1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#include "rar.hpp"
#define Clean(D,S) {for (int I=0;I<(S);I++) (D)[I]=0;}
void RSCoder::Init(int ParSize)
{
RSCoder::ParSize=ParSize; // Store the number of recovery volumes.
FirstBlockDone=false;
gfInit();
pnInit();
}
// Initialize logarithms and exponents Galois field tables.
void RSCoder::gfInit()
{
for (int I=0,J=1;I<MAXPAR;I++)
{
gfLog[J]=I;
gfExp[I]=J;
J<<=1;
if (J > MAXPAR)
J^=0x11D; // 0x11D field-generator polynomial (x^8+x^4+x^3+x^2+1).
}
for (int I=MAXPAR;I<MAXPOL;I++) // Avoid gfExp overflow check.
gfExp[I]=gfExp[I-MAXPAR];
}
// Multiplication over Galois field.
inline int RSCoder::gfMult(int a,int b)
{
return(a==0 || b == 0 ? 0:gfExp[gfLog[a]+gfLog[b]]);
}
// Create the generator polynomial g(x).
// g(x)=(x-a)(x-a^2)(x-a^3)..(x-a^N)
void RSCoder::pnInit()
{
int p2[MAXPAR+1]; // Currently calculated part of g(x).
Clean(p2,ParSize);
p2[0]=1; // Set p2 polynomial to 1.
for (int I=1;I<=ParSize;I++)
{
int p1[MAXPAR+1]; // We use p1 as current (x+a^i) expression.
Clean(p1,ParSize);
p1[0]=gfExp[I];
p1[1]=1; // Set p1 polynomial to x+a^i.
// Multiply the already calucated part of g(x) to next (x+a^i).
pnMult(p1,p2,GXPol);
// p2=g(x).
for (int J=0;J<ParSize;J++)
p2[J]=GXPol[J];
}
}
// Multiply polynomial 'p1' to 'p2' and store the result in 'r'.
void RSCoder::pnMult(int *p1,int *p2,int *r)
{
Clean(r,ParSize);
for (int I=0;I<ParSize;I++)
if (p1[I]!=0)
for(int J=0;J<ParSize-I;J++)
r[I+J]^=gfMult(p1[I],p2[J]);
}
void RSCoder::Encode(byte *Data,int DataSize,byte *DestData)
{
int ShiftReg[MAXPAR+1]; // Linear Feedback Shift Register.
Clean(ShiftReg,ParSize+1);
for (int I=0;I<DataSize;I++)
{
int D=Data[I]^ShiftReg[ParSize-1];
// Use g(x) to define feedback taps.
for (int J=ParSize-1;J>0;J--)
ShiftReg[J]=ShiftReg[J-1]^gfMult(GXPol[J],D);
ShiftReg[0]=gfMult(GXPol[0],D);
}
for (int I=0;I<ParSize;I++)
DestData[I]=ShiftReg[ParSize-I-1];
}
bool RSCoder::Decode(byte *Data,int DataSize,int *EraLoc,int EraSize)
{
int SynData[MAXPOL]; // Syndrome data.
bool AllZeroes=true;
for (int I=0;I<ParSize;I++)
{
int Sum=0;
for (int J=0;J<DataSize;J++)
Sum=Data[J]^gfMult(gfExp[I+1],Sum);
if ((SynData[I]=Sum)!=0)
AllZeroes=false;
}
// If all syndrome numbers are zero, message does not have errors.
if (AllZeroes)
return(true);
if (!FirstBlockDone) // Do things which we need to do once for all data.
{
FirstBlockDone=true;
// Calculate the error locator polynomial.
Clean(ELPol,ParSize+1);
ELPol[0]=1;
for (int EraPos=0;EraPos<EraSize;EraPos++)
for (int I=ParSize,M=gfExp[DataSize-EraLoc[EraPos]-1];I>0;I--)
ELPol[I]^=gfMult(M,ELPol[I-1]);
ErrCount=0;
// Find roots of error locator polynomial.
for (int Root=MAXPAR-DataSize;Root<MAXPAR+1;Root++)
{
int Sum=0;
for (int B=0;B<ParSize+1;B++)
Sum^=gfMult(gfExp[(B*Root)%MAXPAR],ELPol[B]);
if (Sum==0) // Root found.
{
ErrorLocs[ErrCount]=MAXPAR-Root; // Location of error.
// Calculate the denominator for every error location.
Dnm[ErrCount]=0;
for (int I=1;I<ParSize+1;I+=2)
Dnm[ErrCount]^= gfMult(ELPol[I],gfExp[Root*(I-1)%MAXPAR]);
ErrCount++;
}
}
}
int EEPol[MAXPOL]; // Error Evaluator Polynomial.
pnMult(ELPol,SynData,EEPol);
// If errors are present and their number is correctable.
if ((ErrCount<=ParSize) && ErrCount>0)
for (int I=0;I<ErrCount;I++)
{
int Loc=ErrorLocs[I],DLoc=MAXPAR-Loc,N=0;
for (int J=0;J<ParSize;J++)
N^=gfMult(EEPol[J],gfExp[DLoc*J%MAXPAR]);
int DataPos=DataSize-Loc-1;
// Perform bounds check and correct the data error.
if (DataPos>=0 && DataPos<DataSize)
Data[DataPos]^=gfMult(N,gfExp[MAXPAR-gfLog[Dnm[I]]]);
}
return(ErrCount<=ParSize); // Return true if success.
}
|