1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
# Copyright (c) 2015 Ultimaker B.V.
# Uranium is released under the terms of the LGPLv3 or higher.
import numpy
import numpy.linalg
import math
import copy
from UM.Math.Vector import Vector
from UM.Math.Float import Float
from UM.Math.Matrix import Matrix
## Unit Quaternion class based on numpy arrays.
#
# This class represents a Unit quaternion that can be used for rotations.
#
# \note The operations that modify this quaternion will ensure the length
# of the quaternion remains 1. This is done to make this class simpler
# to use.
#
class Quaternion(object):
EPS = numpy.finfo(float).eps * 4.0
def __init__(self, x=0.0, y=0.0, z=0.0, w=1.0):
# Components are stored as XYZW
self._data = numpy.array([x, y, z, w], dtype=numpy.float32)
def getData(self):
return self._data
@property
def x(self):
return self._data[0]
@property
def y(self):
return self._data[1]
@property
def z(self):
return self._data[2]
@property
def w(self):
return self._data[3]
## Set quaternion by providing rotation about an axis.
#
# \param angle \type{float} Angle in radians
# \param axis \type{Vector} Axis of rotation
def setByAngleAxis(self, angle, axis):
a = axis.normalized().getData()
halfAngle = angle / 2.0
self._data[3] = math.cos(halfAngle)
self._data[0:3] = a * math.sin(halfAngle)
self.normalize()
def __mul__(self, other):
result = copy.deepcopy(self)
result *= other
return result
def __imul__(self, other):
if type(other) is Quaternion:
v1 = Vector(other.x, other.y, other.z)
v2 = Vector(self.x, self.y, self.z)
w = other.w * self.w - v1.dot(v2)
v = v2 * other.w + v1 * self.w + v2.cross(v1)
self._data[0] = v.x
self._data[1] = v.y
self._data[2] = v.z
self._data[3] = w
elif type(other) is float or type(other) is int:
self._data *= other
else:
raise NotImplementedError()
return self
def __add__(self, other):
result = copy.deepcopy(self)
result += other
return result
def __iadd__(self, other):
if type(other) is Quaternion:
self._data[0] += other._data[0]
self._data[1] += other._data[1]
self._data[2] += other._data[2]
self._data[3] += other._data[3]
else:
raise NotImplementedError()
return self
def __truediv__(self, other):
result = copy.deepcopy(self)
result /= other
return result
def __itruediv__(self, other):
if type(other) is float or type(other) is int:
self._data /= other
else:
raise NotImplementedError()
return self
def __eq__(self, other):
return Float.fuzzyCompare(self.x, other.x, 1e-6) and Float.fuzzyCompare(self.y, other.y, 1e-6) and Float.fuzzyCompare(self.z, other.z, 1e-6) and Float.fuzzyCompare(self.w, other.w, 1e-6)
def __neg__(self):
q = copy.deepcopy(self)
q._data = -q._data
return q
def getInverse(self):
result = copy.deepcopy(self)
result.invert()
return result
def invert(self):
self._data[0:3] = -self._data[0:3]
return self
def rotate(self, vector):
vMult = 2.0 * (self.x * vector.x + self.y * vector.y + self.z * vector.z)
crossMult = 2.0 * self.w
pMult = crossMult * self.w - 1.0
return Vector( pMult * vector.x + vMult * self.x + crossMult * (self.y * vector.z - self.z * vector.y),
pMult * vector.y + vMult * self.y + crossMult * (self.z * vector.x - self.x * vector.z),
pMult * vector.z + vMult * self.z + crossMult * (self.x * vector.y - self.y * vector.x) )
def dot(self, other):
return numpy.dot(self._data, other._data)
def length(self):
return numpy.linalg.norm(self._data)
def normalize(self):
self._data /= numpy.linalg.norm(self._data)
## Set quaternion by providing a homogenous (4x4) rotation matrix.
# \param matrix 4x4 Matrix object
# \param is_precise
def setByMatrix(self, matrix, is_precise = False):
trace = matrix.at(0, 0) + matrix.at(1, 1) + matrix.at(2, 2)
if trace > 0.0:
self._data[0] = matrix.at(2, 1) - matrix.at(1, 2)
self._data[1] = matrix.at(0, 2) - matrix.at(2, 0)
self._data[2] = matrix.at(1, 0) - matrix.at(0, 1)
self._data[3] = trace + 1
else:
i = 0
if matrix.at(1, 1) > matrix.at(0, 0):
i = 1
if matrix.at(2, 2) > matrix.at(i, i):
i = 2
# Yes, this is repeated code. Writing it out however makes the code way
# more readable than any magical index shifting.
if i == 0:
self._data[0] = matrix.at(0, 0) - matrix.at(1, 1) - matrix.at(2, 2) + 1.0
self._data[1] = matrix.at(0, 1) + matrix.at(1, 0)
self._data[2] = matrix.at(0, 2) + matrix.at(2, 0)
self._data[3] = matrix.at(2, 1) - matrix.at(1, 2)
elif i == 1:
self._data[0] = matrix.at(0, 1) + matrix.at(1, 0)
self._data[1] = matrix.at(1, 1) - matrix.at(0, 0) - matrix.at(2, 2) + 1.0
self._data[2] = matrix.at(1, 2) + matrix.at(2, 1)
self._data[3] = matrix.at(0, 2) - matrix.at(2, 0)
else:
self._data[0] = matrix.at(0, 2) + matrix.at(2, 0)
self._data[1] = matrix.at(2, 1) + matrix.at(1, 2)
self._data[1] = matrix.at(2, 2) - matrix.at(0, 0) - matrix.at(1, 1) + 1.0
self._data[3] = matrix.at(1, 0) - matrix.at(0, 1)
self.normalize()
def toMatrix(self):
m = numpy.zeros((4, 4), dtype=numpy.float32)
s = 2.0 / (self.x ** 2 + self.y ** 2 + self.z ** 2 + self.w ** 2)
xs = s * self.x
ys = s * self.y
zs = s * self.z
wx = self.w * xs
wy = self.w * ys
wz = self.w * zs
xx = self.x * xs
xy = self.x * ys
xz = self.x * zs
yy = self.y * ys
yz = self.y * zs
zz = self.z * zs
m[0,0] = 1.0 - (yy + zz)
m[0,1] = xy - wz
m[0,2] = xz + wy
m[1,0] = xy + wz
m[1,1] = 1.0 - (xx + zz)
m[1,2] = yz - wx
m[2,0] = xz - wy
m[2,1] = yz + wx
m[2,2] = 1.0 - (xx + yy)
m[3,3] = 1.0
return Matrix(m)
@staticmethod
def slerp(start, end, amount):
if Float.fuzzyCompare(amount, 0.0):
return start
elif Float.fuzzyCompare(amount, 1.0):
return end
rho = math.acos(start.dot(end))
return (start * math.sin((1 - amount) * rho) + end * math.sin(amount * rho)) / math.sin(rho)
## Returns a quaternion representing the rotation from vector 1 to vector 2.
#
# \param v1 \type{Vector} The vector to rotate from.
# \param v2 \type{Vector} The vector to rotate to.
@staticmethod
def rotationTo(v1, v2):
d = v1.dot(v2)
if d >= 1.0:
return Quaternion() # Vectors are equal, no rotation needed.
q = None
if Float.fuzzyCompare(d, -1.0, 1e-6):
axis = Vector.Unit_X.cross(v1)
if Float.fuzzyCompare(axis.length(), 0.0):
axis = Vector.Unit_Y.cross(v1)
axis.normalize()
q = Quaternion()
q.setByAngleAxis(math.pi, axis)
else:
s = math.sqrt((1.0 + d) * 2.0)
invs = 1.0 / s
c = v1.cross(v2)
q = Quaternion(
c.x * invs,
c.y * invs,
c.z * invs,
s * 0.5
)
q.normalize()
return q
@staticmethod
def fromMatrix(matrix):
q = Quaternion()
q.setByMatrix(matrix)
return q
@staticmethod
def fromAngleAxis(angle, axis):
q = Quaternion()
q.setByAngleAxis(angle, axis)
return q
def __repr__(self):
return "Quaternion(x={0}, y={1}, z={2}, w={3})".format(self.x, self.y, self.z, self.w)
|