routine returns -1, with errno set to
 * EAGAIN.  If the iambic keyer or straight key are currently busy, the
 * routine returns -1, with errno set to EBUSY.
 */
static int
cw_queue_tone_internal (int usec, int frequency)
{
	int			new_tq_head;	/* New value of head index */

	/*
	 * If the keyer or straight key are busy, return an error.  This is
	 * because they use the console tones and key control, and will
	 * interfere with us if we try to use them at the same time.
	 */
	if (cw_keyer_busy () || cw_straightkey_busy ())
	    {
		errno = EBUSY;
		return RC_ERROR;
	    }

	/*
	 * If this is the first call, there's a possibility that the sound
	 * device is still the default (stdout), and that may well not be
	 * a console.  At this point, we could, say, on first call, check
	 * with a call to KIOCSOUND, or similar, that stdout will do sound.
	 * However, even if we check it now, we can't check it on each
	 * call, since that would disrupt current tones.  And there's
	 * nothing preventing a client from giving us a usable console file
	 * descriptor, then closing it, duping it, or whatever, in such a
	 * way that we can no longer do sound, and then there's nothing we
	 * can do about it.  So... in practice, we'll do NO checking here
	 * at all, and if any of the above disasters happen, each call
	 * to ioctl KIOCSOUND will spit out an error to stderr, and it
	 * should become pretty obvious what the problem is.
	 */

	/* Calculate the new value of the queue head index. */
	if (cw_tq_head + 1 < TONE_QUEUE_CAPACITY)
		new_tq_head = cw_tq_head + 1;
	else
		new_tq_head = 0;

	/*
	 * If the new value is bumping against the tail index, then the
	 * queue is currently full, so return EAGAIN.
	 */
	if (new_tq_head == cw_tq_tail)
	    {
		errno = EAGAIN;
		return RC_ERROR;
	    }

	/* Print out any requested debug on the tone being queued. */
	if (cw_get_debug_flags () & CW_DEBUG_TONE_QUEUE)
		fprintf (stderr, "cw: enqueue tone %d usec, %d Hz\n",
							usec, frequency);

	/* Enqueue the new tone. */
	cw_tone_queue[new_tq_head].usec		= usec;
	cw_tone_queue[new_tq_head].frequency	= frequency;

	/*
	 * If there is currently no autonomous dequeue happening, set the
	 * new head index and kick off the itimer process.  Otherwise,
	 * just set the new head index.
	 */
	if (cw_dequeue_state == QS_IDLE)
	    {
		cw_tq_head = new_tq_head;
		cw_dequeue_state = QS_BUSY;
		cw_request_timeout_internal
				(0, cw_dequeue_tone_internal);
	    }
	else
		cw_tq_head = new_tq_head;

	return RC_SUCCESS;
}


/**
 * cw_tone_queue_low_callback ()
 *
 * Registers a function to be called automatically by the dequeue routine
 * whenever the tone queue falls to a given level.  A NULL function pointer
 * suppresses callbacks.  On success, the routine returns 0.  If level
 * is invalid, the routine returns -1 with errno set to EINVAL.
 */
int
cw_tone_queue_low_callback (void (*callback_func) (void), int level)
{
	/* Check level for valid values. */
	if (level < 0 || level >= TONE_QUEUE_CAPACITY - 1)
	    {
		errno = EINVAL;
		return RC_ERROR;
	    }

	/* Store the function and low water mark level. */
	cw_tq_low_water_mark		= level;
	cw_tq_low_water_callback	= callback_func;

	return RC_SUCCESS;
}


/**
 * cw_block_callback()
 *
 * Blocks the callback from being called for a critical section of caller
 * code if block is TRUE, and unblocks the callback if block is FALSE.
 * Works by blocking SIGALRM; a block should always be matched by an
 * unblock, otherwise the tone queue will suspend forever.
 */
void
cw_block_callback (int block)
{
	cw_block_signal_internal (block);
}


/**
 * cw_tone_busy()
 *
 * Indicates if the tone sender is busy; returns TRUE if there are still
 * entries in the tone queue, FALSE if the queue is empty.
 */
int
cw_tone_busy ()
{
	return (cw_dequeue_state != QS_IDLE);
}


/**
 * cw_tone_wait()
 *
 * Wait for the current tone to complete.  The routine returns 0 on success.
 * If called with SIGALRM blocked, the routine returns -1, with errno set to
 * EDEADLK, to avoid indefinite waits.
 */
int
cw_tone_wait ()
{
	int			error;		/* Error status */
	int			check_tq_tail;	/* Comparison of tail index */

	/* Check that SIGALRM is not blocked. */
	error = cw_check_signal_mask_internal ();
	if (error)
		return error;

	/* Wait for the tail index to change or the dequeue to go idle. */
	check_tq_tail = cw_tq_tail;
	while (cw_tq_tail == check_tq_tail
			&& cw_dequeue_state != QS_IDLE)
		cw_signal_wait_internal ();

	return RC_SUCCESS;
}


/**
 * cw_tone_queue_wait()
 *
 * Wait for the tone queue to drain.  The routine returns 0 on success.
 * If called with SIGALRM blocked, the routine returns -1, with errno set to
 * EDEADLK, to avoid indefinite waits.
 */
int
cw_tone_queue_wait ()
{
	int			error;		/* Error status */

	/* Check that SIGALRM is not blocked. */
	error = cw_check_signal_mask_internal ();
	if (error)
		return error;

	/* Wait until the dequeue indicates it's hit the end of the queue. */
	while (cw_dequeue_state != QS_IDLE)
		cw_signal_wait_internal ();

	return RC_SUCCESS;
}


/**
 * cw_tone_queue_full()
 *
 * Indicates if the tone queue is full, returning TRUE if full, FALSE if not.
 */
int
cw_tone_queue_full()
{
	int			check_tq_head;	/* Test value of head index */

	/* See what would happen if we advance the head index. */
	if (cw_tq_head + 1 < TONE_QUEUE_CAPACITY)
		check_tq_head = cw_tq_head + 1;
	else
		check_tq_head = 0;

	/* If it would meed the tail index, return TRUE. */
	return (check_tq_head == cw_tq_tail);
}


/**
 * cw_get_tone_queue_capacity()
 *
 * Returns the number of entries the tone queue can accommodate.
 */
int
cw_get_tone_queue_capacity ()
{
	/*
	 * Since the head and tail indexes cannot be equal, the perceived
	 * capacity for the client is always one less than the actual
	 * declared queue size.
	 */
	return TONE_QUEUE_CAPACITY - 1;
}


/**
 * cw_get_tone_queue_length()
 *
 * Returns the number of entries currently pending in the tone queue.
 */
int
cw_get_tone_queue_length ()
{
	if (cw_tq_head >= cw_tq_tail)
		return (cw_tq_head - cw_tq_tail);
	else
		return (cw_tq_head - cw_tq_tail + TONE_QUEUE_CAPACITY);
}


/**
 * cw_flush_tone_queue()
 *
 * Cancel all pending queued tones, and return to silence.  If there is a
 * tone in progress, the function will wait until this last one has
 * completed, then silence the tones.
 *
 * This function may be called with SIGALRM blocked, in which case it
 * will empty the queue as best it can, then return without waiting for
 * the final tone to complete.  In this case, it may not be possible to
 * guarantee silence after the call.
 */
void
cw_flush_tone_queue()
{
	/* Empty the queue, by setting the tail to the head. */
	cw_tq_tail = cw_tq_head;

	/* If we can, wait until the dequeue goes idle. */
	if (cw_check_signal_mask_internal () == RC_SUCCESS)
		cw_tone_queue_wait ();

	/* Force silence on the speaker anyway. */
	cw_sound_internal (TONE_SILENT);
}


/**
 * cw_queue_tone()
 *
 * Provides primitive access to simple tone generation.  This routine queues
 * a tone of given duration and frequency.  The routine returns 0 on success.
 * If usec or frequency are invalid, it returns -1, with errno set to EINVAL.
 * If the console speaker and keying function are busy, it returns -1 with
 * errno set to EBUSY.  If the tone queue is full, it returns -1 with errno
 * set to EAGAIN.
 */
int
cw_queue_tone (int usec, int frequency)
{
	/*
	 * Check the arguments given for realistic values.  Note that
	 * we do nothing here to protect the caller from setting up
	 * neverending (0 usec) tones, if that's what they want to do.
	 */
	if (usec < 0 || frequency < 0
			|| frequency < CW_MIN_FREQUENCY
		     	|| frequency > CW_MAX_FREQUENCY)
	    {
		errno = EINVAL;
		return RC_ERROR;
	    }

	/* Simplistically send the tone requested. */
	return cw_queue_tone_internal (usec, frequency);
}


/**
 * cw_send_element_internal()
 *
 * Low level primitive to send a tone element of the given type, followed
 * by the standard inter-element silence.
 */
static int
cw_send_element_internal (char element)
{
	int		error;			/* Error status */

	/* Synchronize low-level timings if required. */
	cw_sync_parameters_internal ();

	/* Send either a dot or a dash element, depending on representation. */
	if (element == CW_DOT_REPRESENTATION)
	    {
		error = cw_queue_tone_internal (cw_send_dot_length,
								cw_frequency);
		if (error)
			return error;
	    }
	else
	    {
		if (element == CW_DASH_REPRESENTATION)
		    {
			error = cw_queue_tone_internal (cw_send_dash_length,
				       				cw_frequency);
			if (error)
				return error;
		    }
	    }

	/* Send the inter-element gap. */
	error = cw_queue_tone_internal (cw_end_of_ele_delay, TONE_SILENT);
	if (error)
		return error;

	return RC_SUCCESS;
}


/**
 * cw_send_[dot|dash|character_space|word_space]()
 *
 * Low level primitives, available to send single dots, dashes, character
 * spaces, and word spaces.  The dot and dash routines always append the
 * normal inter-element gap after the tone sent.  The cw_send_character_space
 * routine sends space timed to exclude the expected prior dot/dash
 * inter-element gap.  The cw_send_word_space routine sends space timed to
 * exclude both the expected prior dot/dash inter-element gap and the prior
 * end of character space.  These functions return 0 on success, or -1, with
 * errno set to EBUSY or EAGAIN on error.
 */
int
cw_send_dot ()
{
	return cw_send_element_internal (CW_DOT_REPRESENTATION);
}
int
cw_send_dash ()
{
	return cw_send_element_internal (CW_DASH_REPRESENTATION);
}
int
cw_send_character_space ()
{
	/* Synchronize low-level timing parameters. */
	cw_sync_parameters_internal ();

	/*
	 * Delay for the standard end of character period, plus any
	 * additional inter-character gap
	 */
	return cw_queue_tone_internal (cw_end_of_char_delay
					 + cw_additional_delay, TONE_SILENT);
}
int
cw_send_word_space ()
{
	/* Synchronize low-level timing parameters. */
	cw_sync_parameters_internal ();

	/* Send silence for the word delay period. */
	return cw_queue_tone_internal (cw_end_of_word_delay, TONE_SILENT);
}


/**
 * cw_get_character_count()
 *
 * Returns the number of characters represented in the character lookup
 * table.
 */
int
cw_get_character_count ()
{
	const cw_entry_t	*cwptr;		/* Pointer to table entry */
	int			count;		/* Return value */

	/* Traverse the main lookup table, counting entries. */
	for (count = 0, cwptr = cw_table;
			cwptr->character != ASC_NUL; cwptr++)
		count++;

	/* Return the character count. */
	return count;
}


/**
 * cw_list_characters()
 *
 * Returns into list a string containing all of the Morse characters
 * represented in our table.  The length of list must be at least one
 * greater than the number of characters represented in the character
 * lookup table, returned by cw_get_character_count.
 */
void
cw_list_characters (unsigned char *list)
{
	const cw_entry_t	*cwptr;		/* Pointer to table entry */
	unsigned char		*sptr;		/* Output string pointer */

	/*
	 * Traverse the main lookup table, appending each character found
	 * to the output string.
	 */
	for (sptr = list, cwptr = cw_table;
			cwptr->character != ASC_NUL; cwptr++)
	    {
		*sptr = cwptr->character;
		sptr++;
	    }

	/* Terminate the output string. */
	*sptr = ASC_NUL;
}


/**
 * cw_get_maximum_representation_length()
 *
 * Returns the string length of the longest representation in the character
 * lookup table.
 */
int
cw_get_maximum_representation_length ()
{
	const cw_entry_t	*cwptr;		/* Pointer to table entry */
	int			maximum;	/* Return value */

	/* Traverse the main lookup table, finding the longest. */
	for (cwptr = cw_table, maximum = 0;
			cwptr->character != ASC_NUL; cwptr++)
	    {
		if (strlen (cwptr->representation) > maximum)
			maximum = strlen (cwptr->representation);
	    }

	/* Return the character count. */
	return maximum;
}


/**
 * cw_lookup_character_internal()
 *
 * Look up the given character, and return a pointer to the table entry
 * for the representation of that character.  Returns NULL if there is
 * no table entry for the given character.
 */
static const cw_entry_t*
cw_lookup_character_internal (unsigned char c)
{
	static const cw_entry_t	*lookup[ UCHAR_MAX ];
	static int		initialized = FALSE;
						/* Fast lookup table initialized
						   on first function call */
	const cw_entry_t	*cwptr;		/* Pointer to table entry */

	/* If not yet initialized, then set up the faster lookup table */
	if (!initialized)
	    {
		/* Print any debug message on table initialization. */
		if (cw_get_debug_flags () & CW_DEBUG_LOOKUPS)
			fprintf (stderr, "cw: initialize fast lookup table\n");

		/* For each main table entry, create a fast table entry. */
		for (cwptr = cw_table;
				cwptr->character != ASC_NUL; cwptr++)
			lookup[(unsigned int)cwptr->character] = cwptr;

		/* Set the initialized flag now that we built the table. */
		initialized = TRUE;
	    }

	/*
	 * There is no differentiation in the table between upper and lower
	 * case characters; everything is held as uppercase.  So before we
	 * do the lookup, we convert to ensure that both cases work.
	 */
	c = toupper (c);

	/*
	 * Now use the table to lookup the table entry.  Unknown characters
	 * return NULL, courtesy of the fact that explicitly uninitialized
	 * static variables are initialized to zero, so lookup[x] is NULL if
	 * it's not assigned to in the above loop.
	 */
	cwptr = lookup[(unsigned int)c];

	/* Print out debug message indicating the lookup. */
	if (cw_get_debug_flags () & CW_DEBUG_LOOKUPS)
	    {
		if (cwptr != NULL)
			fprintf (stderr,
				"cw: lookup '%c' returned <'%c':\"%s\">\n",
				c, cwptr->character, cwptr->representation);
		else
			if (isprint (c))
				fprintf (stderr,
					"cw: lookup '%c' found nothing\n", c);
			else
				fprintf (stderr,
					"cw: lookup 0x%02x found nothing\n", c);
	    }

	return cwptr;
}


/**
 * cw_lookup_character()
 *
 * Returns the string 'shape' of a given Morse code character.  The routine
 * returns 0 on success, and fills in the string pointer passed in.  On error,
 * it returns -1, and sets errno to ENOENT, indicating that the character
 * could not be found.  The length of representation must be at least one
 * greater than the longest representation held in the character lookup table,
 * returned by cw_get_maximum_representation_length.
 */
int
cw_lookup_character (unsigned char c, char *representation)
{
	const cw_entry_t	*cwptr;		/* Pointer to table entry */

	/* Lookup the character, and if found, return the string. */
	cwptr = cw_lookup_character_internal (c);
	if (cwptr != NULL)
	    {
		if (representation != NULL)
			strcpy (representation, cwptr->representation);
		return RC_SUCCESS;
	    }

	/* Failed to find the requested character. */
	errno = ENOENT;
	return RC_ERROR;
}


/**
 * cw_tokenize_representation_internal()
 *
 * Return a token value, in the range 2-255, for a lookup table representation.
 * The routine returns 0 if no valid token could be made from the string.  To
 * avoid casting the value a lot in the caller (we want to use it as an array
 * index), we actually return an unsigned int.
 *
 * This token algorithm is designed ONLY for valid CW representations; that is,
 * strings composed of only '.' and '-', and in this case, strings shorter than
 * eight characters.  The algorithm simply turns the representation into a
 * 'bitmask', based on occurrences of '.' and '-'.  The first bit set in the
 * mask indicates the start of data (hence the 7-character limit).  This mask
 * is viewable as an integer in the range 2 (".") to 255 ("-------"), and can
 * be used as an index into a fast lookup array.
 */
static unsigned int
cw_tokenize_representation_internal (const char *representation)
{
	unsigned int		token;		/* Return token value */
	const char		*sptr;		/* Pointer through string */

	/*
	 * Our algorithm can handle only 7 characters of representation.
	 * And we insist on there being at least one character, too.
	 */
	if (strlen (representation) > CHAR_BIT - 1
			|| strlen (representation) < 1)
		return 0;

	/*
	 * Build up the token value based on the dots and dashes.  Start the
	 * token at 1 - the sentinel (start) bit.
	 */
	for (sptr = representation, token = 1; *sptr != ASC_NUL; sptr++)
	    {
		/*
		 * Belt-and-braces check that we don't lose the most
		 * significant bit, and exceed 255 as a return token.
		 */
		if (token & (1 << (CHAR_BIT - 1)))
			return 0;

		/* Left-shift the sentinel (start) bit. */
		token <<= 1;

		/*
		 * If the next element is a dash, OR in another bit.  If it is
		 * not a dash or a dot, then there is an error in the repres-
		 * entation string.
		 */
		if (*sptr == CW_DASH_REPRESENTATION)
			token |= 1;
		else
			if (*sptr != CW_DOT_REPRESENTATION)
				return 0;
	    }

	/* Return the value resulting from our tokenization of the string. */
	return token;
}


/**
 * cw_lookup_representation_internal()
 *
 * Look up the given representation, and return a pointer to the table entry
 * for the representation of that character.  Returns NULL if there is
 * no table entry for the given character.
 */
static const cw_entry_t*
cw_lookup_representation_internal (const char *representation)
{
	static const cw_entry_t	*lookup[ UCHAR_MAX ];
	static int		initialized = FALSE;
						/* Fast lookup table initialized
						   on first function call */
	static int		complete = TRUE;/* Set to FALSE if there are any
						   lookup table entries not in
						   the fast lookup table */
	const cw_entry_t	*cwptr;		/* Pointer to table entry */
	unsigned int		token;		/* Tokenization code return */

	/* If not yet initialized, then set up the tokenized lookup table. */
	if (!initialized)
	    {
		/* Print any debug message on table initialization. */
		if (cw_get_debug_flags () & CW_DEBUG_LOOKUPS)
			fprintf (stderr, "cw: initialize token lookup table\n");

		/*
		 * For each main table entry, create a token entry.  If the
		 * tokenization of any entry fails, note that the table is not
		 * complete and ignore that entry for now (for the current
		 * lookup table, this should not happen).  The tokenized table
		 * speeds up lookups of representations by a factor of 5-10.
		 */
		for (cwptr = cw_table;
				cwptr->character != ASC_NUL; cwptr++)
		    {
			token = cw_tokenize_representation_internal
							(cwptr->representation);
			if (token != 0)
				lookup[token] = cwptr;
			else
				complete = FALSE;
		    }

		/* Print a debug warning if the table is not complete. */
		if (cw_get_debug_flags () & CW_DEBUG_LOOKUPS
				&& !complete)
			fprintf (stderr, "cw: token lookup table incomplete\n");

		/* Set the initialized flag now that we built the table. */
		initialized = TRUE;
	    }

	/* Tokenize the representation to get an index for the fast lookup. */
	token = cw_tokenize_representation_internal (representation);

	/*
	 * If the tokenized lookup table is complete, we can simply believe
	 * any token value that came back.  That is, we just use what is at
	 * the index 'token', since this is either the entry we want, or NULL.
	 */
	if (complete)
		cwptr = lookup[token];
	else
	    {
		/*
		 * If the tokenized lookup table is not complete, the lookup
		 * might still have found us the entry we are looking for.
		 * Here, we'll check to see if it did.
		 */
		if (token != 0
				&& lookup[token]->representation != NULL
				&& strcmp (lookup[token]->representation,
							representation) == 0)
			/* Found it in an incomplete table. */
			cwptr = lookup[token];
		else
		    {
			/*
			 * We have no choice but to search the table entry
			 * by entry, sequentially, from top to bottom.
			 */
			for (cwptr = cw_table;
					cwptr->character != ASC_NUL; cwptr++)
			    {
				if (strcmp (cwptr->representation,
							representation) == 0)
					break;
			    }

			/* If we got to the end of the table, return NULL. */
			if (cwptr->character == ASC_NUL)
				cwptr = NULL;
		    }
	    }

	/* Print out debug message indicating the lookup. */
	if (cw_get_debug_flags () & CW_DEBUG_LOOKUPS)
	    {
		if (cwptr != NULL)
			fprintf (stderr,
			    "cw: lookup [0x%02x]'%s' returned <'%c':\"%s\">\n",
				token, representation,
				cwptr->character, cwptr->representation);
		else
			fprintf (stderr,
			    "cw: lookup [0x%02x]'%s' found nothing\n",
						token, representation);
	    }

	/* Finally, return anything we managed to get out of this. */
	return cwptr;
}


/**
 * cw_check_representation()
 *
 * Checks that the given string is a valid Morse representation.  A valid
 * string is one composed of only '.' and '-' characters.  On success, the
 * routine returns 0.  On error, it returns -1, with errno set to EINVAL.
 */
int
cw_check_representation (const char *representation)
{
	const char	*sptr;			/* Cw string pointer */

	/* Check the characters in representation. */
	for (sptr = representation; *sptr != ASC_NUL; sptr++)
	    {
		if (*sptr != CW_DOT_REPRESENTATION
				&& *sptr != CW_DASH_REPRESENTATION)
		    {
			errno = EINVAL;
			return RC_ERROR;
		    }
	    }

	return RC_SUCCESS;
}


/**
 * cw_lookup_representation()
 *
 * Returns the character for a given Morse representation.  On success, the
 * routine returns 0, and fills in unsigned char *c.  On error, it returns
 * -1, and sets errno to EINVAL if any character of the representation is
 * invalid, or ENOENT to indicate that the representation could not be found.
 */
int
cw_lookup_representation (const char *representation,
			  unsigned char *c)
{
	const cw_entry_t	*cwptr;		/* Pointer to table entry */

	/* Check the characters in representation. */
	if (cw_check_representation (representation) == RC_ERROR)
	    {
		errno = EINVAL;
		return RC_ERROR;
	    }

	/* Lookup the representation, and if found, return the character. */
	cwptr = cw_lookup_representation_internal (representation);
	if (cwptr != NULL)
	    {
		if (c != NULL)
			*c = cwptr->character;
		return RC_SUCCESS;
	    }

	/* Failed to find the requested representation. */
	errno = ENOENT;
	return RC_ERROR;
}


/**
 * cw_send_representation_internal()
 *
 * Send the given string as dots and dashes, adding the post-character
 * gap.
 */
static int
cw_send_representation_internal (const char *representation, int partial)
{
	int		error;			/* Error status */
	const char	*sptr;			/* Cw string pointer */

	/*
	 * Before we let this representation loose on tone generation, we'd
	 * really like to know that all of its tones will get queued up
	 * successfully.  The right way to do this is to calculate the
	 * number of tones in our representation, then check that the
	 * space exists in the tone queue.  However, since the queue is
	 * comfortably long, we can get away with just looking for a high
	 * water mark.
	 */
	if (cw_get_tone_queue_length () >= TONE_QUEUE_HIGH_WATER_MARK)
	    {
		errno = EAGAIN;
		return RC_ERROR;
	    }

	/* Sound the elements of the cw equivalent. */
	for (sptr = representation; *sptr != ASC_NUL; sptr++)
	    {
		/*
		 * Send a tone of dot or dash length, followed by the normal,
		 * standard, inter-element gap.
		 */
		error = cw_send_element_internal (*sptr);
		if (error)
			return error;
	    }

	/*
	 * If this representation is stated as being 'partial', then suppress
	 * any and all end of character delays.
	 */
	if (!partial)
	    {
		error = cw_send_character_space ();
		if (error)
			return error;
	    }

	return RC_SUCCESS;
}


/**
 * cw_send_representation()
 *
 * Checks, then sends the given string as dots and dashes.  The representation
 * passed in is assumed to be a complete Morse character; that is, all post-
 * character delays will be added when the character is sent.  On success,
 * the routine returns 0.  On error, it returns -1, with errno set to EINVAL
 * if any character of the representation is invalid, EBUSY if the console
 * speaker or keying system is busy, or EAGAIN if the tone queue is full, or if
 * there is insufficient space to queue the tones for the representation.
 */
int
cw_send_representation (const char *representation)
{
	/* Check the characters in representation. */
	if (cw_check_representation (representation) == RC_ERROR)
	    {
		errno = EINVAL;
		return RC_ERROR;
	    }

	/* Sound out the representation. */
	return cw_send_representation_internal (representation, FALSE);
}


/**
 * cw_send_representation_partial()
 *
 * Check, then send the given string as dots and dashes.  The representation
 * passed in is assumed to be only part of a larger Morse representation;
 * that is, no post-character delays will be added when the character is sent.
 * On success, the routine returns 0.  On error, it returns -1, with errno
 * set to EINVAL if any character of the representation is invalid, EBUSY
 * if the console speaker or keying system is busy, or EAGAIN if the tone
 * queue is full, or if there is insufficient space to queue the tones for
 * the representation.
 */
int
cw_send_representation_partial (const char *representation)
{
	/* Check the characters in representation. */
	if (cw_check_representation (representation) == RC_ERROR)
	    {
		errno = ENOENT;
		return RC_ERROR;
	    }

	/* Sound out the representation. */
	return cw_send_representation_internal (representation, TRUE);
}


/**
 * cw_send_character_internal()
 *
 * Lookup, and send a given ASCII character as cw.  If 'partial' is set, the
 * end of character delay is not appended to the Morse sent. On success,
 * the routine returns 0, otherwise it returns an error.
 */
static int
cw_send_character_internal (unsigned char c, int partial)
{
	int			error;		/* Error status */
	const cw_entry_t	*cwptr;		/* Pointer to table entry */

	/* Handle space special case; delay end-of-word and return. */
	if (c == ASC_SPACE)
	    {
		error = cw_send_word_space ();
		if (error)
			return error;
	    }
	else
	    {
		/* Lookup the character, and sound it. */
		cwptr = cw_lookup_character_internal (c);
		if (cwptr == NULL)
		    {
			errno = ENOENT;
			return RC_ERROR;
		    }
		error = cw_send_representation_internal
					(cwptr->representation, partial);
		if (error)
			return error;
	    }

	return RC_SUCCESS;
}


/**
 * cw_check_character()
 *
 * Checks that the given character is validly sendable in Morse.  If it is,
 * the routine returns 0.  If not, the routine returns -1, with errno set
 * to ENOENT.
 */
int
cw_check_character (unsigned char c)
{
	/*
	 * If the character is the space special-case, or if not, but it
	 * is in the lookup table, return success.
	 */
	if (c == ASC_SPACE
			|| cw_lookup_character_internal (c) != NULL)
		return RC_SUCCESS;

	/* Character is not sendable. */
	errno = ENOENT;
	return RC_ERROR;
}


/**
 * cw_send_character()
 *
 * Lookup, and send a given ASCII character as Morse.  The end of character
 * delay is appended to the Morse sent. On success, the routine returns 0.
 * On error, it returns -1, with errno set to ENOENT if the given character
 * is not a valid Morse character, EBUSY if the console speaker or keying
 * system is busy, or EAGAIN if the tone queue is full, or if there is
 * insufficient space to queue the tones for the representation.
 *
 * This routine returns as soon as the character has been successfully
 * queued for send; that is, almost immediately.  The actual sending takes
 * place in background processing.  See cw_tone_wait and cw_tone_queue_wait
 * for ways to check the progress of sending.
 */
int
cw_send_character (unsigned char c)
{
	/* Check that the character is sendable. */
	if (cw_check_character (c) == RC_ERROR)
	    {
		errno = ENOENT;
		return RC_ERROR;
	    }

	return cw_send_character_internal (c, FALSE);
}


/**
 * cw_send_character_partial()
 *
 * Lookup, and send a given ASCII character as Morse.  The end of character
 * delay is not appended to the Morse sent by the function, to support the
 * formation of combination characters. On success, the routine returns 0.
 * On error, it returns -1, with errno set to ENOENT if the given character
 * is not a valid Morse character, EBUSY if the console speaker or keying
 * system is busy, or EAGAIN if the tone queue is full, or if there is
 * insufficient space to queue the tones for the representation.
 *
 * This routine queues its arguments for background processing.  See
 * cw_send_character for details of how to check the queue status.
 */
int
cw_send_character_partial (unsigned char c)
{
	/* Check that the character is sendable. */
	if (cw_check_character (c) == RC_ERROR)
	    {
		errno = ENOENT;
		return RC_ERROR;
	    }

	return cw_send_character_internal (c, TRUE);
}


/**
 * cw_check_string()
 *
 * Checks that each character in the given string is validly sendable in Morse.
 * On success, the routine returns 0.  On error, it returns -1, with errno set
 * to EINVAL.
 */
int
cw_check_string (const unsigned char *string)
{
	const unsigned char	*sptr;		/* String pointer */

	/*
	 * Check that each character in the string has a Morse representation,
	 * or is the space special case.
	 */
	for (sptr = string; *sptr != ASC_NUL; sptr++)
	    {
		if (*sptr != ASC_SPACE
				&& cw_lookup_character_internal (*sptr) == NULL)
		    {
			errno = EINVAL;
			return RC_ERROR;
		    }
	    }

	/* Each character of the string is sendable. */
	return RC_SUCCESS;
}


/**
 * cw_send_string()
 *
 * Send a given ASCII string as cw.  On success, the routine returns 0.
 * On error, it returns -1, with errno set to ENOENT if any character in the
 * string is not a valid Morse character, EBUSY if the console speaker and
 * keying system is in use by the iambic keyer or the straight key, or EAGAIN
 * if the tone queue is full.  If the tone queue runs out of space part way
 * through queueing the string, the function returns EAGAIN.  However, an
 * indeterminate number of the characters from the string will have already
 * been queued.  For safety, clients can ensure the tone queue is empty
 * before queueing a string, or use cw_send_character() if they need finer
 * control.
 *
 * This routine queues its arguments for background processing.  See
 * cw_send_character for details of how to check the queue status.
 */
int
cw_send_string (const unsigned char *string)
{
	int			error;		/* Error status */
	const cw_entry_t	*cwptr;		/* Pointer to table entry */
	const unsigned char	*sptr;		/* String pointer */

	/*
	 * Initially, check that each character in the string has a Morse
	 * representation, or is the space special case.
	 */
	if (cw_check_string (string) == RC_ERROR)
	    {
		errno = ENOENT;
		return RC_ERROR;
	    }

	/* Send every character in the string. */
	for (sptr = string; *sptr != ASC_NUL; sptr++)
	    {
		/* Handle space special case; delay end-of-word and return. */
		if (*sptr == ASC_SPACE)
		    {
			error = cw_send_word_space ();
			if (error)
				return error;
		    }
		else
		    {
			/* Lookup the character, and sound it. */
			cwptr = cw_lookup_character_internal (*sptr);
			if (cwptr == NULL)
			    {
				errno = ENOENT;
				return RC_ERROR;
			    }
			error = cw_send_representation_internal
						(cwptr->representation, FALSE);
			if (error)
				return error;
		    }
	    }

	return RC_SUCCESS;
}


/*
 * The CW receive functions implement the following state graph:
 *
 *        +----------------- RS_ERR_WORD <-------------------+
 *        |(clear)                ^                          |
 *        |           (delay=long)|                          |
 *        |                       |                          |
 *        +----------------- RS_ERR_CHAR <---------+         |
 *        |(clear)                ^  |             |         |
 *        |                       |  +-------------+         |(error,
 *        |                       |   (delay=short)          | delay=long)
 *        |    (error,delay=short)|                          |
 *        |                       |  +-----------------------+
 *        |                       |  | 
 *        +--------------------+  |  | 
 *        |             (noise)|  |  | 
 *        |                    |  |  | 
 *        v    (start tone)    |  |  |  (end tone,noise)
 * --> RS_IDLE ------------> RS_IN_TONE ------------> RS_AFTER_TONE <------- +
 *     |  ^                           ^               | |    | ^ |           |
 *     |  |          (delay=short)    +---------------+ |    | | +-----------+
 *     |  |        +--------------+     (start tone)    |    | |  (not ready,
 *     |  |        |              |                     |    | |   buffer dot,
 *     |  |        +-------> RS_END_CHAR <--------------+    | |   buffer dash)
 *     |  |                   |   |       (delay=short)      | |
 *     |  +-------------------+   |                          | |
 *     |  |(clear)                |                          | |
 *     |  |           (delay=long)|                          | |
 *     |  |                       v                          | |
 *     |  +----------------- RS_END_WORD <-------------------+ |
 *     |   (clear)                        (delay=long)         |(buffer dot,
 *     |                                                       | buffer dash)
 *     +-------------------------------------------------------+
 */
static	enum {RS_IDLE,RS_IN_TONE,RS_AFTER_TONE,
			RS_END_CHAR,RS_END_WORD,
			RS_ERR_CHAR,RS_ERR_WORD}
				cw_receive_state = RS_IDLE;
						/* Indicates receive state */

/**
 * cw_start_receive_tone()
 *
 * Called on the start of a receive tone.  If the timestamp is NULL, the
 * current time is used.  On success, the routine returns 0.   On error,
 * it returns -1, with errno set to ERANGE if the call is directly after
 * another cw_start_receive_tone call or if an existing received character
 * has not been cleared from the buffer, or EINVAL if the timestamp passed
 * in is invalid.
 */
int
cw_start_receive_tone (const struct timeval *timestamp)
{
	/*
	 * If the receive state is not idle or after a tone, this is a
	 * state error.  A receive tone start can only happen while we
	 * are idle, or in the middle of a character.
	 */
	 if (cw_receive_state != RS_IDLE
			 && cw_receive_state != RS_AFTER_TONE)
	    {
		errno = ERANGE;
		return RC_ERROR;
	    }

	/* Validate and save the timestamp, or get one and then save it. */
	if (timestamp != NULL)
	    {
		if (timestamp->tv_sec < 0 || timestamp->tv_usec < 0
				|| timestamp->tv_usec >= USECS_PER_SEC)
		    {
			errno = EINVAL;
			return RC_ERROR;
		    }
		cw_rr_start_timestamp.tv_sec	= timestamp->tv_sec;
		cw_rr_start_timestamp.tv_usec	= timestamp->tv_usec;
	    }
	else
	    {
		if (gettimeofday (&cw_rr_start_timestamp, NULL) != 0)
		    {
			perror ("cw: gettimeofday");
			return RC_ERROR;
		    }
	    }

	/* Set state to indicate we are inside a tone. */
	cw_receive_state = RS_IN_TONE;

	/* Print out any state change debug. */
	if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
		fprintf (stderr,
			"cw: receive state ->%d\n", cw_receive_state);

	return RC_SUCCESS;
}


/**
 * cw_compare_timestamps_internal()
 *
 * Compare two timestamps, and return the difference between them in usecs,
 * taking care to clamp values which would overflow an int.  This routine
 * always returns a +ve integer in the range 0 to INT_MAX.
 */
static int
cw_compare_timestamps_internal (const struct timeval *earlier,
				const struct timeval *later)
{
	int		delta_usec;		/* Time difference in usecs */

	/*
	 * Compare the timestamps, taking care on overflows.
	 *
	 * At 4 WPM, the dash length is 3*(1200000/4)=900,000 usecs, and
	 * the word gap is 2,100,000 usecs.  With the maximum Farnsworth
	 * additional delay, the word gap extends to 8,100,000 usecs.
	 * This fits into an int with a lot of room to spare, in fact,
	 * an int can represent ~2000,000,000 usecs, or around 33 minutes.
	 * This is way, way longer than we'd ever want to differentiate,
	 * so if by some chance we see timestamps farther apart than this,
	 * and it ought to be very, very unlikely, then we'll clamp the
	 * return value to INT_MAX with a clear conscience.
	 *
	 * Note: passing nonsensical or bogus timevals in may result
	 * in unpredictable results.  Nonsensical includes timevals with
	 * -ve tv_usec, -ve tv_sec, tv_usec >= 1,000,000, etc.  To help
	 * in this, we check all incoming timestamps for 'well-formedness'.
	 * However, we assume the gettimeofday() call always returns good
	 * timevals.  All in all, timeval could probably be a better
	 * thought-out structure.
	 */

	/* Calculate an initial delta, possibly with overflow. */
	delta_usec = (later->tv_sec - earlier->tv_sec) * USECS_PER_SEC
				+ later->tv_usec
				- earlier->tv_usec;

	/* Check specifically for overflow, and clamp if it did. */
	if ((later->tv_sec - earlier->tv_sec) > (INT_MAX / USECS_PER_SEC) + 1
			|| delta_usec < 0)
		delta_usec = INT_MAX;

	return delta_usec;
}


/**
 * cw_identify_receive_tone_internal()
 *
 * Analyses a tone using the ranges provided by the low level timing
 * parameters.  On success, it returns 0 and sends back either a dot or
 * a dash in representation.  On error, it returns -1 with ERRNO set to
 * ENOENT if the tone is not recognizable as either a dot or a dash,
 * and sets the receive state to one of the error states, depending on
 * the tone length passed in.
 *
 * Note; for adaptive timing, the tone should _always_ be recognized as
 * a dot or a dash, because the ranges will have been set to cover 0 to
 * INT_MAX.
 */
static int
cw_identify_receive_tone_internal (int element_usec, char *representation)
{
	/* Synchronize low level timings if required */
	cw_sync_parameters_internal ();

	/*
	 * If the timing was, within tolerance, a dot, return a dot to the
	 * caller.
	 */
	if (element_usec >= cw_dot_range_minimum
				&& element_usec <= cw_dot_range_maximum)
	    {
		*representation = CW_DOT_REPRESENTATION;
		return RC_SUCCESS;
	    }

	/* Do the same for a dash. */ 
	if (element_usec >= cw_dash_range_minimum
		       		&& element_usec <= cw_dash_range_maximum)
	    {
		*representation = CW_DASH_REPRESENTATION;
		return RC_SUCCESS;
	    }

	/*
	 * This element is not a dot or a dash, so we have an error case.
	 * Depending on the timestamp difference, we pick which of the
	 * error states to move to, and move to it.  The comparison is
	 * against the expected end-of-char delay.  If it's larger, then
	 * fix at word error, otherwise settle on char error.
	 *
	 * Note that we should never reach here for adaptive timing receive.
	 */
	if (element_usec > cw_eoc_range_maximum)
		cw_receive_state = RS_ERR_WORD;
	else
		cw_receive_state = RS_ERR_CHAR;

	/* Print out any state change debug. */
	if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
		fprintf (stderr,
			"cw: receive state ->%d\n", cw_receive_state);

	/* Return ENOENT to the caller. */
	errno = ENOENT;
	return RC_ERROR;
}


/**
 * cw_update_adaptive_tracking_internal()
 *
 * Updates the averages of dot and dash lengths, and recalculates the
 * adaptive threshold for the next receive tone.
 */
static void
cw_update_adaptive_tracking_internal (int element_usec, char element)
{
	int		average_dot;		/* Averaged dot length */
	int		average_dash;		/* Averaged dash length */

	/* We are not going to tolerate being called in fixed speed mode. */
	if (!cw_adaptive_receive_enabled)
		return;

	/*
	 * We will update the information held for either dots or dashes.
	 * Which we pick depends only on what the representation of the
	 * character was identified as earlier.
	 */
	if (element == CW_DOT_REPRESENTATION)
	    {
		/* Update the dot data held for averaging. */
		cw_dt_dot_tracking_sum
				-= cw_dot_tracking_array[cw_dt_dot_index];
		cw_dot_tracking_array[cw_dt_dot_index++] = element_usec;
		cw_dt_dot_index %= AVERAGE_ARRAY_LENGTH;
		cw_dt_dot_tracking_sum += element_usec;
	    }
	else
	    {
		if (element == CW_DASH_REPRESENTATION)
		    {
			/* Update the dash data held for averaging. */
			cw_dt_dash_tracking_sum
				-= cw_dash_tracking_array[cw_dt_dash_index];
			cw_dash_tracking_array[cw_dt_dash_index++] =
								element_usec;
			cw_dt_dash_index %= AVERAGE_ARRAY_LENGTH;
			cw_dt_dash_tracking_sum += element_usec;
		    }
	    }

	/* 
	 * Recalculate the adaptive threshold from the values currently
	 * held in the averaging arrays.  The threshold is calculated as
	 * (avg dash length - avg dot length) / 2 + avg dot_length.
	 */
	average_dot	= cw_dt_dot_tracking_sum  / AVERAGE_ARRAY_LENGTH;
	average_dash	= cw_dt_dash_tracking_sum / AVERAGE_ARRAY_LENGTH;
	cw_adaptive_receive_threshold = ( average_dash - average_dot ) / 2
								+ average_dot;

	/*
	 * Resynchronize the low level timing data following recalculation.
	 * If the resultant recalculated speed is outside the limits,
	 * clamp the speed to the limit value and recalculate again.
	 *
	 * Resetting the speed directly really means unsetting adaptive
	 * mode, resyncing to calculate the new threshold, which unfort-
	 * unately recalculates everything else according to fixed speed;
	 * so, we then have to reset adaptive and resyncing one more time,
	 * to get all other timing parameters back to where they should be.
	 */
	cw_in_sync = FALSE; cw_sync_parameters_internal ();
	if (cw_receive_speed < CW_MIN_SPEED)
	    {
		cw_receive_speed = CW_MIN_SPEED;
		cw_adaptive_receive_enabled = FALSE;
		cw_in_sync = FALSE; cw_sync_parameters_internal ();
		cw_adaptive_receive_enabled = TRUE;
		cw_in_sync = FALSE; cw_sync_parameters_internal ();
	    }
	else
	    {
		if (cw_receive_speed > CW_MAX_SPEED)
		    {
			cw_receive_speed = CW_MAX_SPEED;
			cw_adaptive_receive_enabled = FALSE;
			cw_in_sync = FALSE; cw_sync_parameters_internal ();
			cw_adaptive_receive_enabled = TRUE;
			cw_in_sync = FALSE; cw_sync_parameters_internal ();
		    }
	    }
}


/**
 * cw_end_receive_tone()
 *
 * Called on the end of a receive tone.  If the timestamp is NULL, the
 * current time is used.  On success, the routine adds a dot or dash to
 * the receive representation buffer, and returns 0.  On error, it
 * returns -1, with errno set to ERANGE if the call was not preceded by
 * a cw_start_receive_tone call, EINVAL if the timestamp passed in is not
 * valid, ENOENT if the tone length was out of bounds for the permissible
 * dot and dash lengths and fixed speed receiving is selected, ENOMEM if
 * the representation buffer is full, or EAGAIN if the tone was shorter
 * than the threshold for noise and was therefore ignored.
 */
int
cw_end_receive_tone (const struct timeval *timestamp)
{
	int		error;			/* Error status */
	int		element_usec;		/* Time difference in usecs */
	char		representation;		/* Tone dot or dash character */
	struct timeval	saved_end_timestamp;	/* Safe copy of end timestamp */

	/* The receive state is expected to be inside a tone. */
	if (cw_receive_state != RS_IN_TONE)
	    {
		errno = ERANGE;
		return RC_ERROR;
	    }

	/*
	 * Take a safe copy of the current end timestamp, in case we need
	 * to put it back if we decide this tone is really just noise.
	 */
	saved_end_timestamp.tv_sec	= cw_rr_end_timestamp.tv_sec;
	saved_end_timestamp.tv_usec	= cw_rr_end_timestamp.tv_usec;

	/* Save the timestamp passed in, or get one. */
	if (timestamp != NULL)
	    {
		if (timestamp->tv_sec < 0 || timestamp->tv_usec < 0
				|| timestamp->tv_usec >= USECS_PER_SEC)
		    {
			errno = EINVAL;
			return RC_ERROR;
		    }
		cw_rr_end_timestamp.tv_sec	= timestamp->tv_sec;
		cw_rr_end_timestamp.tv_usec	= timestamp->tv_usec;
	    }
	else
	    {
		if (gettimeofday (&cw_rr_end_timestamp, NULL) != 0)
		    {
			perror ("cw: gettimeofday");
			return RC_ERROR;
		    }
	    }

	/*
	 * Now we need to compare the timestamps to determine the length
	 * of the tone.
	 */
	element_usec = cw_compare_timestamps_internal
			(&cw_rr_start_timestamp, &cw_rr_end_timestamp);

	/*
	 * If the tone length is shorter than any noise cancelling threshold
	 * that has been set, then ignore this tone.  This means reverting
	 * to the state before the call to cw_start_receive_tone.  Now, by
	 * rights, we should use an extra state, RS_IN_FIRST_TONE, say, so
	 * that we know whether to go back to the idle state, or to after
	 * tone.  But to make things a touch simpler, here we can just look
	 * at the current receive buffer pointer - if it's zero, we came
	 * from idle, otherwise we came from after tone.
	 */
	if (cw_noise_spike_threshold > 0
			&& element_usec <= cw_noise_spike_threshold)
	    {
		if (cw_rr_current == 0)
			cw_receive_state = RS_IDLE;
		else
			cw_receive_state = RS_AFTER_TONE;

		/*
		 * Put the end tone timestamp back to how it was when we
		 * came in to the routine.
		 */
		cw_rr_end_timestamp.tv_sec	= saved_end_timestamp.tv_sec;
		cw_rr_end_timestamp.tv_usec	= saved_end_timestamp.tv_usec;

		/* Print out any state change debug. */
		if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
			fprintf (stderr,
				"cw: receive state ->%d\n", cw_receive_state);

		errno = EAGAIN;
		return RC_ERROR;
	    }

	/*
	 * At this point, we have to make a decision about the element
	 * just received.  Well use a routine that compares ranges to
	 * tell us what it thinks this element is.  If it can't decide,
	 * it will hand us back an error which we return to the caller.
	 * Otherwise, it returns a character, dot or dash, for us to
	 * buffer.
	 */
	error = cw_identify_receive_tone_internal (element_usec,
							&representation);
	if (error)
		return error;

	/*
	 * Update the averaging buffers so that the adaptive tracking of
	 * received Morse speed stays up to date.  But only do this if
	 * we have set adaptive receiving; don't fiddle about trying to
	 * track for fixed speed receive.
	 */
	if (cw_adaptive_receive_enabled)
		cw_update_adaptive_tracking_internal (element_usec,
							representation);

	/* Add the representation character to the receive buffer. */
	cw_receive_representation_buffer[cw_rr_current++]
							= representation;

	/*
	 * We just added a representation to the receive buffer.  If it's
	 * full, then we have to do something, even though it's unlikely.
	 * What we'll do is make a unilateral declaration that if we get
	 * this far, we go to end-of-char error state automatically.
	 */
	if (cw_rr_current == RECEIVE_CAPACITY - 1)
	    {
		cw_receive_state = RS_ERR_CHAR;

		/* Print out any state change debug. */
		if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
			fprintf (stderr,
				"cw: receive state ->%d\n", cw_receive_state);

		errno = ENOMEM;
		return RC_ERROR;
	    }

	/* All is well.  Move to the more normal after-tone state. */
	cw_receive_state = RS_AFTER_TONE;

	/* Print out any state change debug. */
	if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
		fprintf (stderr,
			"cw: receive state ->%d\n", cw_receive_state);

	return RC_SUCCESS;
}


/**
 * cw_receive_buffer_element_internal()
 *
 * Adds either a dot or a dash to the receive representation buffer.  If
 * the timestamp is NULL, the current timestamp is used.  The receive state
 * is updated as if we had just received a call to cw_end_receive_tone.
 */
static int
cw_receive_buffer_element_internal (const struct timeval *timestamp,
				    char element)
{
	/*
	 * The receive state is expected to be idle or after a tone in
	 * order to use this routine.
	 */
	if (cw_receive_state != RS_IDLE
			&& cw_receive_state != RS_AFTER_TONE)
	    {
		errno = ERANGE;
		return RC_ERROR;
	    }

	/*
	 * This routine functions as if we have just seen a tone end, yet
	 * without really seeing a tone start.  To keep timing information
	 * for routines that come later, we need to make sure that the
	 * end of tone timestamp is set here.  This is because the
	 * receive representation routine looks at the time since the last
	 * end of tone to determine whether we are at the end of a word,
	 * or just at the end of a character.  It doesn't matter that the
	 * start of tone timestamp is never set - this is just for timing
	 * the tone length, and we don't need to do that since we've
	 * already been told whether this is a dot or a dash.
	 */
	if (timestamp != NULL)
	    {
		if (timestamp->tv_sec < 0 || timestamp->tv_usec < 0
				|| timestamp->tv_usec >= USECS_PER_SEC)
		    {
			errno = EINVAL;
			return RC_ERROR;
		    }
		cw_rr_end_timestamp.tv_sec	= timestamp->tv_sec;
		cw_rr_end_timestamp.tv_usec	= timestamp->tv_usec;
	    }
	else
	    {
		if (gettimeofday (&cw_rr_end_timestamp, NULL) != 0)
		    {
			perror ("cw: gettimeofday");
			return RC_ERROR;
		    }
	    }

	/* Add the element to the receive representation buffer. */
	cw_receive_representation_buffer[cw_rr_current++] = element;

	/*
	 * We just added an element to the receive buffer.  As above, if
	 * it's full, then we have to do something, even though it's
	 * unlikely to actually be full.
	 */
	if (cw_rr_current == RECEIVE_CAPACITY - 1)
	    {
		cw_receive_state = RS_ERR_CHAR;

		/* Print out any state change debug. */
		if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
			fprintf (stderr,
				"cw: receive state ->%d\n", cw_receive_state);

		errno = ENOMEM;
		return RC_ERROR;
	    }

	/*
	 * Since we effectively just saw the end of a tone, move to the
	 * after-tone state.
	 */
	cw_receive_state = RS_AFTER_TONE;

	/* Print out any state change debug. */
	if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
		fprintf (stderr,
			"cw: receive state ->%d\n", cw_receive_state);

	return RC_SUCCESS;
}


/**
 * cw_receive_buffer_dot()
 * cw_receive_buffer_dash()
 *
 * Adds either a dot or a dash to the receive representation buffer.  If
 * the timestamp is NULL, the current timestamp is used.  These routines
 * are for callers that have already determined whether a dot or dash was
 * received by a method other than calling the routines cw_start_receive_tone
 * and cw_end_receive_tone.  On success, the relevant element is added to
 * the receive representation buffer.  On error, the routines return -1,
 * with errno set to ERANGE if preceded by a cw_start_receive_tone call
 * with no matching cw_end_receive_tone or if an error condition currently
 * exists within the receive buffer, or ENOMEM if the receive representation
 * buffer is full.
 */
int
cw_receive_buffer_dot  (const struct timeval *timestamp)
{
	return cw_receive_buffer_element_internal (timestamp,
		       					CW_DOT_REPRESENTATION);
}
int
cw_receive_buffer_dash (const struct timeval *timestamp)
{
	return cw_receive_buffer_element_internal (timestamp,
		       					CW_DASH_REPRESENTATION);
}


/**
 * cw_receive_representation()
 *
 * Returns the current buffered representation from the receive buffer.
 * On success, the function returns 0, and fills in representation with the
 * contents of the current representation buffer.  On error, it returns -1,
 * with errno set to ERANGE if not preceded by a cw_end_receive_tone call,
 * a prior successful cw_receive_representation call, or a prior
 * cw_receive_buffer_dot or cw_receive_buffer_dash, EINVAL if the timestamp
 * passed in is invalid, or EAGAIN if the call is made too early to determine
 * whether a complete representation has yet been placed in the buffer
 * (that is, less than the inter-character gap period has elapsed since the
 * last cw_end_receive_tone or cw_receive_buffer_dot/dash call).  end_of_word
 * indicates that the delay after the last tone received is longer that the
 * inter-word gap, and error_flag indicates that the representation was
 * terminated by an error condition.
 */
int
cw_receive_representation (const struct timeval *timestamp,
			   char *representation, int *end_of_word,
			   int *error_flag)
{
	int		space_usec;		/* Time difference in usecs */
	struct timeval	now_timestamp;		/* The current time of day */

	/*
	 * If the the receive state indicates that we have in our possession
	 * a completed representation at the end of word, just [re-]return it.
	 */
	if (cw_receive_state == RS_END_WORD
			|| cw_receive_state == RS_ERR_WORD)
	    {
		/* Return the representation buffered. */
		if (end_of_word != NULL)
			*end_of_word	= TRUE;
		if (error_flag != NULL)
			*error_flag	= (cw_receive_state == RS_ERR_WORD);
		*representation		= ASC_NUL;
		strncat (representation, cw_receive_representation_buffer,
								cw_rr_current);
		return RC_SUCCESS;
	    }

	/*
	 * If the receive state is also not end-of-char, and also not after
	 * a tone, then we are idle or in a tone; in these cases, we return
	 * ERANGE.
	 */
	if (cw_receive_state != RS_AFTER_TONE
			&& cw_receive_state != RS_END_CHAR
			&& cw_receive_state != RS_ERR_CHAR)
	    {
		errno = ERANGE;
		return RC_ERROR;
	    }

	/*
	 * We now know the state is after a tone, or end-of-char, perhaps
	 * with error.  For all three of these cases, we're going to [re-]
	 * compare the timestamp with the end of tone timestamp.  This
	 * could mean that in the case of end-of-char, we revise our
	 * opinion on later calls to end-of-word.  This is correct, since
	 * it models reality.
	 */

	/*
	 * If we weren't supplied with one, get the current timestamp, for
	 * comparison against the latest end timestamp.
	 */
	if (timestamp != NULL)
	    {
		if (timestamp->tv_sec < 0 || timestamp->tv_usec < 0
				|| timestamp->tv_usec >= USECS_PER_SEC)
		    {
			errno = EINVAL;
			return RC_ERROR;
		    }
		now_timestamp.tv_sec	= timestamp->tv_sec;
		now_timestamp.tv_usec	= timestamp->tv_usec;
	    }
	else
	    {
		if (gettimeofday (&now_timestamp, NULL) != 0)
		    {
			perror ("cw: gettimeofday");
			return RC_ERROR;
		    }
	    }

	/*
	 * Now we need to compare the timestamps to determine the length
	 * of the inter-tone gap.
	 */
	space_usec = cw_compare_timestamps_internal
			(&cw_rr_end_timestamp, &now_timestamp);

	/* Synchronize low level timings if required */
	cw_sync_parameters_internal ();

	/*
	 * If the timing was, within tolerance, a character space, then
	 * that is what we'll call it.  In this case, we complete the
	 * representation and return it.
	 */
	if (space_usec >= cw_eoc_range_minimum
			&& space_usec <= cw_eoc_range_maximum)
	    {
		/*
		 * If state is after tone, we can validly move at this point
		 * to end of char.  If it's not, then we're at end char or
		 * at end char with error already, so leave it.
		 */
		if (cw_receive_state == RS_AFTER_TONE)
			cw_receive_state = RS_END_CHAR;

		/* Print out any state change debug. */
		if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
			fprintf (stderr,
				"cw: receive state ->%d\n", cw_receive_state);

		/* Return the representation buffered. */
		if (end_of_word != NULL)
			*end_of_word	= FALSE;
		if (error_flag != NULL)
			*error_flag	= (cw_receive_state == RS_ERR_CHAR);
		*representation		= ASC_NUL;
		strncat (representation, cw_receive_representation_buffer,
								cw_rr_current);
		return RC_SUCCESS;
	    }

	/*
	 * If the timing indicated a word space, again we complete the
	 * representation and return it.  In this case, we also need to
	 * inform the client that this looked like the end of a word, not
	 * just a character.  And, we don't care about the maximum period,
	 * only that it exceeds the low end of the range.
	 */
	if (space_usec > cw_eoc_range_maximum)
	    {
		/*
		 * In this case, we have a transition to an end of word case.
		 * If we were sat in an error case, we need to move to the
		 * correct end of word state, otherwise, at after tone, we
		 * go safely to the non-error end of word.
		 */
		if (cw_receive_state == RS_ERR_CHAR)
			cw_receive_state = RS_ERR_WORD;
		else
			cw_receive_state = RS_END_WORD;

		/* Print out any state change debug. */
		if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
			fprintf (stderr,
				"cw: receive state ->%d\n", cw_receive_state);

		/* Return the representation buffered. */
		if (end_of_word != NULL)
			*end_of_word	= TRUE;
		if (error_flag != NULL)
			*error_flag	= (cw_receive_state == RS_ERR_WORD);
		*representation		= ASC_NUL;
		strncat (representation, cw_receive_representation_buffer,
								cw_rr_current);
		return RC_SUCCESS;
	    }

	/*
	 * If none of these conditions holds, then we cannot yet make a
	 * judgement on what we have in the buffer, so return EAGAIN.
	 */
	errno = EAGAIN;
	return RC_ERROR;
}


/**
 * cw_receive_character()
 *
 * Returns the current buffered character from the representation buffer.
 * On success, the function returns 0, and fills in unsigned char *c with the
 * contents of the current representation buffer, translated into a character.
 * On error, it returns -1, with errno set to ERANGE if not preceded by a
 * cw_end_receive_tone call, a prior successful cw_receive_character
 * call, or a cw_receive_buffer_dot or cw_receive_buffer dash call, EINVAL
 * if the timestamp passed in is invalid, or EAGAIN if the call is made too
 * early to determine whether a complete character has yet been placed in the
 * buffer (that is, less than the inter-character gap period has elapsed since
 * the last cw_end_receive_tone or cw_receive_buffer_dot/dash call).
 * end_of_word indicates that the delay after the last tone received is
 * longer that the inter-word gap, and error_flag indicates that the character
 * was terminated by an error condition.
 */
int
cw_receive_character (const struct timeval *timestamp,
		      unsigned char *c,
		      int *end_of_word, int *error_flag)
{
	int			error;		/* Error status */
	int			lend_of_word;	/* Local end of word flag */
	int			lerror_flag;	/* Local error flag */
	const cw_entry_t	*cwptr;		/* Pointer to table entry */
	char			representation[ RECEIVE_CAPACITY + 1 ];
						/* Representation buffer */

	/* See if we can obtain a representation from the receive routines. */
	error = cw_receive_representation (timestamp, representation,
						&lend_of_word, &lerror_flag);
	if (error)
		return error;

	/* Look up the representation using the lookup functions. */
	cwptr = cw_lookup_representation_internal (representation);
	if (cwptr == NULL)
	    {
		errno = ENOENT;
		return RC_ERROR;
	    }

	/* If we got this far, all is well, so return what we uncovered. */
	if (c != NULL)
		*c		= cwptr->character;
	if (end_of_word != NULL)
		*end_of_word	= lend_of_word;
	if (error_flag != NULL)
		*error_flag	= lerror_flag;
	return RC_SUCCESS;
}


/**
 * cw_clear_receive_buffer()
 *
 * Clears the receive representation buffer to receive tones again.  This
 * routine must be called after successful, or terminating,
 * cw_receive_representation or cw_receive_character calls, to clear the
 * states and prepare the buffer to receive more tones.
 */
void
cw_clear_receive_buffer ()
{
	cw_rr_current		= 0;
	cw_receive_state	= RS_IDLE;

	/* Print out any state change debug. */
	if (cw_get_debug_flags () & CW_DEBUG_RECEIVE_STATES)
		fprintf (stderr,
			"cw: receive state ->%d\n", cw_receive_state);

}


/**
 * cw_get_receive_buffer_capacity()
 *
 * Returns the number of entries the receive buffer can accommodate.  The
 * maximum number of character written out by cw_receive_representation is
 * the capacity + 1, the extra character being used for the terminating
 * NUL.
 */
int
cw_get_receive_buffer_capacity ()
{
	return RECEIVE_CAPACITY;
}


/**
 * cw_get_receive_buffer_length()
 *
 * Returns the number of elements currently pending in the receive buffer.
 */
int
cw_get_receive_buffer_length ()
{
	return cw_rr_current;
}


/*
 * cw_keyer_clock_internal implements the following state graph:
 *
 *        +-----------------------------------------------------+
 *        |          (all latches clear)                        |
 *        |                                     (dot latch)     |
 *        |                          +--------------------------+
 *        |                          |                          |
 *        |                          v                          |
 *        |      +-------------> KS_IN_DOT_[A|B] -------> KS_AFTER_DOT_[A|B]
 *        |      |(dot paddle)       ^            (delay)       |
 *        |      |                   |                          |(dash latch/
 *        |      |                   +------------+             | _B)
 *        v      |                                |             |
 * --> KS_IDLE --+                   +--------------------------+
 *        ^      |                   |            |
 *        |      |                   |            +-------------+(dot latch/
 *        |      |                   |                          | _B)
 *        |      |(dash paddle)      v            (delay)       |
 *        |      +-------------> KS_IN_DASH_[A|B] -------> KS_AFTER_DASH_[A|B]
 *        |                          ^                          |
 *        |                          |                          |
 *        |                          +--------------------------+
 *        |                                     (dash latch)    |
 *        |          (all latches clear)                        |
 *        +-----------------------------------------------------+
 */
static	enum {KS_IDLE,KS_IN_DOT_A,KS_IN_DASH_A,KS_AFTER_DOT_A,KS_AFTER_DASH_A,
		      KS_IN_DOT_B,KS_IN_DASH_B,KS_AFTER_DOT_B,KS_AFTER_DASH_B}
				cw_keyer_state = KS_IDLE;
						/* Indicates keyer state */

/**
 * cw_keyer_clock_internal()
 *
 * Informs the internal keyer states that the itimer expired, and we
 * received SIGALRM.
 */
static void
cw_keyer_clock_internal (int sig)
{
	/* Synchronize low level timing parameters if required. */
	cw_sync_parameters_internal ();

	/* Decide what to do based on the current state. */
	switch (cw_keyer_state)
	    {
		/* Ignore calls if our state is idle. */
		case KS_IDLE:
			return;

		/*
		 * If we were in a dot, turn off tones and begin the after-dot
		 * delay.  Do much the same if we are in a dash.  No routine
		 * status checks are made since we are in a signal handler,
		 * and can't readily return error codes to the client.
		 */
		case KS_IN_DOT_A:
		case KS_IN_DOT_B:
			cw_sound_internal (TONE_SILENT);
			cw_key_control_internal (FALSE);
			cw_request_timeout_internal (cw_end_of_ele_delay, NULL);
			if (cw_keyer_state == KS_IN_DOT_A)
				cw_keyer_state = KS_AFTER_DOT_A;
			else
				cw_keyer_state = KS_AFTER_DOT_B;

			/* Print any required debug output. */
			if (cw_get_debug_flags () & CW_DEBUG_KEYER_STATES)
				fprintf (stderr, "cw: keyer ->%d\n",
								cw_keyer_state);
			break;

		case KS_IN_DASH_A:
		case KS_IN_DASH_B:
			cw_sound_internal (TONE_SILENT);
			cw_key_control_internal (FALSE);
			cw_request_timeout_internal (cw_end_of_ele_delay, NULL);
			if (cw_keyer_state == KS_IN_DASH_A)
				cw_keyer_state = KS_AFTER_DASH_A;
			else
				cw_keyer_state = KS_AFTER_DASH_B;

			/* Print any required debug output. */
			if (cw_get_debug_flags () & CW_DEBUG_KEYER_STATES)
				fprintf (stderr, "cw: keyer ->%d\n",
								cw_keyer_state);
			break;

		/*
		 * If we have just finished a dot or a dash and its post-
		 * element delay, then reset the latches as appropriate.
		 * Next, if in a _B state, go straight to the opposite
		 * element state.  If in an _A state, check the latch states;
		 * if the opposite latch is set TRUE, then do the iambic
		 * thing and alternate dots and dashes.  If the same latch
		 * is TRUE, repeat.  And if nothing is true, then revert to
		 * idling.
		 */
		case KS_AFTER_DOT_A:
		case KS_AFTER_DOT_B:
			if (!cw_ik_dot_paddle)
				cw_ik_dot_latch = FALSE;
			if (cw_keyer_state == KS_AFTER_DOT_B)
			    {
				cw_sound_internal (cw_frequency);
				cw_key_control_internal (TRUE);
				cw_request_timeout_internal
						(cw_send_dash_length, NULL);
				cw_keyer_state = KS_IN_DASH_A;
			    }
			else if (cw_ik_dash_latch)
			    {
				cw_sound_internal (cw_frequency);
				cw_key_control_internal (TRUE);
				cw_request_timeout_internal
						(cw_send_dash_length, NULL);
				if (cw_ik_curtis_b_latch)
				    {
					cw_ik_curtis_b_latch = FALSE;
					cw_keyer_state = KS_IN_DASH_B;
				    }
				else
					cw_keyer_state = KS_IN_DASH_A;
			    }
			else if (cw_ik_dot_latch)
			    {
				cw_sound_internal (cw_frequency);
				cw_key_control_internal (TRUE);
				cw_request_timeout_internal
						(cw_send_dot_length, NULL);
				cw_keyer_state = KS_IN_DOT_A;
			    }
			else
			    {
				cw_keyer_state = KS_IDLE;
				cw_release_timeouts_internal();
			    }

			/* Print any required debug output. */
			if (cw_get_debug_flags () & CW_DEBUG_KEYER_STATES)
				fprintf (stderr, "cw: keyer ->%d\n",
								cw_keyer_state);
			break;

		case KS_AFTER_DASH_A:
		case KS_AFTER_DASH_B:
			if (!cw_ik_dash_paddle)
				cw_ik_dash_latch = FALSE;
			if (cw_keyer_state == KS_AFTER_DASH_B)
			    {
				cw_sound_internal (cw_frequency);
				cw_key_control_internal (TRUE);
				cw_request_timeout_internal
						(cw_send_dot_length, NULL);
				cw_keyer_state = KS_IN_DOT_A;
	    		    }
			else if (cw_ik_dot_latch)
			    {
				cw_sound_internal (cw_frequency);
				cw_key_control_internal (TRUE);
				cw_request_timeout_internal
						(cw_send_dot_length, NULL);
				if (cw_ik_curtis_b_latch)
				    {
					cw_ik_curtis_b_latch = FALSE;
					cw_keyer_state = KS_IN_DOT_B;
				    }
				else
					cw_keyer_state = KS_IN_DOT_A;
			    }
			else if (cw_ik_dash_latch)
			    {
				cw_sound_internal (cw_frequency);
				cw_key_control_internal (TRUE);
				cw_request_timeout_internal
						(cw_send_dash_length, NULL);
				cw_keyer_state = KS_IN_DASH_A;
			    }
			else
			    {
				cw_keyer_state = KS_IDLE;
				cw_release_timeouts_internal();
			    }

			/* Print any required debug output. */
			if (cw_get_debug_flags () & CW_DEBUG_KEYER_STATES)
				fprintf (stderr, "cw: keyer ->%d\n",
								cw_keyer_state);
			break;
	    }
}


/**
 * cw_keyer_paddle_event()
 *
 * Informs the internal keyer states that the keyer paddles have changed
 * state.  The new paddle states are recorded, and if either transition from
 * FALSE to TRUE, paddle latches, for iambic functions, are also set.
 * On success, the routine returns 0.  On error, it returns -1, with errno
 * set to EBUSY if the tone queue or straight key are using the console
 * speaker and keying system.
 *
 * If appropriate, this routine starts the keyer functions sending the
 * relevant element.  Element send and timing occurs in the background, so
 * this routine returns almost immediately.  See cw_keyer_element_wait and
 * cw_keyer_wait for details about how to check the current status of
 * iambic keyer background processing.
 */
int
cw_keyer_paddle_event (int dot_paddle_state, int dash_paddle_state)
{
	/*
	 * If the tone queue or the straight key are busy, this is going to
	 * conflict with our use of the console sounder and keying system.
	 * So return an error status in this case.
	 */
	if (cw_straightkey_busy () || cw_tone_busy ())
	{
		errno = EBUSY;
		return RC_ERROR;
	}

	/* Clean up and save the paddle states passed in. */
	cw_ik_dot_paddle	= (dot_paddle_state  != 0);
	cw_ik_dash_paddle	= (dash_paddle_state != 0);

	/*
	 * Update the paddle latches if either paddle goes TRUE.  The
	 * latches are checked in the signal handler, so if the paddles go
	 * back to FALSE during this element, the item still gets actioned.
	 * The signal handler is also responsible for clearing down the
	 * latches.
	 */
	if (cw_ik_dot_paddle)
		cw_ik_dot_latch  = TRUE;
	if (cw_ik_dash_paddle)
		cw_ik_dash_latch = TRUE;

	/*
	 * If in Curtis mode B, make a special check for both paddles TRUE
	 * at the same time.  This flag is checked by the signal handler,
	 * to determine whether to add mode B trailing timing elements.
	 */
	if (cw_ik_curtis_mode_b
			&& cw_ik_dot_paddle && cw_ik_dash_paddle)
		cw_ik_curtis_b_latch = TRUE;

	/* Print any required debug output. */
	if (cw_get_debug_flags () & CW_DEBUG_KEYER_STATES)
		fprintf (stderr,
			"cw: keyer paddles %d,%d, latches %d,%d, curtis_b %d\n",
				cw_ik_dot_paddle, cw_ik_dash_paddle,
				cw_ik_dot_latch,  cw_ik_dash_latch,
				cw_ik_curtis_b_latch);

	/* If the current state is idle, give the state process a nudge. */
	if (cw_keyer_state == KS_IDLE)
	    {
		if (cw_ik_dot_paddle)
		    {
			/* Pretend we just finished a dash. */
			if (cw_ik_curtis_b_latch)
				cw_keyer_state = KS_AFTER_DASH_B;
			else
				cw_keyer_state = KS_AFTER_DASH_A;
			cw_request_timeout_internal
					(0, cw_keyer_clock_internal);
		    }
		else
			if (cw_ik_dash_paddle)
			    {
				/* Pretend we just finished a dot. */
				if (cw_ik_curtis_b_latch)
					cw_keyer_state = KS_AFTER_DOT_B;
				else
					cw_keyer_state = KS_AFTER_DOT_A;
				cw_request_timeout_internal
						(0, cw_keyer_clock_internal);
			    }
	    }

	/* Print any additional required debug output. */
	if (cw_get_debug_flags () & CW_DEBUG_KEYER_STATES)
		fprintf (stderr, "cw: keyer ->%d\n", cw_keyer_state);

	return RC_SUCCESS;
}


/**
 * cw_keyer_dot_paddle_event()
 * cw_keyer_dash_paddle_event()
 *
 * Convenience functions to alter the state of just one of the two iambic
 * keyer paddles.  The other paddle state of the paddle pair remains
 * unchanged.
 *
 * See cw_keyer_paddle_event for details of iambic keyer background
 * processing, and how to check its status.
 */
int
cw_keyer_dot_paddle_event (int dot_paddle_state)
{
	return cw_keyer_paddle_event (dot_paddle_state, cw_ik_dash_paddle);
}
int
cw_keyer_dash_paddle_event (int dash_paddle_state)
{
	return cw_keyer_paddle_event (cw_ik_dot_paddle, dash_paddle_state);
}


/**
 * cw_get_keyer_paddles()
 *
 * Returns the current saved states of the two paddles.
 */
void
cw_get_keyer_paddles (int *dot_paddle_state, int *dash_paddle_state)
{
	if (dot_paddle_state != NULL)
		*dot_paddle_state	= cw_ik_dot_paddle;
	if (dash_paddle_state != NULL)
		*dash_paddle_state	= cw_ik_dash_paddle;
}


/**
 * cw_get_keyer_paddle_latches()
 *
 * Returns the current saved states of the two paddle latches.  A paddle
 * latches is set to TRUE when the paddle state becomes true, and is
 * cleared if the paddle state is FALSE when the element finishes sending.
 */
void
cw_get_keyer_paddle_latches (int *dot_paddle_latch_state,
				int *dash_paddle_latch_state)
{
	if (dot_paddle_latch_state != NULL)
		*dot_paddle_latch_state		= cw_ik_dot_latch;
	if (dash_paddle_latch_state != NULL)
		*dash_paddle_latch_state	= cw_ik_dash_latch;
}


/**
 * cw_keyer_busy()
 *
 * Indicates if the keyer is busy; returns TRUE if the keyer is going
 * through a dot or dash cycle, FALSE if the keyer is idle.
 */
int
cw_keyer_busy ()
{
	return (cw_keyer_state != KS_IDLE);
}


/**
 * cw_keyer_element_wait()
 *
 * Waits until the end of the current element, dot or dash, from the
 * keyer.  This routine returns 0 on success.  On error, it returns -1, with
 * errno set to EDEADLK if SIGALRM is blocked.
 */
int
cw_keyer_element_wait()
{
	int			error;		/* Error status */

	/* Check that SIGALRM is not blocked. */
	error = cw_check_signal_mask_internal ();
	if (error)
		return error;

	/*
	 * First wait for the state to move to idle (or just do nothing
	 * if it's not), or to one of the after- states.
	 */
	while (cw_keyer_state != KS_IDLE
			&& cw_keyer_state != KS_AFTER_DOT_A
			&& cw_keyer_state != KS_AFTER_DOT_B
			&& cw_keyer_state != KS_AFTER_DASH_A
			&& cw_keyer_state != KS_AFTER_DASH_B)
		cw_signal_wait_internal ();

	/*
	 * Now wait for the state to move to idle (unless it is, or was,
	 * already), or one of the in- states, at which point we know
	 * we're actually at the end of the element we were in when we
	 * entered this routine.
	 */
	while (cw_keyer_state != KS_IDLE
			&& cw_keyer_state != KS_IN_DOT_A
			&& cw_keyer_state != KS_IN_DOT_B
			&& cw_keyer_state != KS_IN_DASH_A
			&& cw_keyer_state != KS_IN_DASH_B)
		cw_signal_wait_internal ();

	return RC_SUCCESS;
}


/**
 * cw_keyer_wait()
 *
 * Waits for the current keyer cycle to complete.  The routine returns 0
 * on success.  On error, it returns -1, with errno set to EDEADLK if
 * SIGALRM is blocked or if either paddle state is TRUE.
 */
int
cw_keyer_wait ()
{
	int			error;		/* Error status */

	/* Check that SIGALRM is not blocked. */
	error = cw_check_signal_mask_internal ();
	if (error)
		return error;

	/* 
	 * Check that neither paddle is TRUE; if either is, then the
	 * signal cycle is going to continue forever, and we'll never
	 * return from this routine.
	 */
	if (cw_ik_dot_paddle || cw_ik_dash_paddle)
	    {
		errno = EDEADLK;
		return RC_ERROR;
	    }

	/* Wait for the keyer state to go idle. */
	while (cw_keyer_state != KS_IDLE)
		cw_signal_wait_internal ();

	return RC_SUCCESS;
}


/**
 * cw_straightkey_event()
 *
 * Informs the library that the straight key has changed state.  This routine
 * returns 0 on success.  On error, it returns -1, with errno set to EBUSY
 * if the tone queue or iambic keyer are using the console speaker and keying
 * control system.  If key_state indicates no change of state, the call is
 * ignored.
 */
int
cw_straightkey_event (int key_state)
{
	/*
	 * If the tone queue or the keyer are busy, we can't use the console
	 * sounder or the key control system.
	 */
	if (cw_tone_busy () || cw_keyer_busy ())
	{
		errno = EBUSY;
		return RC_ERROR;
	}

	/* If the key state did not change, ignore the call. */
	if ((cw_sk_key_down && !key_state)
				|| (!cw_sk_key_down && key_state))
	    {
		/* Save the new key state. */
		cw_sk_key_down	= (key_state != 0);

		/* Print out any debug about the new key state. */
		if (cw_get_debug_flags() & CW_DEBUG_STRAIGHTKEY)
			fprintf (stderr, "cw: straight key state ->%s\n",
						cw_sk_key_down ? "DOWN" : "UP");

		/* Do tones and keying to match the new key state. */
		if (cw_sk_key_down)
		    {
			cw_sound_internal (cw_frequency);
			cw_key_control_internal (TRUE);
		    }
		else
		    {
			cw_sound_internal (TONE_SILENT);
			cw_key_control_internal (FALSE);
		    }
	    }

	return RC_SUCCESS;
}


/**
 * cw_get_straightkey_state()
 *
 * Returns the current saved state of the straight key; TRUE if the key is
 * down, FALSE if up.
 */
int
cw_get_straightkey_state ()
{
	return cw_sk_key_down;
}


/**
 * cw_straightkey_busy()
 *
 * Returns TRUE if the straight key is busy, FALSE if not.  This routine is
 * just a pseudonym for cw_get_straightkey_state, and exists to fill a hole
 * in the API naming conventions.
 */
int
cw_straightkey_busy ()
{
	return cw_sk_key_down;
}