1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
|
// Copyright © 2005-2007 Jens Gulden
// Copyright © 2011-2011 Diego Elio Pettenò
// Copyright © 2013 Michael McMaster <michael@codesrc.com>
// SPDX-FileCopyrightText: 2005 The unpaper authors
//
// SPDX-License-Identifier: GPL-2.0-only
/* --- image processing --------------------------------------------------- */
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "imageprocess.h"
#include "parse.h" //for maksOverlapAny
#include "tools.h"
#include "unpaper.h"
/****************************************************************************
* image processing functions *
****************************************************************************/
static inline bool inMask(int x, int y, Mask mask) {
return (x >= mask[LEFT]) && (x <= mask[RIGHT]) && (y >= mask[TOP]) &&
(y <= mask[BOTTOM]);
}
/**
* Tests if masks a and b overlap.
*/
static inline bool masksOverlap(Mask a, Mask b) {
return (inMask(a[LEFT], a[TOP], b) || inMask(a[RIGHT], a[BOTTOM], b));
}
/**
* Tests if at least one mask in masks overlaps with m.
*/
static bool masksOverlapAny(Mask m,
Mask *masks, int masksCount) {
for (int i = 0; i < masksCount; i++) {
if (masksOverlap(m, masks[i])) {
return true;
}
}
return false;
}
/* --- deskewing ---------------------------------------------------------- */
/**
* Returns the maximum peak value that occurs when shifting a rotated virtual
* line above the image, starting from one edge of an area and moving towards
* the middle point of the area. The peak value is calculated by the absolute
* difference in the average blackness of pixels that occurs between two single
* shifting steps.
*
* @param m ascending slope of the virtually shifted (m=tan(angle)). Mind that
* this is negative for negative radians.
*/
static int detectEdgeRotationPeak(float m, int shiftX, int shiftY,
AVFrame *image, Mask mask) {
int width = mask[RIGHT] - mask[LEFT] + 1;
int height = mask[BOTTOM] - mask[TOP] + 1;
int mid;
int half;
int sideOffset;
int outerOffset;
float X; // unrounded coordinates
float Y;
float stepX;
float stepY;
int x[MAX_ROTATION_SCAN_SIZE];
int y[MAX_ROTATION_SCAN_SIZE];
int xx;
int yy;
int dep;
int pixel;
int blackness;
int lastBlackness = 0;
int diff = 0;
int maxDiff = 0;
int maxBlacknessAbs = 255 * deskewScanSize * deskewScanDepth;
int maxDepth;
int accumulatedBlackness = 0;
if (shiftY == 0) { // horizontal detection
if (deskewScanSize == -1) {
deskewScanSize = height;
}
limit(&deskewScanSize, MAX_ROTATION_SCAN_SIZE);
limit(&deskewScanSize, height);
maxDepth = width / 2;
half = deskewScanSize / 2;
outerOffset = (int)(fabsf(m) * half);
mid = height / 2;
sideOffset =
shiftX > 0 ? mask[LEFT] - outerOffset : mask[RIGHT] + outerOffset;
X = sideOffset + half * m;
Y = mask[TOP] + mid - half;
stepX = -m;
stepY = 1.0;
} else { // vertical detection
if (deskewScanSize == -1) {
deskewScanSize = width;
}
limit(&deskewScanSize, MAX_ROTATION_SCAN_SIZE);
limit(&deskewScanSize, width);
maxDepth = height / 2;
half = deskewScanSize / 2;
outerOffset = (int)(fabsf(m) * half);
mid = width / 2;
sideOffset =
shiftY > 0 ? mask[TOP] - outerOffset : mask[BOTTOM] + outerOffset;
X = mask[LEFT] + mid - half;
Y = sideOffset - (half * m);
stepX = 1.0;
stepY = -m; // (line goes upwards for negative degrees)
}
// fill buffer with coordinates for rotated line in first unshifted position
for (int lineStep = 0; lineStep < deskewScanSize; lineStep++) {
x[lineStep] = (int)X;
y[lineStep] = (int)Y;
X += stepX;
Y += stepY;
}
// now scan for edge, modify coordinates in buffer to shift line into search
// direction (towards the middle point of the area) stop either when
// detectMaxDepth steps are shifted, or when diff falls back to less than
// detectThreshold*maxDiff
for (dep = 0; (accumulatedBlackness < maxBlacknessAbs) && (dep < maxDepth);
dep++) {
// calculate blackness of virtual line
blackness = 0;
for (int lineStep = 0; lineStep < deskewScanSize; lineStep++) {
xx = x[lineStep];
x[lineStep] += shiftX;
yy = y[lineStep];
y[lineStep] += shiftY;
if (inMask(xx, yy, mask)) {
pixel = getPixelDarknessInverse(xx, yy, image);
blackness += (255 - pixel);
}
}
diff = blackness - lastBlackness;
lastBlackness = blackness;
if (diff >= maxDiff) {
maxDiff = diff;
}
accumulatedBlackness += blackness;
}
if (dep < maxDepth) { // has not terminated only because middle was reached
return maxDiff;
} else {
return 0;
}
}
/**
* Detects rotation at one edge of the area specified by left, top, right,
* bottom. Which of the four edges to take depends on whether shiftX or shiftY
* is non-zero, and what sign this shifting value has.
*/
static float detectEdgeRotation(int shiftX, int shiftY, AVFrame *image,
Mask mask) {
// either shiftX or shiftY is 0, the other value is -i|+i
// depending on shiftX/shiftY the start edge for shifting is determined
int maxPeak = 0;
float detectedRotation = 0.0;
// iteratively increase test angle, alternating between +/- sign while
// increasing absolute value
for (float rotation = 0.0; rotation <= deskewScanRangeRad;
rotation = (rotation >= 0.0) ? -(rotation + deskewScanStepRad)
: -rotation) {
float m = tanf(rotation);
int peak = detectEdgeRotationPeak(m, shiftX, shiftY, image, mask);
if (peak > maxPeak) {
detectedRotation = rotation;
maxPeak = peak;
}
}
return detectedRotation;
}
/**
* Detect rotation of a whole area.
* Angles between -deskewScanRange and +deskewScanRange are scanned, at either
* the horizontal or vertical edges of the area specified by left, top, right,
* bottom.
*/
float detectRotation(AVFrame *image, Mask mask) {
float rotation[4];
int count = 0;
float total;
float average;
float deviation;
if ((deskewScanEdges & 1 << LEFT) != 0) {
// left
rotation[count] = detectEdgeRotation(1, 0, image, mask);
if (verbose >= VERBOSE_NORMAL) {
printf("detected rotation left: [%d,%d,%d,%d]: %f\n", mask[LEFT],
mask[TOP], mask[RIGHT], mask[BOTTOM], rotation[count]);
}
count++;
}
if ((deskewScanEdges & 1 << TOP) != 0) {
// top
rotation[count] = -detectEdgeRotation(0, 1, image, mask);
if (verbose >= VERBOSE_NORMAL) {
printf("detected rotation top: [%d,%d,%d,%d]: %f\n", mask[LEFT],
mask[TOP], mask[RIGHT], mask[BOTTOM], rotation[count]);
}
count++;
}
if ((deskewScanEdges & 1 << RIGHT) != 0) {
// right
rotation[count] = detectEdgeRotation(-1, 0, image, mask);
if (verbose >= VERBOSE_NORMAL) {
printf("detected rotation right: [%d,%d,%d,%d]: %f\n", mask[LEFT],
mask[TOP], mask[RIGHT], mask[BOTTOM], rotation[count]);
}
count++;
}
if ((deskewScanEdges & 1 << BOTTOM) != 0) {
// bottom
rotation[count] = -detectEdgeRotation(0, -1, image, mask);
if (verbose >= VERBOSE_NORMAL) {
printf("detected rotation bottom: [%d,%d,%d,%d]: %f\n", mask[LEFT],
mask[TOP], mask[RIGHT], mask[BOTTOM], rotation[count]);
}
count++;
}
total = 0.0;
for (int i = 0; i < count; i++) {
total += rotation[i];
}
average = total / count;
total = 0.0;
for (int i = 0; i < count; i++) {
total += powf(rotation[i] - average, 2);
}
deviation = sqrtf(total);
if (verbose >= VERBOSE_NORMAL) {
printf("rotation average: %f deviation: %f rotation-scan-deviation "
"(maximum): %f [%d,%d,%d,%d]\n",
average, deviation, deskewScanDeviationRad, mask[LEFT], mask[TOP],
mask[RIGHT], mask[BOTTOM]);
}
if (deviation <= deskewScanDeviationRad) {
return average;
} else {
if (verbose >= VERBOSE_NONE) {
printf("out of deviation range - NO ROTATING\n");
}
return 0.0;
}
}
/**
* Nearest-neighbour interpolation.
*/
static int nearest(float x, float y, AVFrame *source) {
// Round to nearest location.
int x1 = (int)roundf(x);
int y1 = (int)roundf(y);
return getPixel(x1, y1, source);
}
/**
* 1-D cubic interpolation. Clamps the return value between 0 and 255 to
* support 8-bit colour images.
*/
static int cubic(float x, int a, int b, int c, int d) {
int result = b + 0.5f * x *
(c - a +
x * (2.0f * a - 5.0f * b + 4.0f * c - d +
x * (3.0f * (b - c) + d - a)));
if (result > 255)
result = 255;
if (result < 0)
result = 0;
return result;
}
/**
* 1-D cubic interpolation
* This function expects (and returns) colour pixel values.
*/
static int cubicPixel(float x, int a, int b, int c, int d) {
int red = cubic(x, red(a), red(b), red(c), red(d));
int green = cubic(x, green(a), green(b), green(c), green(d));
int blue = cubic(x, blue(a), blue(b), blue(c), blue(d));
return pixelValue(red, green, blue);
}
/**
* 2-D bicubic interpolation
*/
static int bicubicInterpolate(float x, float y, AVFrame *source) {
int fx = (int)x;
int fy = (int)y;
int v[4];
for (int i = -1; i < 3; ++i) {
v[i + 1] = cubicPixel(
x - fx, getPixel(fx - 1, fy + i, source), getPixel(fx, fy + i, source),
getPixel(fx + 1, fy + i, source), getPixel(fx + 2, fy + i, source));
}
return cubicPixel(y - fy, v[0], v[1], v[2], v[3]);
}
/**
* 1-D linear interpolation.
*/
static int linear(float x, int a, int b) { return (1.0f - x) * a + x * b; }
/**
* 1-D linear interpolation
* This function expects (and returns) colour pixel values.
*/
static int linearPixel(float x, int a, int b) {
int red = linear(x, red(a), red(b));
int green = linear(x, green(a), green(b));
int blue = linear(x, blue(a), blue(b));
return pixelValue(red, green, blue);
}
/**
* 2-D bilinear interpolation
*/
static int bilinearInterpolate(float x, float y, AVFrame *source) {
int x1 = (int)x;
int x2 = (int)ceilf(x);
int y1 = (int)y;
int y2 = (int)ceilf(y);
// Check edge conditions to avoid divide-by-zero
if (x2 > source->width || y2 > source->height)
return getPixel(x, y, source);
else if (x2 == x1 && y2 == y1)
return getPixel(x, y, source);
else if (x2 == x1) {
int p1 = getPixel(x1, y1, source);
int p2 = getPixel(x1, y2, source);
return linearPixel(y - y1, p1, p2);
} else if (y2 == y1) {
int p1 = getPixel(x1, y1, source);
int p2 = getPixel(x2, y1, source);
return linearPixel(x - x1, p1, p2);
}
int pixel1 = getPixel(x1, y1, source);
int pixel2 = getPixel(x2, y1, source);
int pixel3 = getPixel(x1, y2, source);
int pixel4 = getPixel(x2, y2, source);
int val1 = linearPixel(x - x1, pixel1, pixel2);
int val2 = linearPixel(x - x1, pixel3, pixel4);
return linearPixel(y - y1, val1, val2);
}
/**
* 2-D bilinear interpolation
* The method chosen depends on the global interpolateType variable.
*/
static int interpolate(float x, float y, AVFrame *source) {
if (interpolateType == INTERP_NN) {
return nearest(x, y, source);
} else if (interpolateType == INTERP_LINEAR) {
return bilinearInterpolate(x, y, source);
} else {
return bicubicInterpolate(x, y, source);
}
}
/**
* Rotates a whole image buffer by the specified radians, around its
* middle-point. (To rotate parts of an image, extract the part with copyBuffer,
* rotate, and re-paste with copyBuffer.)
*/
void rotate(const float radians, AVFrame *source, AVFrame *target) {
const int w = source->width;
const int h = source->height;
// create 2D rotation matrix
const float sinval = sinf(radians);
const float cosval = cosf(radians);
const float midX = w / 2.0f;
const float midY = h / 2.0f;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
const float srcX = midX + (x - midX) * cosval + (y - midY) * sinval;
const float srcY = midY + (y - midY) * cosval - (x - midX) * sinval;
const int pixel = interpolate(srcX, srcY, source);
setPixel(pixel, x, y, target);
}
}
}
/* --- stretching / resizing / shifting ------------------------------------ */
static void stretchTo(AVFrame *source, AVFrame *target) {
const float xRatio = source->width / (float)target->width;
const float yRatio = source->height / (float)target->height;
if (verbose >= VERBOSE_MORE) {
printf("stretching %dx%d -> %dx%d\n", source->width, source->height,
target->width, target->height);
}
for (int y = 0; y < target->height; y++) {
for (int x = 0; x < target->width; x++) {
// calculate average pixel value in source matrix
const int pixel = interpolate(x * xRatio, y * yRatio, source);
setPixel(pixel, x, y, target);
}
}
}
void stretch(int w, int h, AVFrame **image) {
AVFrame *newimage;
if ((*image)->width == w && (*image)->height == h)
return;
// allocate new buffer's memory
initImage(&newimage, w, h, (*image)->format, false);
stretchTo(*image, newimage);
replaceImage(image, &newimage);
}
/**
* Resizes the image so that the resulting sheet has a new size and the image
* content is zoomed to fit best into the sheet, while keeping it's aspect
* ration.
*
* @param w the new width to resize to
* @param h the new height to resize to
*/
void resize(int w, int h, AVFrame **image) {
AVFrame *stretched, *resized;
int ww;
int hh;
float wRat = (float)w / (*image)->width;
float hRat = (float)h / (*image)->height;
if (verbose >= VERBOSE_NORMAL) {
printf("resizing %dx%d -> %dx%d\n", (*image)->width, (*image)->height, w,
h);
}
if (wRat < hRat) { // horizontally more shrinking/less enlarging is needed:
// fill width fully, adjust height
ww = w;
hh = (*image)->height * w / (*image)->width;
} else if (hRat < wRat) {
ww = (*image)->width * h / (*image)->height;
hh = h;
} else { // wRat == hRat
ww = w;
hh = h;
}
initImage(&stretched, ww, hh, (*image)->format, true);
stretchTo(*image, stretched);
// Check if any centering needs to be done, otherwise make a new
// copy, center and return that. Check for the stretched
// width/height to be the same rather than comparing the ratio, as
// it is possible that the ratios are just off enough that they
// generate the same width/height.
if ((ww == w) && (hh = h)) {
// don't create one more buffer if the size is the same.
resized = stretched;
} else {
initImage(&resized, w, h, (*image)->format, true);
centerImage(stretched, 0, 0, w, h, resized);
av_frame_free(&stretched);
}
replaceImage(image, &resized);
}
/**
* Shifts the image.
*
* @param shiftX horizontal shifting
* @param shiftY vertical shifting
*/
void shift(int shiftX, int shiftY, AVFrame **image) {
AVFrame *newimage;
// allocate new buffer's memory
initImage(&newimage, (*image)->width, (*image)->height, (*image)->format,
true);
for (int y = 0; y < (*image)->height; y++) {
for (int x = 0; x < (*image)->width; x++) {
const int pixel = getPixel(x, y, *image);
setPixel(pixel, x + shiftX, y + shiftY, newimage);
}
}
replaceImage(image, &newimage);
}
/* --- mask-detection ----------------------------------------------------- */
/**
* Finds one edge of non-black pixels heading from one starting point towards
* edge direction.
*
* @return number of shift-steps until blank edge found
*/
static int detectEdge(int startX, int startY, int shiftX, int shiftY,
int maskScanSize, int maskScanDepth,
float maskScanThreshold, AVFrame *image) {
// either shiftX or shiftY is 0, the other value is -i|+i
int left;
int top;
int right;
int bottom;
const int half = maskScanSize / 2;
unsigned int total = 0;
unsigned int count = 0;
if (shiftY ==
0) { // vertical border is to be detected, horizontal shifting of scan-bar
if (maskScanDepth == -1) {
maskScanDepth = image->height;
}
const int halfDepth = maskScanDepth / 2;
left = startX - half;
top = startY - halfDepth;
right = startX + half;
bottom = startY + halfDepth;
} else { // horizontal border is to be detected, vertical shifting of scan-bar
if (maskScanDepth == -1) {
maskScanDepth = image->width;
}
const int halfDepth = maskScanDepth / 2;
left = startX - halfDepth;
top = startY - half;
right = startX + halfDepth;
bottom = startY + half;
}
while (true) { // !
const uint8_t blackness =
inverseBrightnessRect(left, top, right, bottom, image);
total += blackness;
count++;
// is blackness below threshold*average?
if ((blackness < ((maskScanThreshold * total) / count)) ||
(blackness ==
0)) { // this will surely become true when pos reaches the outside of
// the actual image area and blacknessRect() will deliver 0
// because all pixels outside are considered white
return count; // ! return here, return absolute value of shifting
// difference
}
left += shiftX;
right += shiftX;
top += shiftY;
bottom += shiftY;
}
}
/**
* Detects a mask of white borders around a starting point.
* The result is returned via call-by-reference parameters left, top, right,
* bottom.
*
* @return the detected mask in left, top, right, bottom; or -1, -1, -1, -1 if
* no mask could be detected
*/
static bool detectMask(int startX, int startY, int maskScanDirections,
int maskScanSize[DIRECTIONS_COUNT],
int maskScanDepth[DIRECTIONS_COUNT],
int maskScanStep[DIRECTIONS_COUNT],
float maskScanThreshold[DIRECTIONS_COUNT],
int maskScanMinimum[DIMENSIONS_COUNT],
int maskScanMaximum[DIMENSIONS_COUNT], int *left,
int *top, int *right, int *bottom, AVFrame *image) {
int width;
int height;
int half[DIRECTIONS_COUNT];
bool success;
half[HORIZONTAL] = maskScanSize[HORIZONTAL] / 2;
half[VERTICAL] = maskScanSize[VERTICAL] / 2;
if ((maskScanDirections & 1 << HORIZONTAL) != 0) {
*left = startX -
maskScanStep[HORIZONTAL] *
detectEdge(startX, startY, -maskScanStep[HORIZONTAL], 0,
maskScanSize[HORIZONTAL], maskScanDepth[HORIZONTAL],
maskScanThreshold[HORIZONTAL], image) -
half[HORIZONTAL];
*right = startX +
maskScanStep[HORIZONTAL] *
detectEdge(startX, startY, maskScanStep[HORIZONTAL], 0,
maskScanSize[HORIZONTAL], maskScanDepth[HORIZONTAL],
maskScanThreshold[HORIZONTAL], image) +
half[HORIZONTAL];
} else { // full range of sheet
*left = 0;
*right = image->width - 1;
}
if ((maskScanDirections & 1 << VERTICAL) != 0) {
*top = startY -
maskScanStep[VERTICAL] *
detectEdge(startX, startY, 0, -maskScanStep[VERTICAL],
maskScanSize[VERTICAL], maskScanDepth[VERTICAL],
maskScanThreshold[VERTICAL], image) -
half[VERTICAL];
*bottom = startY +
maskScanStep[VERTICAL] *
detectEdge(startX, startY, 0, maskScanStep[VERTICAL],
maskScanSize[VERTICAL], maskScanDepth[VERTICAL],
maskScanThreshold[VERTICAL], image) +
half[VERTICAL];
} else { // full range of sheet
*top = 0;
*bottom = image->height - 1;
}
// if below minimum or above maximum, set to maximum
width = *right - *left;
height = *bottom - *top;
success = true;
if (((maskScanMinimum[WIDTH] != -1) && (width < maskScanMinimum[WIDTH])) ||
((maskScanMaximum[WIDTH] != -1) && (width > maskScanMaximum[WIDTH]))) {
width = maskScanMaximum[WIDTH] / 2;
*left = startX - width;
*right = startX + width;
success = false;
;
}
if (((maskScanMinimum[HEIGHT] != -1) && (height < maskScanMinimum[HEIGHT])) ||
((maskScanMaximum[HEIGHT] != -1) && (height > maskScanMaximum[HEIGHT]))) {
height = maskScanMaximum[HEIGHT] / 2;
*top = startY - height;
*bottom = startY + height;
success = false;
}
return success;
}
/**
* Detects masks around the points specified in point[].
*
* @param mask point to array into which detected masks will be stored
* @return number of masks stored in mask[][]
*/
void detectMasks(AVFrame *image) {
int left;
int top;
int right;
int bottom;
maskCount = 0;
if (maskScanDirections != 0) {
for (int i = 0; i < pointCount; i++) {
maskValid[i] = detectMask(
point[i][X], point[i][Y], maskScanDirections, maskScanSize,
maskScanDepth, maskScanStep, maskScanThreshold, maskScanMinimum,
maskScanMaximum, &left, &top, &right, &bottom, image);
if (!(left == -1 || top == -1 || right == -1 || bottom == -1)) {
mask[maskCount][LEFT] = left;
mask[maskCount][TOP] = top;
mask[maskCount][RIGHT] = right;
mask[maskCount][BOTTOM] = bottom;
maskCount++;
if (verbose >= VERBOSE_NORMAL) {
printf("auto-masking (%d,%d): %d,%d,%d,%d", point[i][X], point[i][Y],
left, top, right, bottom);
if (maskValid[i] ==
false) { // (mask had been auto-set to full page size)
printf(" (invalid detection, using full page size)");
}
printf("\n");
}
} else {
if (verbose >= VERBOSE_NORMAL) {
printf("auto-masking (%d,%d): NO MASK FOUND\n", point[i][X],
point[i][Y]);
}
}
}
}
}
/**
* Permanently applies image masks. Each pixel which is not covered by at least
* one mask is set to maskColor.
*/
void applyMasks(Mask *masks, const int masksCount,
AVFrame *image) {
if (masksCount <= 0) {
return;
}
for (int y = 0; y < image->height; y++) {
for (int x = 0; x < image->width; x++) {
// in any mask?
bool m = false;
for (int i = 0; i < masksCount; i++) {
m = m || inMask(x, y, masks[i]);
}
if (m == false) {
setPixel(maskColor, x, y, image);
}
}
}
}
/* --- wiping ------------------------------------------------------------- */
/**
* Permanently wipes out areas of an images. Each pixel covered by a wipe-area
* is set to wipeColor.
*/
void applyWipes(Mask *area, int areaCount,
AVFrame *image) {
for (int i = 0; i < areaCount; i++) {
int count = 0;
for (int y = area[i][TOP]; y <= area[i][BOTTOM]; y++) {
for (int x = area[i][LEFT]; x <= area[i][RIGHT]; x++) {
if (setPixel(maskColor, x, y, image)) {
count++;
}
}
}
if (verbose >= VERBOSE_MORE) {
printf("wipe [%d,%d,%d,%d]: %d pixels\n", area[i][LEFT], area[i][TOP],
area[i][RIGHT], area[i][BOTTOM], count);
}
}
}
/* --- mirroring ---------------------------------------------------------- */
/**
* Mirrors an image either horizontally, vertically, or both.
*/
void mirror(int directions, AVFrame *image) {
const bool horizontal = !!((directions & 1 << HORIZONTAL) != 0);
const bool vertical = !!((directions & 1 << VERTICAL) != 0);
int untilX = ((horizontal == true) && (vertical == false))
? ((image->width - 1) >> 1)
: (image->width - 1); // w>>1 == (int)(w-0.5)/2
int untilY =
(vertical == true) ? ((image->height - 1) >> 1) : image->height - 1;
for (int y = 0; y <= untilY; y++) {
const int yy = (vertical == true) ? (image->height - y - 1) : y;
if ((vertical == true) && (horizontal == true) &&
(y ==
yy)) { // last middle line in odd-lined image mirrored both h and v
untilX = ((image->width - 1) >> 1);
}
for (int x = 0; x <= untilX; x++) {
const int xx = (horizontal == true) ? (image->width - x - 1) : x;
const int pixel1 = getPixel(x, y, image);
const int pixel2 = getPixel(xx, yy, image);
setPixel(pixel2, x, y, image);
setPixel(pixel1, xx, yy, image);
}
}
}
/* --- flip-rotating ------------------------------------------------------ */
/**
* Rotates an image clockwise or anti-clockwise in 90-degrees.
*
* @param direction either -1 (rotate anti-clockwise) or 1 (rotate clockwise)
*/
void flipRotate(int direction, AVFrame **image) {
AVFrame *newimage;
// exchanged width and height
initImage(&newimage, (*image)->height, (*image)->width, (*image)->format,
false);
for (int y = 0; y < (*image)->height; y++) {
const int xx = ((direction > 0) ? (*image)->height - 1 : 0) - y * direction;
for (int x = 0; x < (*image)->width; x++) {
const int yy =
((direction < 0) ? (*image)->width - 1 : 0) + x * direction;
const int pixel = getPixel(x, y, *image);
setPixel(pixel, xx, yy, newimage);
}
}
replaceImage(image, &newimage);
}
/* --- blackfilter -------------------------------------------------------- */
/**
* Filters out solidly black areas scanning to one direction.
*
* @param stepX is 0 if stepY!=0
* @param stepY is 0 if stepX!=0
* @see blackfilter()
*/
static void blackfilterScan(int stepX, int stepY, int size, int dep,
unsigned int absBlackfilterScanThreshold,
Mask *exclude,
int excludeCount, int intensity, AVFrame *image) {
int left;
int top;
int right;
int bottom;
int shiftX;
int shiftY;
int l, t, r, b;
int diffX;
int diffY;
bool alreadyExcludedMessage;
if (stepX != 0) { // horizontal scanning
left = 0;
top = 0;
right = size - 1;
bottom = dep - 1;
shiftX = 0;
shiftY = dep;
} else { // vertical scanning
left = 0;
top = 0;
right = dep - 1;
bottom = size - 1;
shiftX = dep;
shiftY = 0;
}
while (
(left < image->width) &&
(top <
image->height)) { // individual scanning "stripes" over the whole sheet
l = left;
t = top;
r = right;
b = bottom;
// make sure last stripe does not reach outside sheet, shift back inside
// (next +=shift will exit while-loop)
if (r >= image->width || b >= image->height) {
diffX = r - image->width + 1;
diffY = b - image->height + 1;
l -= diffX;
t -= diffY;
r -= diffX;
b -= diffY;
}
alreadyExcludedMessage = false;
while ((l < image->width) &&
(t < image->height)) { // single scanning "stripe"
uint8_t blackness = darknessRect(l, t, r, b, image);
if (blackness >=
absBlackfilterScanThreshold) { // found a solidly black area
Mask mask = {l, t, r, b};
if (!masksOverlapAny(mask, exclude, excludeCount)) {
if (verbose >= VERBOSE_NORMAL) {
printf("black-area flood-fill: [%d,%d,%d,%d]\n", l, t, r, b);
alreadyExcludedMessage = false;
}
// start flood-fill in this area (on each pixel to make sure we get
// everything, in most cases first flood-fill from first pixel will
// delete all other black pixels in the area already)
for (int y = t; y <= b; y++) {
for (int x = l; x <= r; x++) {
floodFill(x, y, WHITE24, 0, absBlackThreshold, intensity, image);
}
}
} else {
if ((verbose >= VERBOSE_NORMAL) && (!alreadyExcludedMessage)) {
printf("black-area EXCLUDED: [%d,%d,%d,%d]\n", l, t, r, b);
alreadyExcludedMessage = true; // do this only once per scan-stripe,
// otherwise too many messages
}
}
}
l += stepX;
t += stepY;
r += stepX;
b += stepY;
}
left += shiftX;
top += shiftY;
right += shiftX;
bottom += shiftY;
}
}
/**
* Filters out solidly black areas, as appearing on bad photocopies.
* A virtual bar of width 'size' and height 'depth' is horizontally moved
* above the middle of the sheet (or the full sheet, if depth ==-1).
*/
void blackfilter(AVFrame *image) {
if ((blackfilterScanDirections & 1 << HORIZONTAL) !=
0) { // left-to-right scan
blackfilterScan(blackfilterScanStep[HORIZONTAL], 0,
blackfilterScanSize[HORIZONTAL],
blackfilterScanDepth[HORIZONTAL],
absBlackfilterScanThreshold, blackfilterExclude,
blackfilterExcludeCount, blackfilterIntensity, image);
}
if ((blackfilterScanDirections & 1 << VERTICAL) != 0) { // top-to-bottom scan
blackfilterScan(0, blackfilterScanStep[VERTICAL],
blackfilterScanSize[VERTICAL],
blackfilterScanDepth[VERTICAL], absBlackfilterScanThreshold,
blackfilterExclude, blackfilterExcludeCount,
blackfilterIntensity, image);
}
}
/* --- noisefilter -------------------------------------------------------- */
/**
* Applies a simple noise filter to the image.
*
* @param intensity maximum cluster size to delete
*/
int noisefilter(AVFrame *image) {
int count;
int neighbors;
count = 0;
for (int y = 0; y < image->height; y++) {
for (int x = 0; x < image->width; x++) {
uint8_t pixel = getPixelDarknessInverse(x, y, image);
if (pixel < absWhiteThreshold) { // one dark pixel found
neighbors = countPixelNeighbors(
x, y, noisefilterIntensity, absWhiteThreshold,
image); // get number of non-light pixels in neighborhood
if (neighbors <=
noisefilterIntensity) { // ...not more than 'intensity'?
clearPixelNeighbors(x, y, absWhiteThreshold, image); // delete area
count++;
}
}
}
}
return count;
}
/* --- blurfilter --------------------------------------------------------- */
/**
* Removes noise using a kind of blurfilter, as alternative to the noise
* filter. This algorithm counts pixels while 'shaking' the area to detect,
* and clears the area if the amount of white pixels exceeds whiteTreshold.
*/
int blurfilter(AVFrame *image) {
const int blocksPerRow = image->width / blurfilterScanSize[HORIZONTAL];
const int total = blurfilterScanSize[HORIZONTAL] *
blurfilterScanSize[VERTICAL]; // Number of pixels in a block
int top = 0;
int right = blurfilterScanSize[HORIZONTAL] - 1;
int bottom = blurfilterScanSize[VERTICAL] - 1;
int maxLeft = image->width - blurfilterScanSize[HORIZONTAL];
int maxTop = image->height - blurfilterScanSize[VERTICAL];
int result = 0;
// Number of dark pixels in previous row
// allocate one extra block left and right
int *prevCounts = calloc(blocksPerRow + 2, sizeof(int));
// Number of dark pixels in current row
int *curCounts = calloc(blocksPerRow + 2, sizeof(int));
// Number of dark pixels in next row
int *nextCounts = calloc(blocksPerRow + 2, sizeof(int));
for (int left = 0, block = 1; left <= maxLeft;
left += blurfilterScanSize[HORIZONTAL]) {
curCounts[block] = countPixelsRect(left, top, right, bottom, 0,
absWhiteThreshold, false, image);
block++;
right += blurfilterScanSize[HORIZONTAL];
}
curCounts[0] = total;
curCounts[blocksPerRow] = total;
nextCounts[0] = total;
nextCounts[blocksPerRow] = total;
// Loop through all blocks. For a block calculate the number of dark pixels in
// this block, the number of dark pixels in the block in the top-left corner
// and similarly for the block in the top-right, bottom-left and bottom-right
// corner. Take the maximum of these values. Clear the block if this number is
// not large enough compared to the total number of pixels in a block.
for (int top = 0; top <= maxTop; top += blurfilterScanSize[HORIZONTAL]) {
right = blurfilterScanSize[HORIZONTAL] - 1;
nextCounts[0] =
countPixelsRect(0, top + blurfilterScanStep[VERTICAL], right,
bottom + blurfilterScanSize[VERTICAL], 0,
absWhiteThreshold, false, image);
for (int left = 0, block = 1; left <= maxLeft;
left += blurfilterScanSize[HORIZONTAL]) {
// bottom right (has still to be calculated)
nextCounts[block + 1] =
countPixelsRect(left + blurfilterScanSize[HORIZONTAL],
top + blurfilterScanStep[VERTICAL],
right + blurfilterScanSize[HORIZONTAL],
bottom + blurfilterScanSize[VERTICAL], 0,
absWhiteThreshold, false, image);
int max = max3(
nextCounts[block - 1], nextCounts[block + 1],
max3(prevCounts[block - 1], prevCounts[block + 1], curCounts[block]));
if ((((float)max) / total) <=
blurfilterIntensity) { // Not enough dark pixels
clearRect(left, top, right, bottom, image, WHITE24);
result += curCounts[block];
curCounts[block] = total; // Update information
}
right += blurfilterScanSize[HORIZONTAL];
block++;
}
bottom += blurfilterScanSize[VERTICAL];
// Switch Buffers
const int *tmpCounts;
tmpCounts = prevCounts;
prevCounts = curCounts;
curCounts = nextCounts;
nextCounts = (int *)tmpCounts;
}
free(prevCounts);
free(curCounts);
free(nextCounts);
return result;
}
/* --- grayfilter --------------------------------------------------------- */
/**
* Clears areas which do not contain any black pixels, but some "gray shade"
* only. Two conditions have to apply before an area gets deleted: first, not a
* single black pixel may be contained, second, a minimum threshold of blackness
* must not be exceeded.
*/
int grayfilter(AVFrame *image) {
int left = 0;
int top = 0;
int right = grayfilterScanSize[HORIZONTAL] - 1;
int bottom = grayfilterScanSize[VERTICAL] - 1;
int result = 0;
while (true) {
int count = countPixelsRect(left, top, right, bottom, 0, absBlackThreshold,
false, image);
if (count == 0) {
uint8_t lightness = inverseLightnessRect(left, top, right, bottom, image);
if (lightness <
absGrayfilterThreshold) { // (lower threshold->more deletion)
result += clearRect(left, top, right, bottom, image, WHITE24);
}
}
if (left < image->width) { // not yet at end of row
left += grayfilterScanStep[HORIZONTAL];
right += grayfilterScanStep[HORIZONTAL];
} else { // end of row
if (bottom >= image->height) { // has been last row
return result; // exit here
}
// next row:
left = 0;
right = grayfilterScanSize[HORIZONTAL] - 1;
top += grayfilterScanStep[VERTICAL];
bottom += grayfilterScanStep[VERTICAL];
}
}
}
/* --- border-detection --------------------------------------------------- */
/**
* Moves a rectangular area of pixels to be centered above the centerX, centerY
* coordinates.
*/
void centerMask(AVFrame *image, int center[COORDINATES_COUNT],
Mask mask) {
AVFrame *newimage;
const int width = mask[RIGHT] - mask[LEFT] + 1;
const int height = mask[BOTTOM] - mask[TOP] + 1;
const int targetX = center[X] - width / 2;
const int targetY = center[Y] - height / 2;
if ((targetX >= 0) && (targetY >= 0) && ((targetX + width) <= image->width) &&
((targetY + height) <= image->height)) {
if (verbose >= VERBOSE_NORMAL) {
printf("centering mask [%d,%d,%d,%d] (%d,%d): %d, %d\n", mask[LEFT],
mask[TOP], mask[RIGHT], mask[BOTTOM], center[X], center[Y],
targetX - mask[LEFT], targetY - mask[TOP]);
}
initImage(&newimage, width, height, image->format, false);
copyImageArea(mask[LEFT], mask[TOP], width, height, image, 0, 0, newimage);
clearRect(mask[LEFT], mask[TOP], mask[RIGHT], mask[BOTTOM], image,
sheetBackground);
copyImageArea(0, 0, width, height, newimage, targetX, targetY, image);
av_frame_free(&newimage);
} else {
if (verbose >= VERBOSE_NORMAL) {
printf("centering mask [%d,%d,%d,%d] (%d,%d): %d, %d - NO CENTERING "
"(would shift area outside visible image)\n",
mask[LEFT], mask[TOP], mask[RIGHT], mask[BOTTOM], center[X],
center[Y], targetX - mask[LEFT], targetY - mask[TOP]);
}
}
}
/**
* Moves a rectangular area of pixels to be centered inside a specified area
* coordinates.
*/
void alignMask(Mask mask, Mask outside,
AVFrame *image) {
AVFrame *newimage;
int targetX;
int targetY;
const int width = mask[RIGHT] - mask[LEFT] + 1;
const int height = mask[BOTTOM] - mask[TOP] + 1;
if (borderAlign & 1 << LEFT) {
targetX = outside[LEFT] + borderAlignMargin[HORIZONTAL];
} else if (borderAlign & 1 << RIGHT) {
targetX = outside[RIGHT] - width - borderAlignMargin[HORIZONTAL];
} else {
targetX = (outside[LEFT] + outside[RIGHT] - width) / 2;
}
if (borderAlign & 1 << TOP) {
targetY = outside[TOP] + borderAlignMargin[VERTICAL];
} else if (borderAlign & 1 << BOTTOM) {
targetY = outside[BOTTOM] - height - borderAlignMargin[VERTICAL];
} else {
targetY = (outside[TOP] + outside[BOTTOM] - height) / 2;
}
if (verbose >= VERBOSE_NORMAL) {
printf("aligning mask [%d,%d,%d,%d] (%d,%d): %d, %d\n", mask[LEFT],
mask[TOP], mask[RIGHT], mask[BOTTOM], targetX, targetY,
targetX - mask[LEFT], targetY - mask[TOP]);
}
initImage(&newimage, width, height, image->format, true);
copyImageArea(mask[LEFT], mask[TOP], mask[RIGHT], mask[BOTTOM], image, 0, 0,
newimage);
clearRect(mask[LEFT], mask[TOP], mask[RIGHT], mask[BOTTOM], image,
sheetBackground);
copyImageArea(0, 0, width, height, newimage, targetX, targetY, image);
av_frame_free(&newimage);
}
/**
* Find the size of one border edge.
*
* @param x1..y2 area inside of which border is to be detected
*/
static int detectBorderEdge(Mask outsideMask, int stepX, int stepY,
int size, int threshold, AVFrame *image) {
int left;
int top;
int right;
int bottom;
int max;
int cnt;
int result;
if (stepY == 0) { // horizontal detection
if (stepX > 0) {
left = outsideMask[LEFT];
top = outsideMask[TOP];
right = outsideMask[LEFT] + size;
bottom = outsideMask[BOTTOM];
} else {
left = outsideMask[RIGHT] - size;
top = outsideMask[TOP];
right = outsideMask[RIGHT];
bottom = outsideMask[BOTTOM];
}
max = (outsideMask[RIGHT] - outsideMask[LEFT]);
} else { // vertical detection
if (stepY > 0) {
left = outsideMask[LEFT];
top = outsideMask[TOP];
right = outsideMask[RIGHT];
bottom = outsideMask[TOP] + size;
} else {
left = outsideMask[LEFT];
top = outsideMask[BOTTOM] - size;
right = outsideMask[RIGHT];
bottom = outsideMask[BOTTOM];
}
max = (outsideMask[BOTTOM] - outsideMask[TOP]);
}
result = 0;
while (result < max) {
cnt = countPixelsRect(left, top, right, bottom, 0, absBlackThreshold, false,
image);
if (cnt >= threshold) {
return result; // border has been found: regular exit here
}
left += stepX;
top += stepY;
right += stepX;
bottom += stepY;
result += abs(stepX + stepY); // (either stepX or stepY is 0)
}
return 0; // no border found between 0..max
}
/**
* Detects a border of completely non-black pixels around the area
* outsideBorder[LEFT],outsideBorder[TOP]-outsideBorder[RIGHT],outsideBorder[BOTTOM].
*/
void detectBorder(int border[EDGES_COUNT], Mask outsideMask,
AVFrame *image) {
border[LEFT] = outsideMask[LEFT];
border[TOP] = outsideMask[TOP];
border[RIGHT] = image->width - outsideMask[RIGHT];
border[BOTTOM] = image->height - outsideMask[BOTTOM];
if (borderScanDirections & 1 << HORIZONTAL) {
border[LEFT] += detectBorderEdge(outsideMask, borderScanStep[HORIZONTAL], 0,
borderScanSize[HORIZONTAL],
borderScanThreshold[HORIZONTAL], image);
border[RIGHT] += detectBorderEdge(outsideMask, -borderScanStep[HORIZONTAL],
0, borderScanSize[HORIZONTAL],
borderScanThreshold[HORIZONTAL], image);
}
if (borderScanDirections & 1 << VERTICAL) {
border[TOP] += detectBorderEdge(outsideMask, 0, borderScanStep[VERTICAL],
borderScanSize[VERTICAL],
borderScanThreshold[VERTICAL], image);
border[BOTTOM] += detectBorderEdge(
outsideMask, 0, -borderScanStep[VERTICAL], borderScanSize[VERTICAL],
borderScanThreshold[VERTICAL], image);
}
if (verbose >= VERBOSE_NORMAL) {
printf("border detected: (%d,%d,%d,%d) in [%d,%d,%d,%d]\n", border[LEFT],
border[TOP], border[RIGHT], border[BOTTOM], outsideMask[LEFT],
outsideMask[TOP], outsideMask[RIGHT], outsideMask[BOTTOM]);
}
}
/**
* Converts a border-tuple to a mask-tuple.
*/
void borderToMask(int border[EDGES_COUNT], Mask mask,
AVFrame *image) {
mask[LEFT] = border[LEFT];
mask[TOP] = border[TOP];
mask[RIGHT] = image->width - border[RIGHT] - 1;
mask[BOTTOM] = image->height - border[BOTTOM] - 1;
if (verbose >= VERBOSE_DEBUG) {
printf("border [%d,%d,%d,%d] -> mask [%d,%d,%d,%d]\n", border[LEFT],
border[TOP], border[RIGHT], border[BOTTOM], mask[LEFT], mask[TOP],
mask[RIGHT], mask[BOTTOM]);
}
}
/**
* Applies a border to the whole image. All pixels in the border range at the
* edges of the sheet will be cleared.
*/
void applyBorder(int border[EDGES_COUNT], AVFrame *image) {
Mask mask;
if (border[LEFT] != 0 || border[TOP] != 0 || border[RIGHT] != 0 ||
border[BOTTOM] != 0) {
borderToMask(border, mask, image);
if (verbose >= VERBOSE_NORMAL) {
printf("applying border (%d,%d,%d,%d) [%d,%d,%d,%d]\n", border[LEFT],
border[TOP], border[RIGHT], border[BOTTOM], mask[LEFT], mask[TOP],
mask[RIGHT], mask[BOTTOM]);
}
applyMasks(&mask, 1, image);
}
}
|