1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#include "rar.hpp"
void HashValue::Init(HASH_TYPE Type)
{
HashValue::Type=Type;
// Zero length data CRC32 is 0. It is important to set it when creating
// headers with no following data like directories or symlinks.
if (Type==HASH_RAR14 || Type==HASH_CRC32)
CRC32=0;
if (Type==HASH_BLAKE2)
{
// dd0e891776933f43c7d032b08a917e25741f8aa9a12c12e1cac8801500f2ca4f
// is BLAKE2sp hash of empty data. We init the structure to this value,
// so if we create a file or service header with no following data like
// "file copy" or "symlink", we set the checksum to proper value avoiding
// additional header type or size checks when extracting.
static byte EmptyHash[32]={
0xdd, 0x0e, 0x89, 0x17, 0x76, 0x93, 0x3f, 0x43,
0xc7, 0xd0, 0x32, 0xb0, 0x8a, 0x91, 0x7e, 0x25,
0x74, 0x1f, 0x8a, 0xa9, 0xa1, 0x2c, 0x12, 0xe1,
0xca, 0xc8, 0x80, 0x15, 0x00, 0xf2, 0xca, 0x4f
};
memcpy(Digest,EmptyHash,sizeof(Digest));
}
}
bool HashValue::operator == (const HashValue &cmp) const
{
if (Type==HASH_NONE || cmp.Type==HASH_NONE)
return true;
if (Type==HASH_RAR14 && cmp.Type==HASH_RAR14 ||
Type==HASH_CRC32 && cmp.Type==HASH_CRC32)
return CRC32==cmp.CRC32;
if (Type==HASH_BLAKE2 && cmp.Type==HASH_BLAKE2)
return memcmp(Digest,cmp.Digest,sizeof(Digest))==0;
return false;
}
DataHash::DataHash()
{
blake2ctx=NULL;
HashType=HASH_NONE;
#ifdef RAR_SMP
ThPool=NULL;
MaxThreads=0;
#endif
}
DataHash::~DataHash()
{
#ifdef RAR_SMP
delete ThPool;
#endif
cleandata(&CurCRC32, sizeof(CurCRC32));
if (blake2ctx!=NULL)
{
cleandata(blake2ctx, sizeof(blake2sp_state));
delete blake2ctx;
}
}
void DataHash::Init(HASH_TYPE Type,uint MaxThreads)
{
if (blake2ctx==NULL)
blake2ctx=new blake2sp_state;
HashType=Type;
if (Type==HASH_RAR14)
CurCRC32=0;
if (Type==HASH_CRC32)
CurCRC32=0xffffffff; // Initial CRC32 value.
if (Type==HASH_BLAKE2)
blake2sp_init(blake2ctx);
#ifdef RAR_SMP
DataHash::MaxThreads=Min(MaxThreads,HASH_POOL_THREADS);
#endif
}
void DataHash::Update(const void *Data,size_t DataSize)
{
#ifndef SFX_MODULE
if (HashType==HASH_RAR14)
CurCRC32=Checksum14((ushort)CurCRC32,Data,DataSize);
#endif
if (HashType==HASH_CRC32)
{
#ifdef RAR_SMP
UpdateCRC32MT(Data,DataSize);
#else
CurCRC32=CRC32(CurCRC32,Data,DataSize);
#endif
}
if (HashType==HASH_BLAKE2)
{
#ifdef RAR_SMP
if (MaxThreads>1 && ThPool==nullptr)
ThPool=new ThreadPool(HASH_POOL_THREADS);
blake2ctx->ThPool=ThPool;
blake2ctx->MaxThreads=MaxThreads;
#endif
blake2sp_update( blake2ctx, (byte *)Data, DataSize);
}
}
#ifdef RAR_SMP
THREAD_PROC(BuildCRC32Thread)
{
DataHash::CRC32ThreadData *td=(DataHash::CRC32ThreadData *)Data;
// Use 0 initial value to simplify combining the result with existing CRC32.
// It doesn't affect the first initial 0xffffffff in the data beginning.
// If we used 0xffffffff here, we would need to shift 0xffffffff left to
// block width and XOR it with block CRC32 to reset its initial value to 0.
td->DataCRC=CRC32(0,td->Data,td->DataSize);
}
// CRC is linear and distributive over addition, so CRC(a+b)=CRC(a)+CRC(b).
// Since addition in finite field is XOR, we have CRC(a^b)=CRC(a)^CRC(b).
// So CRC(aaabbb) = CRC(aaa000) ^ CRC(000bbb) = CRC(aaa000) ^ CRC(bbb),
// because CRC ignores leading zeroes. Thus to split CRC calculations
// to "aaa" and "bbb" blocks and then to threads we need to be able to
// find CRC(aaa000) knowing "aaa" quickly. We use Galois finite field to
// calculate the power of 2 to get "1000" and multiply it by "aaa".
void DataHash::UpdateCRC32MT(const void *Data,size_t DataSize)
{
const size_t MinBlock=0x4000;
if (DataSize<2*MinBlock || MaxThreads<2)
{
CurCRC32=CRC32(CurCRC32,Data,DataSize);
return;
}
if (ThPool==nullptr)
ThPool=new ThreadPool(HASH_POOL_THREADS);
size_t Threads=MaxThreads;
size_t BlockSize=DataSize/Threads;
if (BlockSize<MinBlock)
{
BlockSize=MinBlock;
Threads=DataSize/BlockSize;
}
CRC32ThreadData td[MaxPoolThreads];
//#undef USE_THREADS
for (size_t I=0;I<Threads;I++)
{
td[I].Data=(byte*)Data+I*BlockSize;
td[I].DataSize=(I+1==Threads) ? DataSize-I*BlockSize : BlockSize;
#ifdef USE_THREADS
ThPool->AddTask(BuildCRC32Thread,(void*)&td[I]);
#else
BuildCRC32Thread((void*)&td[I]);
#endif
}
#ifdef USE_THREADS
ThPool->WaitDone();
#endif // USE_THREADS
uint StdShift=gfExpCRC(uint(8*td[0].DataSize));
for (size_t I=0;I<Threads;I++)
{
// Prepare the multiplier to shift CRC to proper position.
uint ShiftMult;
if (td[I].DataSize==td[0].DataSize)
ShiftMult=StdShift; // Reuse the shift value for typical block size.
else
ShiftMult=gfExpCRC(uint(8*td[I].DataSize)); // 2 power "shift bits".
// To combine the cumulative total and current block CRC32, we multiply
// the total data CRC32 to shift value to place it to proper position.
// Invoke BitReverse32(), because 0xEDB88320 is the reversed polynomial.
// Alternatively we could adjust the multiplication function for reversed
// polynomials, but it would make it less readable without real speed gain.
// If CRC32 threads used 0xffffffff initial value, we would need
// to XOR the total data CRC32 with 0xffffffff before multiplication,
// so 0xffffffff is also shifted left to current block width and replaces
// the initial 0xffffffff CRC32 value with 0 in the current block CRC32
// after XOR'ing it with total data CRC32. Since now CRC32 threads use 0
// initial value, this is not necessary.
CurCRC32=BitReverse32(gfMulCRC(BitReverse32(CurCRC32), ShiftMult));
// Combine the total data and current block CRC32.
CurCRC32^=td[I].DataCRC;
}
}
#endif
uint DataHash::BitReverse32(uint N)
{
uint Reversed=0;
for (uint I=0;I<32;I++,N>>=1)
Reversed|=(N & 1)<<(31-I);
return Reversed;
}
// Galois field multiplication modulo POLY.
uint DataHash::gfMulCRC(uint A, uint B)
{
// For reversed 0xEDB88320 polynomial we bit reverse CRC32 before passing
// to this function, so we must use the normal polynomial here.
// We set the highest polynomial bit 33 for proper multiplication
// in case uint is larger than 32-bit.
const uint POLY=uint(0x104c11db7);
uint R = 0 ; // Multiplication result.
while (A != 0 && B != 0) // If any of multipliers becomes 0, quit early.
{
// For non-zero lowest B bit, add A to result.
R ^= (B & 1)!=0 ? A : 0;
// Make A twice larger before the next iteration.
// Subtract POLY to keep it modulo POLY if high bit is set.
A = (A << 1) ^ ((A & 0x80000000)!=0 ? POLY : 0);
B >>= 1; // Move next B bit to lowest position.
}
return R;
}
// Calculate 2 power N with square-and-multiply algorithm.
uint DataHash::gfExpCRC(uint N)
{
uint S = 2; // Starts from base value and contains the current square.
uint R = 1; // Exponentiation result.
while (N > 1)
{
if ((N & 1)!=0) // If N is odd.
R = gfMulCRC(R, S);
S = gfMulCRC(S, S); // Next square.
N >>= 1;
}
// We could change the loop condition to N > 0 and return R at expense
// of one additional gfMulCRC(S, S).
return gfMulCRC(R, S);
}
void DataHash::Result(HashValue *Result)
{
Result->Type=HashType;
if (HashType==HASH_RAR14)
Result->CRC32=CurCRC32;
if (HashType==HASH_CRC32)
Result->CRC32=CurCRC32^0xffffffff;
if (HashType==HASH_BLAKE2)
{
// Preserve the original context, so we can continue hashing if necessary.
blake2sp_state res=*blake2ctx;
blake2sp_final(&res,Result->Digest);
}
}
uint DataHash::GetCRC32()
{
return HashType==HASH_CRC32 ? CurCRC32^0xffffffff : 0;
}
bool DataHash::Cmp(HashValue *CmpValue,byte *Key)
{
HashValue Final;
Result(&Final);
#ifndef RAR_NOCRYPT
if (Key!=nullptr)
ConvertHashToMAC(&Final,Key);
#endif
return Final==*CmpValue;
}
|