1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
# Copyright (c) 2015 Ultimaker B.V.
# Uranium is released under the terms of the LGPLv3 or higher.
from UM.Benchmark import Benchmark
from UM.Tool import Tool
from UM.Event import Event, MouseEvent, KeyEvent
from UM.Scene.ToolHandle import ToolHandle
from UM.Scene.Selection import Selection
from UM.Math.Plane import Plane
from UM.Math.Vector import Vector
from UM.Math.Float import Float
from UM.Math.Matrix import Matrix
from UM.Operations.ScaleOperation import ScaleOperation
from UM.Operations.GroupedOperation import GroupedOperation
from UM.Operations.SetTransformOperation import SetTransformOperation
from UM.Operations.ScaleToBoundsOperation import ScaleToBoundsOperation
from PyQt5.QtCore import Qt
from . import ScaleToolHandle
import scipy
DIMENSION_TOLERANCE = 0.0001 # Tolerance value used for comparing dimensions from the UI.
## Provides the tool to scale meshes and groups
class ScaleTool(Tool):
def __init__(self):
super().__init__()
self._handle = ScaleToolHandle.ScaleToolHandle()
self._snap_scale = False
self._non_uniform_scale = False
self._scale_speed = 10
self._drag_length = 0
self._maximum_bounds = None
self._move_up = True
self._shortcut_key = Qt.Key_A
# We use the position of the scale handle when the operation starts.
# This is done in order to prevent runaway reactions (drag changes of 100+)
self._saved_handle_position = None # for non uniform drag
self._scale_sum = 0.0 # a memory for uniform drag with snap scaling
self._last_event = None # for uniform drag
self._saved_node_positions = []
self.setExposedProperties(
"ScaleSnap",
"NonUniformScale",
"ObjectWidth",
"ObjectHeight",
"ObjectDepth",
"ScaleX",
"ScaleY",
"ScaleZ"
)
## Handle mouse and keyboard events
#
# \param event type(Event)
def event(self, event):
super().event(event)
if event.type == Event.ToolActivateEvent:
for node in Selection.getAllSelectedObjects():
node.boundingBoxChanged.connect(self.propertyChanged)
if event.type == Event.ToolDeactivateEvent:
for node in Selection.getAllSelectedObjects():
node.boundingBoxChanged.disconnect(self.propertyChanged)
# Handle modifier keys: Shift toggles snap, Control toggles uniform scaling
if event.type == Event.KeyPressEvent:
if event.key == KeyEvent.ShiftKey:
self._snap_scale = False
self.propertyChanged.emit()
elif event.key == KeyEvent.ControlKey:
self._non_uniform_scale = True
self.propertyChanged.emit()
if event.type == Event.KeyReleaseEvent:
if event.key == KeyEvent.ShiftKey:
self._snap_scale = True
self.propertyChanged.emit()
elif event.key == KeyEvent.ControlKey:
self._non_uniform_scale = False
self.propertyChanged.emit()
if event.type == Event.MousePressEvent and self._controller.getToolsEnabled():
# Initialise a scale operation
if MouseEvent.LeftButton not in event.buttons:
return False
id = self._selection_pass.getIdAtPosition(event.x, event.y)
if not id:
return False
if self._handle.isAxis(id):
self.setLockedAxis(id)
self._saved_handle_position = self._handle.getWorldPosition()
# Save the current positions of the node, as we want to scale arround their current centres
self._saved_node_positions = []
for node in Selection.getAllSelectedObjects():
self._saved_node_positions.append((node, node.getPosition()))
self._scale_sum = 0.0
self._last_event = event
if id == ToolHandle.XAxis:
self.setDragPlane(Plane(Vector(0, 0, 1), self._saved_handle_position.z))
elif id == ToolHandle.YAxis:
self.setDragPlane(Plane(Vector(0, 0, 1), self._saved_handle_position.z))
elif id == ToolHandle.ZAxis:
self.setDragPlane(Plane(Vector(0, 1, 0), self._saved_handle_position.y))
else:
self.setDragPlane(Plane(Vector(0, 1, 0), self._saved_handle_position.y))
self.setDragStart(event.x, event.y)
if event.type == Event.MouseMoveEvent:
# Perform a scale operation
if not self.getDragPlane():
return False
drag_position = self.getDragPosition(event.x, event.y)
if drag_position:
drag_length = (drag_position - self._saved_handle_position).length()
if self._drag_length > 0:
drag_change = (drag_length - self._drag_length) / 100 * self._scale_speed
if self.getLockedAxis() in [ToolHandle.XAxis, ToolHandle.YAxis, ToolHandle.ZAxis]:
# drag the handle, axis is already determined
if self._snap_scale:
scale_factor = round(drag_change, 1)
else:
scale_factor = drag_change
else:
# uniform scaling; because we use central cube, we use the screen x, y for scaling.
# upper right is scale up, lower left is scale down
scale_factor_delta = ((self._last_event.y - event.y) - (self._last_event.x - event.x)) * self._scale_speed
self._scale_sum += scale_factor_delta
if self._snap_scale:
scale_factor = round(self._scale_sum, 1)
# remember the decimals when snap scaling
self._scale_sum -= scale_factor
else:
scale_factor = self._scale_sum
self._scale_sum = 0.0
if scale_factor:
scale_change = Vector(0.0, 0.0, 0.0)
if self._non_uniform_scale:
if self.getLockedAxis() == ToolHandle.XAxis:
scale_change = scale_change.set(x=scale_factor)
elif self.getLockedAxis() == ToolHandle.YAxis:
scale_change = scale_change.set(y=scale_factor)
elif self.getLockedAxis() == ToolHandle.ZAxis:
scale_change = scale_change.set(z=scale_factor)
else:
# Middle handle
scale_change = scale_change.set(x=scale_factor, y=scale_factor, z=scale_factor)
else:
scale_change = scale_change.set(x=scale_factor, y=scale_factor, z=scale_factor)
# Scale around the saved centers of all selected nodes
op = GroupedOperation()
for node, position in self._saved_node_positions:
op.addOperation(ScaleOperation(node, scale_change, relative_scale = True, scale_around_point = position))
op.push()
self._drag_length = (self._saved_handle_position - drag_position).length()
else:
self.operationStarted.emit(self)
self._drag_length = (self._saved_handle_position - drag_position).length() #First move, do nothing but set right length.
self._last_event = event # remember for uniform drag
return True
if event.type == Event.MouseReleaseEvent:
# Finish a scale operation
if self.getDragPlane():
self.setDragPlane(None)
self.setLockedAxis(None)
self._drag_length = 0
self.operationStopped.emit(self)
return True
## Reset scale of the selected objects
def resetScale(self):
Selection.applyOperation(SetTransformOperation, None, None, Vector(1.0, 1.0, 1.0), Vector(0, 0, 0))
## Initialise and start a ScaleToBoundsOperation on the selected objects
def scaleToMax(self):
if hasattr(self.getController().getScene(), "_maximum_bounds"):
Selection.applyOperation(ScaleToBoundsOperation, self.getController().getScene()._maximum_bounds)
## Get non-uniform scaling flag
#
# \return scale type(boolean)
def getNonUniformScale(self):
return self._non_uniform_scale
## Set non-uniform scaling flag
#
# \param scale type(boolean)
def setNonUniformScale(self, scale):
if scale != self._non_uniform_scale:
self._non_uniform_scale = scale
self.propertyChanged.emit()
## Get snap scaling flag
#
# \return snap type(boolean)
def getScaleSnap(self):
return self._snap_scale
## Set snap scaling flag
#
# \param snap type(boolean)
def setScaleSnap(self, snap):
if self._snap_scale != snap:
self._snap_scale = snap
self.propertyChanged.emit()
## Get the width of the bounding box of the selected object(s)
#
# \return width type(float) Width in mm
def getObjectWidth(self):
if Selection.hasSelection():
return float(Selection.getSelectedObject(0).getBoundingBox().width)
return 0.0
## Get the height of the bounding box of the selected object(s)
#
# \return height type(float) height in mm
def getObjectHeight(self):
if Selection.hasSelection():
return float(Selection.getSelectedObject(0).getBoundingBox().height)
return 0.0
## Get the depth of the bounding box of the first selected object
#
# \return depth type(float) depth in mm
def getObjectDepth(self):
if Selection.hasSelection():
return float(Selection.getSelectedObject(0).getBoundingBox().depth)
return 0.0
## Get the x-axis scale of the first selected object
#
# \return scale type(float) scale factor (1.0 = normal scale)
def getScaleX(self):
if Selection.hasSelection():
## Ensure that the returned value is positive (mirror causes scale to be negative)
return abs(round(float(Selection.getSelectedObject(0).getScale().x), 4))
return 1.0
## Get the y-axis scale of the first selected object
#
# \return scale type(float) scale factor (1.0 = normal scale)
def getScaleY(self):
if Selection.hasSelection():
## Ensure that the returned value is positive (mirror causes scale to be negative)
return abs(round(float(Selection.getSelectedObject(0).getScale().y), 4))
return 1.0
## Get the z-axis scale of the of the first selected object
#
# \return scale type(float) scale factor (1.0 = normal scale)
def getScaleZ(self):
if Selection.hasSelection():
## Ensure that the returned value is positive (mirror causes scale to be negative)
return abs(round(float(Selection.getSelectedObject(0).getScale().z), 4))
return 1.0
## Set the width of the selected object(s) by scaling the first selected object to a certain width
#
# \param width type(float) width in mm
def setObjectWidth(self, width):
obj = Selection.getSelectedObject(0)
if obj:
width = float(width)
obj_width = obj.getBoundingBox().width
if not Float.fuzzyCompare(obj_width, width, DIMENSION_TOLERANCE):
scale_factor = width / obj_width
if self._non_uniform_scale:
scale_vector = Vector(scale_factor, 1, 1)
else:
scale_vector = Vector(scale_factor, scale_factor, scale_factor)
op = GroupedOperation()
for node in Selection.getAllSelectedObjects():
op.addOperation(
ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
op.push()
## Set the height of the selected object(s) by scaling the first selected object to a certain height
#
# \param height type(float) height in mm
def setObjectHeight(self, height):
obj = Selection.getSelectedObject(0)
if obj:
height = float(height)
obj_height = obj.getBoundingBox().height
if not Float.fuzzyCompare(obj_height, height, DIMENSION_TOLERANCE):
scale_factor = height / obj_height
if self._non_uniform_scale:
scale_vector = Vector(1, scale_factor, 1)
else:
scale_vector = Vector(scale_factor, scale_factor, scale_factor)
op = GroupedOperation()
for node in Selection.getAllSelectedObjects():
op.addOperation(
ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
op.push()
## Set the depth of the selected object(s) by scaling the first selected object to a certain depth
#
# \param depth type(float) depth in mm
def setObjectDepth(self, depth):
obj = Selection.getSelectedObject(0)
if obj:
depth = float(depth)
obj_depth = obj.getBoundingBox().depth
if not Float.fuzzyCompare(obj_depth, depth, DIMENSION_TOLERANCE):
scale_factor = depth / obj_depth
if self._non_uniform_scale:
scale_vector = Vector(1, 1, scale_factor)
else:
scale_vector = Vector(scale_factor, scale_factor, scale_factor)
op = GroupedOperation()
for node in Selection.getAllSelectedObjects():
op.addOperation(
ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
op.push()
## Set the x-scale of the selected object(s) by scaling the first selected object to a certain factor
#
# \param scale type(float) scale factor (1.0 = normal scale)
def setScaleX(self, scale):
obj = Selection.getSelectedObject(0)
if obj:
obj_scale = obj.getScale()
if round(float(obj_scale.x), 4) != scale:
scale_factor = abs(scale / obj_scale.x)
if self._non_uniform_scale:
scale_vector = Vector(scale_factor, 1, 1)
else:
scale_vector = Vector(scale_factor, scale_factor, scale_factor)
op = GroupedOperation()
for node in Selection.getAllSelectedObjects():
op.addOperation(
ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
op.push()
## Set the y-scale of the selected object(s) by scaling the first selected object to a certain factor
#
# \param scale type(float) scale factor (1.0 = normal scale)
def setScaleY(self, scale):
obj = Selection.getSelectedObject(0)
if obj:
obj_scale = obj.getScale()
if round(float(obj_scale.y), 4) != scale:
scale_factor = abs(scale / obj_scale.y)
if self._non_uniform_scale:
scale_vector = Vector(1, scale_factor, 1)
else:
scale_vector = Vector(scale_factor, scale_factor, scale_factor)
op = GroupedOperation()
for node in Selection.getAllSelectedObjects():
op.addOperation(
ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
op.push()
## Set the z-scale of the selected object(s) by scaling the first selected object to a certain factor
#
# \param scale type(float) scale factor (1.0 = normal scale)
def setScaleZ(self, scale):
obj = Selection.getSelectedObject(0)
if obj:
obj_scale = obj.getScale()
if round(float(obj_scale.z), 4) != scale:
scale_factor = abs(scale / obj_scale.z)
if self._non_uniform_scale:
scale_vector = Vector(1, 1, scale_factor)
else:
scale_vector = Vector(scale_factor, scale_factor, scale_factor)
op = GroupedOperation()
for node in Selection.getAllSelectedObjects():
op.addOperation(
ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
op.push()
## Convenience function that gives the scale of an object in the coordinate space of the world.
# The function might return wrong value if the grouped models are rotated
#
# \param node type(SceneNode)
# \return scale type(float) scale factor (1.0 = normal scale)
def _getScaleInWorldCoordinates(self, node):
aabb = node.getBoundingBox()
original_aabb = self._getRotatedExtents(node)
if aabb is not None and original_aabb is not None:
scale = Vector(aabb.width / original_aabb.width, aabb.height / original_aabb.height,
aabb.depth / original_aabb.depth)
return scale
else:
return Vector(1, 1, 1)
def _getSVDRotationFromMatrix(self, matrix):
result = Matrix()
rotation_data = matrix.getData()[:3, :3]
U, s, Vh = scipy.linalg.svd(rotation_data)
result._data[:3, :3] = U.dot(Vh)
return result
def _getRotatedExtents(self, node, with_translation = False):
# The rotation matrix that we get back from our own decompose isn't quite correct for some reason.
# It seems that it does not "draw the line" between scale, rotate & skew quite correctly in all cases.
# The decomposition is insanely fast and the combination of all of the components does result in the same
# Transformation matrix (Also note that there are multiple solutions for decomposition and that one just doesn't
# work here, but fine everywhere else).
#
# In order to remedy this, we use singular value decomposition.
# SVD solves a = U s V.H for us, where A is the matrix. U and V.h are Rotation matrices and s holds the scale.
extents = None
if node.getMeshData():
rotated_matrix = self._getSVDRotationFromMatrix(node.getWorldTransformation())
if with_translation:
rotated_matrix._data[:3, 3] = node.getPosition().getData()
extents = node.getMeshData().getExtents(rotated_matrix)
for child in node.getChildren():
# We want the children with their (local) translation, as this influences the size of the AABB.
if extents is None:
extents = self._getRotatedExtents(child, with_translation = True)
else:
extents = extents + self._getRotatedExtents(child, with_translation = True)
return extents
|