1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
|
========================
Working with :mod:`unyt`
========================
Basic Usage
+++++++++++
To use unyt in a project::
>>> import unyt
The top-level :mod:`unyt` namespace defines both a number of useful functions as
well as a number of units and physical constants populated from the
:mod:`unyt.unit_symbols` and :mod:`unyt.physical_constants` namespaces you can
use to attach units to NumPy arrays and other common Python data container types
like ``list`` and ``tuple``. For an exhaustive listing of units and physical
constants defined in :mod:`unyt`, see :ref:`unit-listing`.
.. warning::
Both unit symbols and physical constants are defined in the top-level
:mod:`unyt` namespace. Some names occur as both unit symbols and physical
constants, e.g. ``"me"``, ``"mp"``, ``"E_pl"``, etc. In such cases, the
top-level namespace defaults to exporting the physical constant with the
duplicate name. This means that there may be a (very rare) case where an
:class:`Unit <unyt.unit_object.Unit>` object that at one point can be
imported from the top-level namespace may at a later point be only imported
as an :class:`unyt_quantity <unyt.array.unyt_quantity>` object with the
same name. As described below, there are other ways to import the unit
symbols and/or physical constants besides the top-level namespace.
An Example from High School Physics
-----------------------------------
To see how you might use :mod:`unyt` to solve a problem where units might be a
headache, let's estimate the orbital periods of Jupiter's Galilean moons,
assuming they have circular orbits and their masses are negligible compared to
Jupiter. Under these assumptions, the orbital period is
.. math::
T = 2\pi\left( \frac{r^3}{GM}\right)^{1/2}.
For this exercise let's calculate the orbital period in days. While it's
possible to do this using plain old floating point numbers (you probably had to
do something similar on a calculator in a high school physics class, looking up
and plugging in conversion factors by hand), it's much easier to do this sort of
thing symbolically and let :mod:`unyt` handle the unit conversions.
To do this we'll need to know the mass of Jupiter (fortunately that is built
into :mod:`unyt`) and the semi-major axis of the orbits of Jupiter's moons, which
we can look up from `Wikipedia
<https://en.wikipedia.org/wiki/Moons_of_Jupiter#List>`_ and enter by hand::
>>> from unyt import Mjup, G, AU
>>> from math import pi
...
>>> moons = ['Io', 'Europa', 'Ganymede', 'Callisto']
>>> semimajor_axis = [.002819, .0044856, .00715526, .01258513]*AU
...
>>> period = 2*pi*(semimajor_axis**3/(G*Mjup))**0.5
>>> period = period.to('d')
...
>>> for moon, period in zip(moons, period):
... print('{}: {:04.2f}'.format(moon, period))
Io: 1.77 day
Europa: 3.55 day
Ganymede: 7.15 day
Callisto: 16.69 day
Let's break up this example into a few components so you can see what's going
on. First, we import the unit symbols we need from the :mod:`unyt` namespace::
>>> from unyt import Mjup, G, AU
The :mod:`unyt` namespace has a large number of units and physical constants you
can import to apply units to data in your own code. You can see how that works
in the example::
>>> semimajor_axis = [.002819, .0044856, .00715526, .01258513]*AU
>>> semimajor_axis
unyt_array([0.002819 , 0.0044856 , 0.00715526, 0.01258513], 'AU')
By multiplying by ``AU``, we converted the Python list into a
:class:`unyt.unyt_array <unyt.array.unyt_array>` instance. This is a class
that's built into :mod:`unyt`, has units attached to it, and knows how to
convert itself into different dimensionally equivalent units::
>>> semimajor_axis.value
array([0.002819 , 0.0044856 , 0.00715526, 0.01258513])
>>> semimajor_axis.units
AU
>>> print(semimajor_axis.to('km'))
[ 421716.39764641 671036.20903964 1070411.66066813 1882708.6511216 ] km
Next, we calculated the orbital period by translating the orbital period
formula to Python and then converting the answer to the units we want in the
end, days::
>>> period = 2*pi*(semimajor_axis**3/(G*Mjup))**0.5
>>> period
unyt_array([ 152864.59689789, 306828.08975058, 618162.17963649,
1441952.18891597], 's')
>>> period.to('d')
unyt_array([ 1.76926617, 3.55125104, 7.15465486, 16.68926145], 'day')
Note that we haven't added any conversion factors between different units,
that's all handled internally by :mod:`unyt`. Also note how the
:meth:`unyt_array.to <unyt.array.unyt_array.to>` method was able to
automatically handle the conversion from seconds to days and how the
shorthand ``"d"`` was automatically interpreted as ``"day"``.
Arithmetic and units
--------------------
The real power of working with :mod:`unyt` is its ability to add, subtract,
multiply, and divide quantities and arrays with units in mathematical formulas
while automatically handling unit conversions and detecting when you have made a
mistake in your units in a mathematical formula. To see what I mean by that,
let's take a look at the following examples::
>>> from unyt import cm, m, ft, yard
>>> print(3.*cm + 4.*m - 5.*ft + 6.*yard)
799.24 cm
Despite the fact that the four unit symbols used in the above example correspond
to four different units, :mod:`unyt` is able to automatically convert the value
of all three units into a common unit and return the result in those units. Note
that for expressions where the return units are ambiguous, :mod:`unyt` always
returns data in the units of the leftmost object in an expression::
>>> print(4*m + 3*cm - 5*ft + 6*yard) # doctest: +FLOAT_CMP
7.9924 m
One can also form more complex units out of atomic unit symbols. For example,
here is how we'd create an array with units of meters per second and print out
the values in the array in miles per hour::
>>> from unyt import m, s
>>> velocities = [20., 22., 25.]*m/s
>>> print(velocities.to('mile/hr'))
[44.73872584 49.21259843 55.9234073 ] mile/hr
Similarly one can multiply two units together to create new compound units::
>>> from unyt import N, m
>>> energy = 3*N * 4*m
>>> print(energy)
12 N*m
>>> print(energy.to('erg'))
120000000.0 erg
In general, one can multiply or divide by an arbitrary rational power of a unit
symbol. Most commonly this shows up in mathematical formulas in terms of square
roots. For example, let's calculate the gravitational free-fall time for a
person to fall from the surface of the Earth through to a hole dug all the way
to the center of the Earth. It turns out that this time `is given by
<https://en.wikipedia.org/wiki/Free-fall_time>`_:
.. math::
t_{\rm ff} = \sqrt{\frac{3\pi}{32 G \rho}}
where :math:`\rho` is the average density of the Earth.
>>> from unyt import G, Mearth, Rearth
>>> from math import pi
>>> import numpy as np
...
>>> rho = Mearth / (4./3 * pi* Rearth**3)
>>> print(rho.to('g/cm**3'))
5.581225129861083 g/cm**3
>>> tff = np.sqrt(3*pi/(32*G*rho))
>>> print(tff.to('min'))
14.820022043294829 min
If you make a mistake by adding two things that have different dimensions,
:mod:`unyt` will raise an error to let you know that you have a bug in your
code:
>>> from unyt import kg, m
>>> 3*kg + 5*m # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
unyt.exceptions.UnitOperationError: The <ufunc 'add'> operator for
unyt_arrays with units "kg" (dimensions "(mass)") and
"m" (dimensions "(length)") is not well defined.
while this example is trivial when one writes more complicated formulae it can
be easy to accidentally write expressions that are not dimensionally sound.
Sometimes this can be annoying to deal with, particularly if one is mixing data
that has units attached with data from some outside source with no units. To
quickly patch over this lack of unit metadata (which could be applied by
explicitly attaching units at I/O time), one can use the ``units`` attribute of
the :class:`unyt.unyt_array <unyt.array.unyt_array>` class to quickly apply units to a scalar, list, or array:
>>> from unyt import cm, s
>>> velocities = [10, 20, 30] * cm/s
>>> velocities + 12 # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
unyt.exceptions.UnitOperationError: The <ufunc 'add'> operator for
unyt_arrays with units "cm/s" (dimensions "(length)/(time)") and
"dimensionless" (dimensions "1") is not well defined.
>>> velocities + 12*velocities.units
unyt_array([22, 32, 42], 'cm/s')
Powers, Logarithms, Exponentials, and Trigonometric Functions
-------------------------------------------------------------
The :mod:`unyt` library represents powers using standard Python syntax. This
means you must use ``**`` and not ``^``, even when writing a unit as a string:
>>> from unyt import kg, m
>>> print((10.*kg/m**3).to('g/cm**3'))
0.01 g/cm**3
Formally it does not make sense to exponentiate, take the logarithm of, or apply
a transcendental function to a quantity with units. However, the :mod:`unyt`
library makes the practical affordance to allow this, simply ignoring the units
present and returning a result without units. This makes it easy to work with
data that has units both in linear space and in log space:
>>> from unyt import g, cm
>>> import numpy as np
>>> print(np.log10(1e-23*g/cm**3))
-23.0
The one exception to this rule is for trigonometric functions applied to data with angular units:
>>> from unyt import degree, radian
>>> import numpy as np
>>> np.sin(np.pi/4*radian)
array(0.70710678)
>>> np.sin(45.*degree)
array(0.70710678)
Logarithmic Quantities and Units
********************************
The logarithmic quantities level-of-power and level-of-field and the units neper and
bel are supported. In the next example, we represent the power measurements, ``p``, as
a logarithmic quantity at reference level, ``p_ref``, in the units decibel.
>>> import numpy as np
>>> from unyt import dB, mW
>>> dB.dimensions
(logarithmic)
>>> p = [1, 100]*mW
>>> p_ref = 1*mW
>>> level_of_power = 10*np.log10(p/p_ref)*dB
>>> level_of_power
unyt_array([ 0., 20.], 'dB')
You can convert the logarithmic quantity back to physical units through exponentiation,
just remember to remove the units using the
:meth:`unyt_array.v <unyt.array.unyt_array.v>` property.
>>> 10**(level_of_power.v/10)*p_ref
unyt_array([ 1., 100.], 'mW')
Printing Units
--------------
The print formatting of :class:`unyt_array <unyt.array.unyt_array>` can be
controlled identically to NumPy arrays, using ``numpy.setprintoptions``:
>>> import numpy as np
>>> import unyt as u
...
>>> with np.printoptions(precision=4):
... print([1.123456789]*u.km)
[1.1235] km
Print a :math:`\rm{\LaTeX}` representation of a set of units using the
:meth:`unyt.unit_object.Unit.latex_representation` function or
:attr:`unyt.unit_object.Unit.latex_repr` attribute:
>>> from unyt import g, cm
>>> (g/cm**3).units.latex_representation()
'\\frac{\\rm{g}}{\\rm{cm}^{3}}'
>>> (g/cm**3).units.latex_repr
'\\frac{\\rm{g}}{\\rm{cm}^{3}}'
Simplifying Units
-----------------
Unit expressions can often be simplified to cancel pairs of factors with
compatible dimensions. For example, we can form a unit with dimensions of length
by dividing a unit with dimensions of length squared by another unit with
dimensions of length::
>>> from unyt import m, cm
>>> m**2/cm
m**2/cm
The :class:`Unit <unyt.unit_object.Unit>` class has a :meth:`simplify()
<unyt.unit_object.Unit.simplify>` method that we can call to create a new unit
object to that includes the dimensionless ratio ``m/cm`` as a constant
coefficient::
>>> (m**2/cm).simplify()
100*m
This will also work for units that are the reciprocals of each other, for example:
>>> from unyt import s, Hz
>>> (s*Hz).simplify()
(dimensionless)
Products and quotients of unit objects will not be simplified unless
``simplify()`` is called explicitly. However, products and quotients of arrays
and quantities will be simplified to make interactive work more intuitive::
>>> from unyt import erg, minute, hour
>>> power = [20, 40, 80] * erg / minute
>>> elapsed_time = 3*hour
>>> print(power*elapsed_time)
[ 3600. 7200. 14400.] erg
.. _checking_units:
Checking Units
--------------
If you write a function that accepts data with units as an argument or returns data with units,
you can ensure the dimensional correctness of the inputs or outputs
using the :meth:`@accepts <unyt.dimensions.accepts>` and :meth:`@returns <unyt.dimensions.returns>` decorators::
>>> from unyt.dimensions import length, time
>>> from unyt import accepts, returns
>>> import unyt as u
>>> @returns(length)
... @accepts(a=time, v=length/time)
... def foo(a, v):
... return a * v
...
>>> res = foo(a=2*u.s, v=3*u.m/u.s)
>>> print(res)
6 m
:meth:`@accepts <unyt.dimensions.accepts>` can specify the dimensions of any subset of inputs and :meth:`@returns <unyt.dimensions.returns>` must always describe all outputs.
>>> @returns(length, length/time**2)
... @accepts(v=length/time)
... def bar(a, v):
... return a * v, v / a
...
>>> res = bar(a=2*u.s, v=3*u.m/u.s)
>>> print(*res)
6 m 1.5 m/s**2
.. note::
Using these decorators may incur some performance overhead, especially for small arrays.
Temperature Units
-----------------
The temperature unit degree Celsius has the symbol ``°C``, but since the degree character
is an invalid Python identifier, :mod:`unyt` uses the symbol ``degC``. Printing a degree Celsius
quantity will show the correct symbol.
>>> from unyt import degC
>>> Ta = 23*degC
>>> print(Ta)
23 °C
The ``degC`` symbol has alternative names ``degree_Celsius``, ``Celsius`` and ``°C``.
>>> from unyt import degree_Celsius, unyt_array
>>> Ta = 23*degree_Celsius
>>> print(Ta)
23 °C
>>> Ta = unyt_array([-40, 23, 70], '°C')
>>> print(Ta)
[-40 23 70] °C
These comments also apply to degree Fahrenheit.
Performing arithmetic with temperature quantities can be ambiguous. To clarify intent,
:mod:`unyt` has the convenience units ``delta_degC`` and ``delta_degF``.
>>> from unyt import degC, delta_degC, V
>>> t1 = 23*degC
>>> t2 = 1*delta_degC
>>> print(t1 + t2)
24.0 °C
>>> print(t2 - t1)
-22.0 °C
>>> tempco = 10.0*V/delta_degC
>>> print(tempco*2*delta_degC)
20.0 V
Unit Conversions and Unit Systems
+++++++++++++++++++++++++++++++++
Converting Data to Arbitrary Units
----------------------------------
If you have some data that you want to convert to a different set of units and
you know which units you would like to convert it to, you can make use of the
:meth:`unyt_array.to <unyt.array.unyt_array.to>` function:
>>> from unyt import mile
>>> (1.0*mile).to('ft')
unyt_quantity(5280., 'ft')
If you try to convert to a unit with different dimensions, :mod:`unyt` will
raise an error:
>>> from unyt import mile
>>> (1.0*mile).to('lb') # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
unyt.exceptions.UnitConversionError: Cannot convert between 'mile' (dim
'(length)') and 'lb' (dim '(mass)').
While we recommend using :meth:`unyt_array.to <unyt.array.unyt_array.to>` in
most cases to convert arrays or quantities to different units, if you would like
to explicitly emphasize that this operation has to do with units, we also
provide the more verbose name :meth:`unyt_array.in_units
<unyt.array.unyt_array.in_units>` which behaves identically to
:meth:`unyt_array.to <unyt.array.unyt_array.to>`.
Converting Units In-Place
-------------------------
The :meth:`unyt_array.to <unyt.array.unyt_array.to>` method makes a copy of the
array data. For most cases this is fine, but when dealing with big arrays, or
when performance is a concern, it sometimes is preferable to convert the data in
an array in-place, without copying the data to a new array. This can be
accomplished with the :meth:`unyt_array.convert_to_units
<unyt.array.unyt_array.convert_to_units>` function:
>>> from unyt import mile
>>> data = [1., 2., 3.]*mile
>>> data
unyt_array([1., 2., 3.], 'mile')
>>> data.convert_to_units('km')
>>> data
unyt_array([1.609344, 3.218688, 4.828032], 'km')
Converting to MKS and CGS Base Units
------------------------------------
If you don't necessarily know the units you want to convert data to ahead of
time, it's often convenient to specify a unit system to convert to. The
:class:`unyt_array <unyt.array.unyt_array>` has built-in conversion methods for
the two most popular unit systems, MKS (meter kilogram second) and CGS
(centimeter gram second). For CGS these are :meth:`unyt_array.in_cgs
<unyt.array.unyt_array.in_cgs>` and :meth:`unyt_array.convert_to_cgs
<unyt.array.unyt_array.convert_to_cgs>`. These functions create a new copy of an
array in CGS units and convert an array in-place to CGS respectively. For MKS,
there are the :meth:`unyt_array.in_mks <unyt.array.unyt_array.in_mks>`
and :meth:`unyt_array.convert_to_mks <unyt.array.unyt_array.convert_to_mks>` methods, which play analogous roles.
See below for details on CGS and MKS electromagnetic units.
.. _metal_conversions:
Metallicity Unit Conversions
----------------------------
In the astrophysical context, "metals" are all of the elements that have atomic
numbers greater than 2, i.e. everything heavier than helium. The "solar metallicity"
is the mass fraction of metals in the solar atmosphere, and is used in a variety
of contexts. Often, the metallicity of other astrophysical objects is expressed
in terms of the solar metallicity, given by the unit :math:`Z_\odot`. The default
mass fraction corresponding to :math:`Z_\odot` in :mod:`unyt` is 0.01295, corresponding
to the value used in the `Cloudy Code <https://gitlab.nublado.org/cloudy/cloudy/-/wikis/home>`_.
Metal mass fractions (by definition dimensionless) can be converted to :math:`Z_\odot`
(and vice versa):
>>> from unyt import dimensionless
>>> M_Z = 0.0259*dimensionless
>>> M_Z
unyt_quantity(0.0259, 'dimensionless')
>>> M_Z.convert_to_units("Z_sun")
>>> M_Z
unyt_quantity(2., 'Zsun')
However, the value of this mass fraction conversion must be measured, and various
estimates of it disagree somewhat. Different sub-disciplines of astronomy often
use different estimates in the literature. :mod:`unyt` provides other metallicity
unit conversions to several typical values in use. The available units (and their
mass fraction conversion factors) are:
* ``"Zsun_angr"``: 0.01937, from `Anders E. & Grevesse N. (1989, Geochimica et Cosmochimica Acta 53, 197) <https://ui.adsabs.harvard.edu/abs/1989GeCoA..53..197A/abstract>`_
* ``"Zsun_aspl"``: 0.01337, from `Asplund M., Grevesse N., Sauval A.J. & Scott P. (2009, ARAA, 47, 481) <https://ui.adsabs.harvard.edu/abs/2009ARA&A..47..481A/abstract>`_
* ``"Zsun_feld"``: 0.01909, from `Feldman U. (1992, Physica Scripta, 46, 202) <https://ui.adsabs.harvard.edu/abs/1992PhyS...46..202F/abstract>`_
* ``"Zsun_lodd"``: 0.01321, from `Lodders, K (2003, ApJ 591, 1220) <https://ui.adsabs.harvard.edu/abs/2003ApJ...591.1220L/abstract>`_
These can be used in the same way as above:
>>> from unyt import dimensionless
>>> M_Z = 0.0259*dimensionless
>>> M_Z
unyt_quantity(0.0259, 'dimensionless')
>>> M_Z.convert_to_units("Zsun_angr")
>>> M_Z
unyt_quantity(1.33711926, 'Zsun_angr')
Other Unit Systems
------------------
The :mod:`unyt` library currently has built-in support for a number of unit
systems, as detailed in the table below. Note that all unit systems currently
use "radian" as the base angle unit.
If a unit system in the table below has "Other Units" specified, this is a
mapping from dimension to a unit name. These units override the unit system's
default unit for that dimension. If no unit is explicitly specified of a
dimension then the base unit for that dimension is calculated at runtime by
combining the base units for the unit system into the appropriate dimension.
+--------------+--------------------+--------------------------+
| Unit system | Base Units | Other Units |
+==============+====================+==========================+
| cgs | cm, g, s | * Energy: erg |
| | | * Specific Energy: erg/g |
| | | * Pressure: dyne/cm**2 |
| | | * Force: dyne |
| | | * Power: erg/s |
| | | * Magnetic Field: G |
| | | * Charge: esu |
| | | * Current: statA |
+--------------+--------------------+--------------------------+
| mks | m, kg, s | * Energy: J |
| | | * Specific Energy: J/kg |
| | | * Pressure: Pa |
| | | * Force: N |
| | | * Power: W |
| | | * Magnetic Field: T |
| | | * Charge: C |
+--------------+--------------------+--------------------------+
| imperial | ft, lb, s | * Energy: ft*lbf |
| | | * Temperature: R |
| | | * Pressure: lbf/ft**2 |
| | | * Force: lbf |
| | | * Power: hp |
+--------------+--------------------+--------------------------+
| galactic | kpc, Msun, kyr | * Energy: kev |
| | | * Magnetic Field: uG |
+--------------+--------------------+--------------------------+
| solar | AU, Mearth, yr | |
+--------------+--------------------+--------------------------+
Note that in MKS units the current unit, Ampere, is a base unit in the unit
system. In CGS units the electromagnetic units like Gauss and statA are
decomposable in terms of the base mass, length, and time units in the unit
system. For this reason quantities defined in E&M units in CGS units are not
readily convertible to MKS units and vice versa since the units are not
dimensionally equivalent. The :mod:`unyt` library does have limited support for converting electromagnetic units between MKS and CGS, however only simple conversions of data with a single specific unit are supported and no conversions are allowed for complex combinations of units. For example converting between Gauss and Tesla is supported:
>>> from unyt import T
>>> (1.0*T).to('G')
unyt_quantity(10000., 'G')
But converting a more complicated compound unit will raise an error:
>>> from unyt import C, T, V
>>> (1.0*C*T*V).in_cgs() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
unyt.exceptions.UnitsNotReducible: The unit "C*T*V" (dimensions
"(length)**2*(mass)**2/((current_mks)*(time)**4)") cannot be reduced to
an expression within the cgs system of units.
If you need to work with complex expressions involving electromagnetic units, we
suggest sticking to either CGS or SI units for the full calculation. There is no
general way to convert an arbitrary quantity between CGS and SI units if the
quantity involves electromagnetic units. Instead, it is necessary to do the
conversion on the equations under consideration, and then recompute the
necessary quantity in the transformed set of equations. This requires
understanding the context for a calculation, which unfortunately is beyond the
scope of a library like :mod:`unyt`.
You can convert data to a unit system :mod:`unyt` knows about using the
:meth:`unyt_array.in_base <unyt.array.unyt_array.in_base>` and
:meth:`unyt_array.convert_to_base <unyt.array.unyt_array.convert_to_base>`
methods:
>>> from unyt import g, cm, horsepower
>>> (1e-9*g/cm**2).in_base('galactic')
unyt_quantity(4.78843804, 'Msun/kpc**2')
>>> data = [100., 500., 700.]*horsepower
>>> data
unyt_array([100., 500., 700.], 'hp')
>>> data.convert_to_base('mks')
>>> data
unyt_array([ 74569.98715823, 372849.93579114, 521989.91010759], 'W')
Defining and Using New Unit Systems
***********************************
To define a new custom unit system, one need only create a new instance of the
:class:`unyt.UnitSystem <unyt.unit_systems.UnitSystem>` class. The class
initializer accepts a set of base units to define the unit system. If you would
like to additionally customize any derived units in the unit system, you can do
this using item setting.
As an example, let's define an atomic unit system based on typical scales for
atoms and molecules:
>>> from unyt import UnitSystem
>>> atomic_unit_system = UnitSystem('atomic', 'nm', 'mp', 'fs', 'nK', 'rad')
>>> atomic_unit_system['energy'] = 'eV'
>>> atomic_unit_system
atomic Unit System
Base Units:
length: nm
mass: mp
time: fs
temperature: nK
angle: rad
current_mks: A
luminous_intensity: cd
logarithmic: Np
Other Units:
energy: eV
>>> print(atomic_unit_system)
atomic
>>> atomic_unit_system['number_density']
nm**(-3)
>>> atomic_unit_system['angular_momentum']
mp*nm**2/fs
It is also legal to define a unit system using :class:`unyt.Unit
<unyt.unit_object.Unit>` instances:
>>> from unyt.unit_symbols import Msun, second, megaparsec
>>> UnitSystem('cosmological', megaparsec, Msun, second)
cosmological Unit System
Base Units:
length: Mpc
mass: Msun
time: s
temperature: K
angle: rad
current_mks: A
luminous_intensity: cd
logarithmic: Np
Other Units:
Or with a quantity:
>>> UnitSystem('quasmological', 3*megaparsec, .8*Msun, 42*second)
quasmological Unit System
Base Units:
length: 3*Mpc
mass: 0.8*Msun
time: 42*s
temperature: K
angle: rad
current_mks: A
luminous_intensity: cd
logarithmic: Np
Other Units:
Once you have defined a new unit system that will register the new system with a
global registry of unit systems known to the :mod:`unyt` library. That means you
will immediately be able to use it just like the built-in unit systems:
>>> from unyt import W
>>> (1.0*W).in_base('atomic')
unyt_quantity(0.59746607, 'mp*nm**2/fs**3')
If you would like your unit system to include an MKS current unit
(e.g. something that is directly convertible to the MKS Ampere unit), then
specify a ``current_mks_unit`` in the :class:`UnitSystem
<unyt.unit_systems.UnitSystem>` initializer.
Equivalencies
+++++++++++++
An equivalency is a way to define a mapping to convert from one unit to another
even if the two units are not dimensionally equivalent. This usually involves
some sort of shorthand or heuristic understanding of the problem under
consideration. Only use one of these equivalencies if it makes sense to use it
for the problem you are working on.
The :mod:`unyt` library implements the following equivalencies:
* ``"thermal"``: conversions between temperature and energy (:math:`E = k_BT`)
* ``"spectral"``: conversions between wavelength, spatial frequency, frequency,
and energy for photons (:math:`E = h\nu = hc/\lambda`, :math:`c = \lambda\nu`)
* ``"mass_energy"``: conversions between mass and energy (:math:`E = mc^2`)
* ``"lorentz"``: conversions between velocity and Lorentz factor (:math:`\gamma
= 1/\sqrt{1-(v/c)^2}`)
* ``"schwarzschild"``: conversions between mass and Schwarzschild radius
(:math:`R_S = 2GM/c^2`)
* ``"compton"``: conversions between mass and Compton wavelength (:math:`\lambda
= h/mc`)
You can convert data to a specific set of units via an equivalency appropriate
for the units of the data. To see the equivalencies that are available for an
array, use the :meth:`unit_array.list_equivalencies
<unyt.array.unyt_array.list_equivalencies>` method:
>>> from unyt import gram, km
>>> gram.list_equivalencies()
mass_energy: mass <-> energy
schwarzschild: mass <-> length
compton: mass <-> length
>>> km.list_equivalencies()
spectral: length <-> spatial_frequency <-> frequency <-> energy
schwarzschild: mass <-> length
compton: mass <-> length
All of the unit conversion methods described above have an ``equivalence``
keyword argument that allows one to optionally specify an equivalence to use for
the unit conversion operation. For example, let's use the ``schwarzschild``
equivalence to calculate the mass of a black hole with a radius of one AU:
>>> from unyt import AU
>>> (1.0*AU).to('Msun', equivalence='schwarzschild')
unyt_quantity(50656851.7815179, 'Msun')
Both the methods that convert data in-place and the ones that return a copy
support optionally specifying equivalence. In addition to the methods described
above, :mod:`unyt` also supplies two more conversion methods that *require* an
equivalence to be specified: :meth:`unyt_array.to_equivalent
<unyt.array.unyt_array.to_equivalent>` and
:meth:`unyt_array.convert_to_equivalent
<unyt.array.unyt_array.convert_to_equivalent>`. These are identical to their
counterparts described above, except that equivalence is a required
argument to the function rather than an optional keyword argument. Use these
functions when you want to emphasize that an equivalence is being used.
If the equivalence has optional keyword arguments, these can be passed to the
unit conversion function. For example, here's an example where we specify a
custom mean molecular weight (``mu``) for the ``number_density`` equivalence:
>>> from unyt import g, cm
>>> rho = 1e-23 * g/cm**3
>>> rho.to('cm**-3', equivalence='number_density', mu=1.4)
unyt_quantity(4.26761476, 'cm**(-3)')
For full API documentation and an autogenerated listing of the built-in
equivalencies in :mod:`unyt` as well as a short usage example for each, see the
:mod:`unyt.equivalencies` API listing.
Dealing with code that doesn't use :mod:`unyt`
++++++++++++++++++++++++++++++++++++++++++++++
Optimally, a function will work the same irrespective of whether the data passed in has units attached or not:
>>> from unyt import cm
>>> def square(x):
... return x**2
>>> print(square(3.))
9.0
>>> print(square(3.*cm))
9.0 cm**2
However in the real world that is not always the case. In this section we describe strategies for dealing with that situation.
Stripping units off of data
---------------------------
The :mod:`unyt` library provides a number of ways to convert
:class:`unyt_quantity <unyt.array.unyt_quantity>` instances into floats and
:class:`unyt_array <unyt.array.unyt_array>` instances into NumPy arrays. These
methods either return a copy of the data as a NumPy array or return a view
onto the underlying array data owned by a :class:`unyt_array
<unyt.array.unyt_array>` instance.
To obtain a new array containing a copy of the original data, use either the
:meth:`unyt_array.to_value <unyt.array.unyt_array.to_value>` function or the
:attr:`unyt_array.value <unyt.array.unyt_array.value>` or :attr:`unyt_array.v
<unyt.array.unyt_array.v>` properties. All of these are equivalent to passing a
:class:`unyt_array <unyt.array.unyt_array>` to the ``numpy.array()`` function:
>>> from unyt import g
>>> import numpy as np
>>> data = [1., 2., 3.]*g
>>> data
unyt_array([1., 2., 3.], 'g')
>>> np.array(data)
array([1., 2., 3.])
>>> data.to_value('kg')
array([0.001, 0.002, 0.003])
>>> data.value
array([1., 2., 3.])
>>> data.v
array([1., 2., 3.])
Similarly, to obtain a ndarray containing a view of the data in the original
array, use either the :attr:`unyt_array.ndview <unyt.array.unyt_array.ndview>`
property (or :attr:`unyt_array.d <unyt.array.unyt_array.d>` for shorts):
>>> data.view(np.ndarray)
array([1., 2., 3.])
>>> data.ndview
array([1., 2., 3.])
>>> data.d
array([1., 2., 3.])
Applying units to data
----------------------
.. note::
A NumPy array that shares memory with another NumPy array points to the array
that owns the data with the ``base`` attribute. If ``arr1.base is arr2`` is
``True`` then ``arr1`` is a view onto ``arr2`` and ``arr2.base`` will be
``None``.
When a :class:`unyt_array <unyt.array.unyt_array>` instance is created from a
NumPy array and a :class:`Unit <unyt.unit_object.Unit>`, data from the NumPy array
will be copied:
>>> from unyt import g
>>> data = np.random.random((100, 100))
>>> data_with_units = data*g
>>> data_with_units.base is data
False
If you would like to create a view rather than a copy, you can apply units like this:
>>> from unyt import unyt_array
>>> data_with_units = unyt_array(data, g)
>>> data_with_units.base is data
True
Any set of units can be used for either of these operations. For example, if
you already have an existing array, you could do this to create a new array
with the same units:
>>> more_data = [4, 5, 6]*data_with_units.units
>>> more_data
unyt_array([4, 5, 6], 'g')
Working with code that uses ``astropy.units``
---------------------------------------------
The :mod:`unyt` library can convert data contained inside of an Astropy
``Quantity`` instance. It can also produce a ``Quantity`` from an existing
:class:`unyt_array <unyt.array.unyt_array>` instance. To convert data from
``astropy.units`` to :mod:`unyt` use the :func:`unyt_array.from_astropy
<unyt.array.unyt_array.from_astropy>` function:
>>> from astropy.units import km
>>> from unyt import unyt_quantity
>>> unyt_quantity.from_astropy(km)
unyt_quantity(1., 'km')
>>> a = [1, 2, 3]*km
>>> a
<Quantity [1., 2., 3.] km>
>>> unyt_array.from_astropy(a)
unyt_array([1., 2., 3.], 'km')
To convert data *to* ``astropy.units`` use the :meth:`unyt_array.to_astropy <unyt.array.unyt_array.to_astropy>` method:
>>> from unyt import g, cm
>>> data = [3, 4, 5]*g/cm**3
>>> data.to_astropy()
<Quantity [3., 4., 5.] g / cm3>
>>> (4*cm).to_astropy()
<Quantity 4. cm>
Working with code that uses ``Pint``
------------------------------------
The :mod:`unyt` library can also convert data contained in ``Pint`` ``Quantity``
instances. To convert data from ``Pint`` to :mod:`unyt`, use the :func:`unyt_array.from_pint <unyt.array.unyt_array.from_pint>` function:
>>> from pint import UnitRegistry
>>> import numpy as np
>>> ureg = UnitRegistry()
>>> a = np.arange(4)
>>> b = ureg.Quantity(a, "erg/cm**3")
>>> b
<Quantity([0 1 2 3], 'erg / centimeter ** 3')>
>>> c = unyt_array.from_pint(b)
>>> c
unyt_array([0, 1, 2, 3], 'erg/cm**3')
And to convert data contained in a :class:`unyt_array <unyt.array.unyt_array>`
instance, use the :meth:`unyt_array.to_pint <unyt.array.unyt_array.to_pint>`
method:
>>> from unyt import cm, s
>>> a = 4*cm**2/s
>>> print(a)
4 cm**2/s
>>> a.to_pint()
<Quantity(4, 'centimeter ** 2 / second')>
>>> b = [1, 2, 3]*cm
>>> b.to_pint()
<Quantity([1 2 3], 'centimeter')>
Reading quantities from text
----------------------------
Quantities can also be parsed from strings with the :func:`unyt_quantity.from_string <unyt.unyt_quantity.from_string>` function:
>>> from unyt import unyt_quantity
>>> unyt_quantity.from_string("1 cm")
unyt_quantity(1, 'cm')
>>> unyt_quantity.from_string("1e3 Msun")
unyt_quantity(1000., 'Msun')
>>> unyt_quantity.from_string("1e-3 g/cm**3")
unyt_quantity(0.001, 'g/cm**3')
This method is helpful to read data from text files, for instance configuration
files. It is intended to be as flexible as possible on the string format, though
it requires that the numerical value and the unit name be separated with some
kind of whitespace.
User-Defined Units
++++++++++++++++++
Often it is convenient to define new custom units. This can happen when you need
to make use of a unit that the :mod:`unyt` library does not have a definition
for already. It can also happen when dealing with data that uses a custom unit
system or when writing software that needs to deal with such data in a flexible
way, particularly when the units might change from dataset to dataset. This
comes up often when modeling a physical system since it is often convenient to
rescale data from a physical unit system to an internal "code" unit system in
which the values of the variables under consideration are close to unity. This
approach can help minimize floating point round-off error but is often done for
convenience or to non-dimensionalize the problem under consideration.
The :mod:`unyt` library provides two approaches for dealing with this
problem. For more toy one-off use-cases, we suggest using
:func:`unyt.define_unit <unyt.unit_object.define_unit>` which allows defining a
new unit name in the global, default unit system that :mod:`unyt` ships with by
default.
This function makes it possible to easily define a new unit that is unknown to
the :mod:`unyt` library:
>>> import unyt as u
>>> ninety_pounds = 90.0*u.lb
>>> one_pound = 1.0*u.lb
>>> u.define_unit("firkin", ninety_pounds)
>>> print((3*u.firkin)/one_pound)
270.0 dimensionless
This is primarily useful for one-off definitions of units that the :mod:`unyt`
library does not already have predefined. For more complex uses cases that need
more flexibility, it is possible to use a custom unit system by ensuring that
the data you are working with makes use of a :class:`UnitRegistry
<unyt.unit_registry.UnitRegistry>` customized for your use case, as described
below.
Dealing with data types
+++++++++++++++++++++++
The :mod:`unyt` library supports creating :class:`unyt.unyt_array
<unyt.array.unyt_array>` and :class:`unyt.unyt_quantity
<unyt.array.unyt_quantity>` instances with arbitrary integer or floating point
data types:
>>> import numpy as np
>>> from unyt import km
...
>>> int_data = [1, 2, 3]*km
>>> int_data
unyt_array([1, 2, 3], 'km')
>>> float32_data = np.array([1, 2, 3], dtype='float32')*km
>>> float32_data
unyt_array([1., 2., 3.], dtype=float32, units='km')
The ``dtype`` of a ``unyt_array`` instance created by multiplying an iterable by
a unit will be the same as passing the iterable to ``np.array()``. You can also
manually specify the ``dtype`` by calling ``np.array()`` yourself or by using
the ``unyt_array`` initializer directly:
>>> np.array([1, 2, 3], dtype='float64')*km
unyt_array([1., 2., 3.], 'km')
Operations that convert an integer array to a new unit will convert the array to
the floating point type with an equivalent size. For example, Calling
``in_units`` on a 32 bit integer array with units of kilometers will return a 32
bit floating point array.
>>> data = np.array([1, 2, 3], dtype='int32')*km
>>> data.in_units('mile')
unyt_array([0.6213712, 1.2427424, 1.8641136], dtype=float32, units='mile')
In-place operations will also mutate the dtype from float to integer in these
cases, again in a way that will preserve the byte size of the data.
>>> data.convert_to_units('mile')
>>> data
unyt_array([0.6213712, 1.2427424, 1.8641136], dtype=float32, units='mile')
It is possible that arrays containing large integers (16777217 for 32 bit and
9007199254740993 for 64 bit) will lose precision when converting data to a
different unit. In these cases a warning message will be printed.
Integrating :mod:`unyt` Into a Python Library
+++++++++++++++++++++++++++++++++++++++++++++
The :mod:`unyt` library began life as the unit system for the ``yt`` data
analysis and visualization package, in the form of ``yt.units``. In this role,
:mod:`unyt` was deeply integrated into a larger Python library. Due to these
origins, it is straightforward to build applications that ensure unit
consistency by making use of :mod:`unyt`. Below we discuss a few topics that
most often come up when integrating :mod:`unyt` into a new or existing Python
library.
Unit registries
---------------
It is also possible to define a custom database of units completely independent
of the global default unit database exposed by the :mod:`unyt` namespace or to
create namespaces in your own package that expose listings of units. In these
cases it becomes important to understand how ``unyt`` stores unit metadata in an
internal database, how to add custom entries to the database, how to modify
them, and how to persist custom units.
In practice, the unit metadata for a unit object is contained in an instance of the :class:`UnitRegistry <unyt.unit_registry.UnitRegistry>` class. Every :class:`Unit <unyt.unit_object.Unit>` instance contains a reference to a :class:`UnitRegistry <unyt.unit_registry.UnitRegistry>` instance:
>>> from unyt import g
>>> g.registry # doctest: +ELLIPSIS
<unyt.unit_registry._NonModifiableUnitRegistry ...>
All the unit objects in the :mod:`unyt` namespace make use of the default unit
registry, importable as :data:`unyt.unit_registry.default_unit_registry`. This
registry object contains all of the real-world physical units that the
:mod:`unyt` library ships with out of the box.
The unit registry itself contains a look-up table that maps from unit names to the metadata necessary to construct a unit. Note that the unit registry only contains metadata for "base" units, and not, for example, SI-prefixed units like centimeter of kilogram, it will instead only contain entries for meter and gram.
Sometimes it is convenient to create a unit registry containing new units that are not available in the default unit registry. A common example would be adding a ``code_length`` unit that corresponds to the scaling to from physical lengths to an internal unit system. In practice, this value is arbitrary, but will be fixed for a given problem. Let's create a unit registry and a custom ``"code_length"`` unit to it, and then create a ``"code_length"`` unit and a quantity with units of ``"code_length"``. For the sake of example, let's set the value of ``"code_length"`` equal to 10 meters.
>>> from unyt import UnitRegistry, Unit
>>> from unyt.dimensions import length
>>> reg = UnitRegistry()
>>> reg.add("code_length", base_value=10.0, dimensions=length,
... tex_repr=r"\rm{Code Length}")
>>> 'code_length' in reg
True
>>> u = Unit('code_length', registry=reg)
>>> data = 3*u
>>> print(data)
3 code_length
As you can see, you can test whether a unit name is in a registry using the
Python ``in`` operator.
In an application that depends on ``unyt``, it is often convenient to define
methods or functions to automatically attach the correct unit registry to unit
objects associated with an object. For example, consider a ``Simulation``
class. Let's give this class two methods named ``array`` and ``quantity`` to
create new :mod:`unyt_array <unyt.array.unyt_array>` and :mod:`unyt_quantity
<unyt.array.unyt_quantity>` instances, respectively:
>>> class Simulation:
... def __init__(self, registry):
... self.registry = registry
...
... def array(self, value, units):
... return unyt_array(value, units, registry=self.registry)
...
... def quantity(self, value, units):
... return unyt_quantity(value, units, registry=self.registry)
...
>>> registry = UnitRegistry()
>>> registry.add("code_length", base_value=3.2, dimensions=length)
>>> s = Simulation(registry)
>>> s.array([1, 2, 3], 'code_length')
unyt_array([1, 2, 3], 'code_length')
We can create an array with ``"code_length"`` here because ``s.registry``, the ``UnitRegistry`` instance associated with our Simulation instance has a ``"code_length"`` unit defined.
As for arrays with different units, for operations between arrays created with
different unit registries, the result of the operation will use the same unit
registry as the leftmost unit. This can sometimes lead to surprising behaviors
where data will seem to "forget" about custom units. In this situation it is
important to make sure ahead of time that all data are created with units using
the same unit registry. If for some reason that is not possible (for example,
when comparing data from two different simulations with different internal
units), then care must be taken when working with custom units. To avoid these
sorts of ambiguities it is best to do work in physical units as much as
possible.
When writing tests, it is convenient to use :mod:`unyt.testing`. In particular, :func:`assert_allclose_units <unyt.testing.assert_allclose_units>` can be used to check for floating-point equality.
>>> from unyt import assert_allclose_units, m
>>> import numpy as np
>>> actual = [1e-5, 1e-3, 1e-1] * m
>>> desired = actual.to("cm")
>>> assert_allclose_units(actual, desired)
Custom Unit Systems
-------------------
By default :mod:`unyt` uses the SI MKS unit system. However, libraries can
create a unit registry using another unit system to expose that unit system to
their users by creating a unit registry with a custom unit system. For example,
to make CGS units the default unit for all operations, one might use a CGS
``UnitRegistry`` to instancitate the ``Simulation`` class like so::
>>> class Simulation:
... def __init__(self, registry):
... self.registry = registry
...
... def array(self, value, units):
... return unyt_array(value, units, registry=self.registry)
...
... def quantity(self, value, units):
... return unyt_quantity(value, units, registry=self.registry)
...
>>> registry = UnitRegistry(unit_system='cgs')
>>> registry.add("code_length", base_value=3.2, dimensions=length)
>>> s_cgs = Simulation(registry)
>>> data = s_cgs.array([1, 2, 3], 'code_length')
>>> data
unyt_array([1, 2, 3], 'code_length')
>>> data.in_base()
unyt_array([320., 640., 960.], 'cm')
Note that the ``base_value`` parameter of :meth:`UnitRegistry.add
<unyt.unit_registry.UnitRegistry.add>` must be specified in MKS units. All unit
data are stored internally in :mod:`unyt` in MKS units.
You can also use two helper functions provided by :mod:`unyt`,
:func:`unyt.unit_systems.add_constants` and
:func:`unyt.unit_systems.add_symbols`, to populate a namespace with a set of
predefined unit symbols or physical constants. This namespace could correspond to
the names importable from a module or the names of attributes of an object, or
any other generic dictionary.
One example of doing this would be to make a ``UnitContainer`` class that
contains units that are compatible with the ``Simulation`` instance we named
``s_cgs`` in the example above::
>>> from unyt.unit_systems import add_symbols
>>> class UnitContainer:
... def __init__(self, registry):
... add_symbols(vars(self), registry)
>>> units = UnitContainer(s_cgs.registry)
>>> units.kilometer
km
>>> units.code_length
code_length
>>> (10.0 * units.kilometer).in_base()
unyt_quantity(1000000., 'cm')
>>> (10.0 * units.kilometer).in_units('code_length')
unyt_quantity(3125., 'code_length')
Note how the result of the call to ``in_base()`` comes out in centimeters
because of the the CGS unit system used by the :class:`UnitRegistry
<unyt.unit_registry.UnitRegistry>` instance associated with the ``Simulation``.
Writing Data with Units to Disk
-------------------------------
The :mod:`unyt` library has support for serializing data stored in a
:class:`unyt.unyt_array <unyt.array.unyt_array>` instance to HDF5 files, text
files, and via the Python pickle protocol. We give brief examples below, but first describe how to handle saving units manually as string metadata.
Dealing with units as strings
*****************************
If all you want to do is save data to disk in a physical unit or you are working
in a physical unit system, then you only need to save the unit name as a string
and treat the array data you are trying to save as a regular NumPy array, as in
this example:
>>> import numpy as np
>>> import os
>>> from unyt import cm
...
>>> data = [1, 2, 3]*cm
>>> np.save('my_data_cm.npy', data)
>>> new_data = np.load('my_data_cm.npy')
>>> new_data
array([1, 2, 3])
>>> new_data_with_units = new_data * cm
>>> os.remove('my_data_cm.npy')
Of course in this example using ``numpy.save`` we need to hard-code the units because the ``.npy`` format doesn't have a way to store metadata along with the array data. We could have stored metadata in a sidecar file, but this is much more natural with ``hdf5`` via ``h5py``:
>>> import h5py
>>> import os
>>> from unyt import cm, unyt_array
...
>>> data = [1, 2, 3]*cm
...
>>> with h5py.File('my_data.h5', 'a') as f:
... d = f.create_dataset('my_data', data=data)
... f['my_data'].attrs['units'] = str(data.units)
...
>>> with h5py.File('my_data.h5', 'r') as f:
... new_data = f['my_data'][:]
... unit_str = f['my_data'].attrs['units']
...
>>> new_data = unyt_array(new_data, unit_str)
>>> new_data
unyt_array([1, 2, 3], 'cm')
>>> os.remove('my_data.h5')
HDF5 Files
**********
The :mod:`unyt` library provides a hook for writing data both to a new HDF5 file and an existing file and then subsequently reading that data back in to restore the array. This works via the :meth:`unyt_array.write_hdf5 <unyt.array.unyt_array.write_hdf5>` and :meth:`unyt_array.from_hdf5 <unyt.array.unyt_array.from_hdf5>` methods. The simplest way to use these functions is to write data to a file that does not exist yet:
>>> from unyt import cm, unyt_array
>>> import os
>>> data = [1, 2, 3]*cm
>>> data.write_hdf5('my_data.h5')
...
>>> unyt_array.from_hdf5('my_data.h5')
unyt_array([1, 2, 3], 'cm')
>>> os.remove('my_data.h5')
By default the data will be written to the root group of the HDF5 file in a dataset named ``'array_data'``. You can also specify that you would like
the data to be saved in a particular group or dataset in the file:
>>> data.write_hdf5('my_data.h5', dataset_name='my_special_data',
... group_name='my_special_group')
>>> unyt_array.from_hdf5('my_data.h5', dataset_name='my_special_data',
... group_name='my_special_group')
unyt_array([1, 2, 3], 'cm')
>>> os.remove('my_data.h5')
You can even write to files and groups that already exist:
>>> with h5py.File('my_data.h5', 'w') as f:
... g = f.create_group('my_custom_group')
...
>>> data.write_hdf5('my_data.h5', group_name='my_custom_group')
...
>>> with h5py.File('my_data.h5') as f:
... print(f['my_custom_group/array_data'][:])
[1 2 3]
>>> os.remove('my_data.h5')
If the dataset that you would like to write to already exists, :mod:`unyt`
will clobber that dataset.
Note that with this method of saving data to HDF5 files, the
:class:`unyt.UnitRegistry <unyt.unit_registry.UnitRegistry>` instance associated
with the units of the data will be saved in the HDF5 file. This means that if
you create custom units and save a unit to disk, you will be able to convert
data to those custom units even if you are dealing with those units later after
restoring the data from disk. Here is a short example illustrating this:
>>> import os
>>> from unyt import UnitRegistry
>>> reg = UnitRegistry()
>>> reg.add("code_length", base_value=10.0, dimensions=length,
... tex_repr=r"\rm{Code Length}")
>>> u = Unit('cm', registry=reg)
>>> data = [1., 2., 3.]*u
>>> data.write_hdf5('my_code_data.h5')
>>> read_data = data.from_hdf5('my_code_data.h5')
>>> read_data
unyt_array([1., 2., 3.], 'cm')
>>> read_data.to('code_length')
unyt_array([0.001, 0.002, 0.003], 'code_length')
>>> os.remove('my_code_data.h5')
Text Files
**********
The :mod:`unyt` library also has wrappers around ``numpy.savetxt`` and ``numpy.loadtxt`` for saving data as an ASCII table. For example:
>>> import unyt as u
>>> import os
>>> data = [[1, 2, 3]*u.cm, [4, 5, 6]*u.kg]
>>> u.savetxt('my_data.txt', data)
>>> with open('my_data.txt') as f:
... print("".join(f.readlines())) # doctest: +NORMALIZE_WHITESPACE
# Units
# cm kg
1.000000000000000000e+00 4.000000000000000000e+00
2.000000000000000000e+00 5.000000000000000000e+00
3.000000000000000000e+00 6.000000000000000000e+00
<BLANKLINE>
>>> os.remove('my_data.txt')
Pickles
*******
.. note::
Pickle files are great for serializing data to disk or over a network for
internal usage by a package. They are ill-suited for long-term data storage
or for communicating data between different Python installations. If you want
to use pickle files for data storage, consider using a format designed for
long-term data storage, like HDF5.
Both :class:`unyt.unyt_array <unyt.array.unyt_array>` and :class:`unyt.Unit <unyt.unit_object.Unit>` instances can be saved using the pickle protocol:
>>> from unyt import kg
>>> import pickle
>>> import numpy as np
...
>>> assert kg == pickle.loads(pickle.dumps(kg))
>>> data = [1, 2, 3]*kg
>>> reloaded_data = pickle.loads(pickle.dumps(data))
>>> assert np.array_equal(data.value, reloaded_data.value)
>>> assert data.units == reloaded_data.units
As for HDF5 data, the unit registry associated with the unit object is saved to
the pickle. If you have custom units defined, the reloaded data will know about
your custom unit and be able to convert data to and from the custom unit.
Handling errors from :mod:`unyt`
--------------------------------
:mod:`unyt` sometimes raises exceptions with unique exception types, e.g., to signal
invalid operations, like summation of quantities with different dimensions.
It is possible to catch any exceptions from unyt as
>>> from unyt import cm, s
>>> from unyt.exceptions import UnytError
>>> a = 1 * cm
>>> b = 1 / s
>>> try:
... a + b
... except UnytError:
... pass
However, it is in general advised to only catch specific exceptions types that
are known-possible outcomes. All custom exceptions types live in the
:mod:`unyt.exceptions` module and may be imported from there.
Performance Considerations
--------------------------
Tracking units in an application will inevitably add overhead. Judging where
overhead is important or not depends on what real-world workflows look
like. Ultimately, profiling code is the best way to find out whether handling
units is a performance bottleneck. Optimally handling units will be amortized
over the cost of an operation. While this is true for large arrays (bigger than
about one million elements), this is *not* true for small arrays that contain
only a few elements.
In addition, it is sometimes easy to write code that needlessly checks unit
consistency when we know ahead of time that data are already in the correct
units. Often we can get away with only checking unit consistency once and then
stripping units after that.
A good rule of thumb is that units should be checked on input, stripped off of
data during a calculation, and then re-applied when returning data from a
function. In other words, apply or check units at interfaces, but during an
internal calculation it is often worth stripping units, especially if the
calculation involves many operations on arrays with only a few elements.
:class:`unyt_array.name <unyt.array.unyt_array.name>` attribute
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
The unyt_array has a name attribute for use in structured-data applications or
similar applications that require labeled data. For example, Numpy has record arrays
and when constructed as shown below, it is possible to retain the units while taking
advantage of the labeled record fields.
>>> import numpy as np
>>> from unyt import unyt_array
>>> x = unyt_array([0, 1, 2], "s", name="time")
>>> y = unyt_array([3, 4, 5], "m", name="distance")
>>> data = (x, y)
>>> dt = [(a.name, "O") for a in data]
>>> data_points = np.array(list(zip(*data)), dtype=dt).view(np.recarray)
>>> data_points[0].time
unyt_quantity(0, 's')
>>> data_points[0].distance
unyt_quantity(3, 'm')
.. note::
The name attribute does not propagate through mathematical operations.
Other operations such as indexing, copying, and unit conversion, will preserve
the name attribute where the semantic meaning of the quantity remains the same.
Plotting with Matplotlib
++++++++++++++++++++++++
.. note::
- This is an experimental feature. Please report issues.
- This feature works in Matplotlib versions 2.2.4 and above
- Matplotlib is not a dependency of Unyt
Matplotlib is Unyt aware. After enabling support in :mod:`unyt` using the
:class:`unyt.matplotlib_support <unyt.mpl_interface.matplotlib_support>` context
manager, Matplotlib will label the x and y axes with the units.
>>> import matplotlib.pyplot as plt
>>> from unyt import matplotlib_support, s, K
>>> x = [0.0, 60.0, 120.0]*s
>>> y = [298.15, 308.15, 318.15]*K
>>> with matplotlib_support:
... plt.plot(x, y)
... plt.show()
[<matplotlib.lines.Line2D object at ...>]
.. image:: _static/mpl_fig1.png
You can change the plotted units without affecting the original data.
>>> with matplotlib_support:
... plt.plot(x, y, xunits="min", yunits=("J", "thermal"))
... plt.show()
[<matplotlib.lines.Line2D object at ...>]
.. image:: _static/mpl_fig2.png
It is also possible to set the label style; the choices ``"()"``, ``"[]"`` and
``"/"`` are supported.
>>> matplotlib_support.label_style = "[]"
>>> with matplotlib_support:
... plt.plot(x, y)
... plt.show()
[<matplotlib.lines.Line2D object at ...>]
.. image:: _static/mpl_fig3.png
The axis label will include the unyt_array.name attribute if set.
>>> x.name = "Time"
>>> y.name = "Temperature"
>>> with matplotlib_support:
... plt.plot(x, y)
... plt.show()
[<matplotlib.lines.Line2D object at ...>]
.. image:: _static/mpl_fig4.png
With label_style set to "/", the axis label conforms to the SI standard where the
axis label is a mathematical expression rather than a caption. In this case, set the
unyt_array.name attribute to the latex expression for the physical quantity symbol.
>>> x.name = "$t$"
>>> y.name = ""
>>> matplotlib_support.label_style = "/"
>>> with matplotlib_support:
... plt.plot(x, y)
... plt.show()
[<matplotlib.lines.Line2D object at ...>]
.. image:: _static/mpl_fig5.png
There are three ways to use the context manager:
1. As a conventional context manager in a ``with`` statement as shown above
2. As a feature toggle in an interactive session:
>>> import matplotlib.pyplot as plt
>>> from unyt import s, K, matplotlib_support
>>> matplotlib_support.enable()
>>> plt.plot([0, 1, 2]*s, [3, 4, 5]*K)
[<matplotlib.lines.Line2D object at ...>]
>>> plt.show()
>>> matplotlib_support.disable()
3. As an enable for a complete session:
>>> import unyt
>>> unyt.matplotlib_support()
>>> import matplotlib.pyplot as plt
.. _dask:
Working with Dask arrays
++++++++++++++++++++++++
:mod:`unyt` provides the ability to wrap dask arrays with :mod:`unyt`
behavior. The main access point is the :mod:`unyt.dask_array.unyt_from_dask`
function, which allows you to build a :mod:`unyt_dask_array` from a plain dask array
analogous to the creation of a :mod:`unyt_array` from a plain :mod:`numpy.ndarray`:
>>> from unyt import dask_array as uda
>>> import dask.array as da
>>> x = da.arange(10000, chunks=(1000,))
>>> x_da = uda.unyt_from_dask(x, 'm')
Methods that hang off of a :mod:`unyt_dask_array` object and operations on
:mod:`unyt_dask_array` objects will generally preserve units:
>>> x_da.sum().compute()
unyt_quantity(49995000, 'm')
>>> (x_da[:5000] * x_da[5000:]).compute()[:5]
unyt_array([ 0, 5001, 10004, 15009, 20016], 'm**2')
One important caveat is that using Dask array functions may strip units:
>>> da.sum(x_da).compute()
np.int64(49995000)
For simple reductions, you can use the :mod:`reduce_with_units` function:
>>> result = uda.reduce_with_units(da.sum, x_da)
>>> result.compute()
unyt_quantity(49995000, 'm')
But more complex operations may require more careful management of units. Note
that :mod:`reduce_with_units` will accept any of the positional or keyword
arguments for the array function:
>>> import numpy as np
>>> x = da.ones((10000, 3), chunks=(1000, 1000))
>>> x[:,0] = np.nan
>>> x_da = uda.unyt_from_dask(x, 'm')
>>> result = uda.reduce_with_units(da.nansum, x_da, axis=1)
>>> result.compute()[:5]
unyt_array([2., 2., 2., 2., 2.], 'm')
As a final note: the initial Dask array provided to :mod:`dask_array.unyt_from_dask` can be
constructed in any of the usual ways of constructing Dask arrays -- from :mod:`NumPy`-like
array instantiation as in the above examples to reading from file or delayed operations.
For more on creating arrays, check out the `Dask documentation <https://docs.dask.org/en/stable/array-creation.html>`_.
|