1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
#include "rar.hpp"
#ifdef RAR_SMP
#include "threadmisc.cpp"
#ifdef _WIN_ALL
int ThreadPool::ThreadPriority=THREAD_PRIORITY_NORMAL;
#endif
ThreadPool::ThreadPool(uint MaxThreads)
{
MaxAllowedThreads = MaxThreads;
if (MaxAllowedThreads>MaxPoolThreads)
MaxAllowedThreads=MaxPoolThreads;
if (MaxAllowedThreads==0)
MaxAllowedThreads=1;
ThreadsCreatedCount=0;
// If we have more threads than queue size, we'll hang on pool destroying,
// not releasing all waiting threads.
if (MaxAllowedThreads>ASIZE(TaskQueue))
MaxAllowedThreads=ASIZE(TaskQueue);
Closing=false;
bool Success = CriticalSectionCreate(&CritSection);
#ifdef _WIN_ALL
QueuedTasksCnt=CreateSemaphore(NULL,0,ASIZE(TaskQueue),NULL);
NoneActive=CreateEvent(NULL,TRUE,TRUE,NULL);
Success=Success && QueuedTasksCnt!=NULL && NoneActive!=NULL;
#elif defined(_UNIX)
AnyActive = false;
QueuedTasksCnt = 0;
Success=Success && pthread_cond_init(&AnyActiveCond,NULL)==0 &&
pthread_mutex_init(&AnyActiveMutex,NULL)==0 &&
pthread_cond_init(&QueuedTasksCntCond,NULL)==0 &&
pthread_mutex_init(&QueuedTasksCntMutex,NULL)==0;
#endif
if (!Success)
{
ErrHandler.GeneralErrMsg(L"\nThread pool initialization failed.");
ErrHandler.Exit(RARX_FATAL);
}
QueueTop = 0;
QueueBottom = 0;
ActiveThreads = 0;
}
ThreadPool::~ThreadPool()
{
WaitDone();
Closing=true;
#ifdef _WIN_ALL
ReleaseSemaphore(QueuedTasksCnt,ASIZE(TaskQueue),NULL);
#elif defined(_UNIX)
// Threads still can access QueuedTasksCnt for a short time after WaitDone(),
// so lock is required. We would occassionally hang without it.
pthread_mutex_lock(&QueuedTasksCntMutex);
QueuedTasksCnt+=ASIZE(TaskQueue);
pthread_mutex_unlock(&QueuedTasksCntMutex);
pthread_cond_broadcast(&QueuedTasksCntCond);
#endif
for(uint I=0;I<ThreadsCreatedCount;I++)
{
#ifdef _WIN_ALL
// Waiting until the thread terminates.
CWaitForSingleObject(ThreadHandles[I]);
#endif
// Close the thread handle. In Unix it results in pthread_join call,
// which also waits for thread termination.
ThreadClose(ThreadHandles[I]);
}
CriticalSectionDelete(&CritSection);
#ifdef _WIN_ALL
CloseHandle(QueuedTasksCnt);
CloseHandle(NoneActive);
#elif defined(_UNIX)
pthread_cond_destroy(&AnyActiveCond);
pthread_mutex_destroy(&AnyActiveMutex);
pthread_cond_destroy(&QueuedTasksCntCond);
pthread_mutex_destroy(&QueuedTasksCntMutex);
#endif
}
void ThreadPool::CreateThreads()
{
#ifdef WIN32_CPU_GROUPS
// 2024.12.28: Implement processor group support for pre-Windows 11 systems
// with number of CPUs exceeding 64. For example, for 72 CPU the single
// processor group size would be 36 and this is what RAR would use without
// processor group support.
uint GroupCount=0;
uint CurGroupNumber=(uint)-1; // We'll increment it to 0 later.
uint CurGroupSize=0,CumulativeGroupSize=0;
typedef DWORD (WINAPI *GETACTIVEPROCESSORCOUNT)(WORD GroupNumber);
GETACTIVEPROCESSORCOUNT pGetActiveProcessorCount=nullptr;
typedef BOOL (WINAPI *GETTHREADGROUPAFFINITY)(HANDLE hThread,PGROUP_AFFINITY GroupAffinity);
GETTHREADGROUPAFFINITY pGetThreadGroupAffinity=nullptr;
typedef BOOL (WINAPI *SETTHREADGROUPAFFINITY)(HANDLE hThread,const GROUP_AFFINITY *GroupAffinity,PGROUP_AFFINITY PreviousGroupAffinity);
SETTHREADGROUPAFFINITY pSetThreadGroupAffinity=nullptr;
// Doesn't seem to be needed in Windows 11 and newer.
// https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getprocessaffinitymask
// "Starting with Windows 11 and Windows Server 2022, on a system with
// more than 64 processors, process and thread affinities span all
// processors in the system, across all processor groups, by default."
if (!IsWindows11OrGreater())
{
HMODULE hKernel=GetModuleHandle(L"kernel32.dll");
if (hKernel!=nullptr)
{
typedef WORD (WINAPI *GETACTIVEPROCESSORGROUPCOUNT)();
GETACTIVEPROCESSORGROUPCOUNT pGetActiveProcessorGroupCount=(GETACTIVEPROCESSORGROUPCOUNT)GetProcAddress(hKernel,"GetActiveProcessorGroupCount");
pGetActiveProcessorCount=(GETACTIVEPROCESSORCOUNT)GetProcAddress(hKernel,"GetActiveProcessorCount");
pGetThreadGroupAffinity=(GETTHREADGROUPAFFINITY)GetProcAddress(hKernel,"GetThreadGroupAffinity");
pSetThreadGroupAffinity=(SETTHREADGROUPAFFINITY)GetProcAddress(hKernel,"SetThreadGroupAffinity");
if (pGetActiveProcessorCount!=nullptr && pGetActiveProcessorGroupCount!=nullptr &&
pGetThreadGroupAffinity!=nullptr && pSetThreadGroupAffinity!=nullptr)
GroupCount=pGetActiveProcessorGroupCount();
}
}
#endif
for (uint I=0;I<MaxAllowedThreads;I++)
{
THREAD_HANDLE hThread=ThreadCreate(PoolThread, this);
ThreadHandles[I] = hThread;
ThreadsCreatedCount++;
#ifdef _WIN_ALL
#ifdef WIN32_CPU_GROUPS
if (GroupCount>1) // If we have multiple processor groups.
{
if (I>=CumulativeGroupSize) // Filled the processor group, go to next.
{
if (++CurGroupNumber>=GroupCount)
{
// If we exceeded the group number, such as when user specified
// -mt64 for lower core count, start assigning from beginning.
CurGroupNumber=0;
CumulativeGroupSize=0;
}
// Current group size.
CurGroupSize=pGetActiveProcessorCount(CurGroupNumber);
// Size of all preceding groups including the current.
CumulativeGroupSize+=CurGroupSize;
}
GROUP_AFFINITY GroupAffinity;
pGetThreadGroupAffinity(hThread,&GroupAffinity);
// Since normally before Windows 11 all threads belong to same source
// group, we could set this value only once. But we set it every time
// in case we'll decide for some reason to use it to rearrange threads
// from different source groups in Windows 11+.
uint SrcGroupSize=pGetActiveProcessorCount(GroupAffinity.Group);
// Shifting by 64 would be the undefined behavior, so we treat 64 separately.
KAFFINITY SrcGroupMask=(KAFFINITY)(SrcGroupSize==64 ? (uint64)0xffffffffffffffff:(uint64(1)<<SrcGroupSize)-1);
// Here we check that process affinity for existing thread group
// matches the entire group size. If user limited the process
// affinity, we prefer to not extend the process to other groups,
// because user might want to restrict the resource usage.
// Also if source processor group is larger than required number
// of threads, we do not need to move threads between groups.
if (SrcGroupSize!=0 && GroupAffinity.Mask==SrcGroupMask &&
GroupAffinity.Group!=CurGroupNumber && SrcGroupSize<MaxAllowedThreads)
{
// Shifting by 64 would be the undefined behavior, so we treat 64 separately.
KAFFINITY CurGroupMask=(KAFFINITY)(CurGroupSize==64 ? (uint64)0xffffffffffffffff:(uint64(1)<<CurGroupSize)-1);
GroupAffinity.Mask=CurGroupMask; // Use the entire group.
GroupAffinity.Group=CurGroupNumber;
// Assign the thread to a new group.
pSetThreadGroupAffinity(hThread,&GroupAffinity,NULL);
}
}
#endif
// Set the thread priority if needed.
if (ThreadPool::ThreadPriority!=THREAD_PRIORITY_NORMAL)
SetThreadPriority(ThreadHandles[I],ThreadPool::ThreadPriority);
#endif
}
}
NATIVE_THREAD_TYPE ThreadPool::PoolThread(void *Param)
{
((ThreadPool*)Param)->PoolThreadLoop();
return 0;
}
void ThreadPool::PoolThreadLoop()
{
QueueEntry Task;
while (GetQueuedTask(&Task))
{
Task.Proc(Task.Param);
CriticalSectionStart(&CritSection);
if (--ActiveThreads == 0)
{
#ifdef _WIN_ALL
SetEvent(NoneActive);
#elif defined(_UNIX)
pthread_mutex_lock(&AnyActiveMutex);
AnyActive=false;
pthread_cond_signal(&AnyActiveCond);
pthread_mutex_unlock(&AnyActiveMutex);
#endif
}
CriticalSectionEnd(&CritSection);
}
}
bool ThreadPool::GetQueuedTask(QueueEntry *Task)
{
#ifdef _WIN_ALL
CWaitForSingleObject(QueuedTasksCnt);
#elif defined(_UNIX)
pthread_mutex_lock(&QueuedTasksCntMutex);
while (QueuedTasksCnt==0)
cpthread_cond_wait(&QueuedTasksCntCond,&QueuedTasksCntMutex);
QueuedTasksCnt--;
pthread_mutex_unlock(&QueuedTasksCntMutex);
#endif
if (Closing)
return false;
CriticalSectionStart(&CritSection);
*Task = TaskQueue[QueueBottom];
QueueBottom = (QueueBottom + 1) % ASIZE(TaskQueue);
CriticalSectionEnd(&CritSection);
return true;
}
// Add task to queue. We assume that it is always called from main thread,
// it allows to avoid any locks here. We process collected tasks only
// when WaitDone is called.
void ThreadPool::AddTask(PTHREAD_PROC Proc,void *Data)
{
if (ThreadsCreatedCount == 0)
CreateThreads();
// If queue is full, wait until it is empty.
if (ActiveThreads>=ASIZE(TaskQueue))
WaitDone();
TaskQueue[QueueTop].Proc = Proc;
TaskQueue[QueueTop].Param = Data;
QueueTop = (QueueTop + 1) % ASIZE(TaskQueue);
ActiveThreads++;
}
// Start queued tasks and wait until all threads are inactive.
// We assume that it is always called from main thread, when pool threads
// are sleeping yet.
void ThreadPool::WaitDone()
{
if (ActiveThreads==0)
return;
#ifdef _WIN_ALL
ResetEvent(NoneActive);
ReleaseSemaphore(QueuedTasksCnt,ActiveThreads,NULL);
CWaitForSingleObject(NoneActive);
#elif defined(_UNIX)
AnyActive=true;
// Threads reset AnyActive before accessing QueuedTasksCnt and even
// preceding WaitDone() call does not guarantee that some slow thread
// is not accessing QueuedTasksCnt now. So lock is necessary.
pthread_mutex_lock(&QueuedTasksCntMutex);
QueuedTasksCnt+=ActiveThreads;
pthread_mutex_unlock(&QueuedTasksCntMutex);
pthread_cond_broadcast(&QueuedTasksCntCond);
pthread_mutex_lock(&AnyActiveMutex);
while (AnyActive)
cpthread_cond_wait(&AnyActiveCond,&AnyActiveMutex);
pthread_mutex_unlock(&AnyActiveMutex);
#endif
}
#endif // RAR_SMP
|