File: ScaleTool.py

package info (click to toggle)
uranium 3.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 5,876 kB
  • sloc: python: 22,349; sh: 111; makefile: 11
file content (450 lines) | stat: -rw-r--r-- 19,539 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Copyright (c) 2015 Ultimaker B.V.
# Uranium is released under the terms of the LGPLv3 or higher.
from UM.Benchmark import Benchmark
from UM.Tool import Tool
from UM.Event import Event, MouseEvent, KeyEvent
from UM.Scene.ToolHandle import ToolHandle
from UM.Scene.Selection import Selection
from UM.Math.Plane import Plane
from UM.Math.Vector import Vector
from UM.Math.Float import Float
from UM.Math.Matrix import Matrix

from UM.Operations.ScaleOperation import ScaleOperation
from UM.Operations.GroupedOperation import GroupedOperation
from UM.Operations.SetTransformOperation import SetTransformOperation
from UM.Operations.ScaleToBoundsOperation import ScaleToBoundsOperation

from PyQt5.QtCore import Qt
from . import ScaleToolHandle

import scipy

DIMENSION_TOLERANCE = 0.0001    # Tolerance value used for comparing dimensions from the UI.

##  Provides the tool to scale meshes and groups

class ScaleTool(Tool):
    def __init__(self):
        super().__init__()
        self._handle = ScaleToolHandle.ScaleToolHandle()

        self._snap_scale = False
        self._non_uniform_scale = False
        self._scale_speed = 10

        self._drag_length = 0

        self._maximum_bounds = None
        self._move_up = True

        self._shortcut_key = Qt.Key_A

        # We use the position of the scale handle when the operation starts.
        # This is done in order to prevent runaway reactions (drag changes of 100+)
        self._saved_handle_position = None  # for non uniform drag
        self._scale_sum = 0.0  # a memory for uniform drag with snap scaling
        self._last_event = None  # for uniform drag

        self._saved_node_positions = []

        self.setExposedProperties(
            "ScaleSnap",
            "NonUniformScale",
            "ObjectWidth",
            "ObjectHeight",
            "ObjectDepth",
            "ScaleX",
            "ScaleY",
            "ScaleZ"
        )

    ##  Handle mouse and keyboard events
    #
    #   \param event type(Event)
    def event(self, event):
        super().event(event)

        if event.type == Event.ToolActivateEvent:
            for node in Selection.getAllSelectedObjects():
                node.boundingBoxChanged.connect(self.propertyChanged)

        if event.type == Event.ToolDeactivateEvent:
            for node in Selection.getAllSelectedObjects():
                node.boundingBoxChanged.disconnect(self.propertyChanged)

        # Handle modifier keys: Shift toggles snap, Control toggles uniform scaling
        if event.type == Event.KeyPressEvent:
            if event.key == KeyEvent.ShiftKey:
                self._snap_scale = False
                self.propertyChanged.emit()
            elif event.key == KeyEvent.ControlKey:
                self._non_uniform_scale = True
                self.propertyChanged.emit()

        if event.type == Event.KeyReleaseEvent:
            if event.key == KeyEvent.ShiftKey:
                self._snap_scale = True
                self.propertyChanged.emit()
            elif event.key == KeyEvent.ControlKey:
                self._non_uniform_scale = False
                self.propertyChanged.emit()

        if event.type == Event.MousePressEvent and self._controller.getToolsEnabled():
            # Initialise a scale operation
            if MouseEvent.LeftButton not in event.buttons:
                return False

            id = self._selection_pass.getIdAtPosition(event.x, event.y)
            if not id:
                return False

            if self._handle.isAxis(id):
                self.setLockedAxis(id)
            self._saved_handle_position = self._handle.getWorldPosition()

            # Save the current positions of the node, as we want to scale arround their current centres
            self._saved_node_positions = []
            for node in Selection.getAllSelectedObjects():
                self._saved_node_positions.append((node, node.getPosition()))

            self._scale_sum = 0.0
            self._last_event = event

            if id == ToolHandle.XAxis:
                self.setDragPlane(Plane(Vector(0, 0, 1), self._saved_handle_position.z))
            elif id == ToolHandle.YAxis:
                self.setDragPlane(Plane(Vector(0, 0, 1), self._saved_handle_position.z))
            elif id == ToolHandle.ZAxis:
                self.setDragPlane(Plane(Vector(0, 1, 0), self._saved_handle_position.y))
            else:
                self.setDragPlane(Plane(Vector(0, 1, 0), self._saved_handle_position.y))

            self.setDragStart(event.x, event.y)

        if event.type == Event.MouseMoveEvent:
            # Perform a scale operation
            if not self.getDragPlane():
                return False

            drag_position = self.getDragPosition(event.x, event.y)
            if drag_position:
                drag_length = (drag_position - self._saved_handle_position).length()
                if self._drag_length > 0:
                    drag_change = (drag_length - self._drag_length) / 100 * self._scale_speed
                    if self.getLockedAxis() in [ToolHandle.XAxis, ToolHandle.YAxis, ToolHandle.ZAxis]:
                        # drag the handle, axis is already determined
                        if self._snap_scale:
                            scale_factor = round(drag_change, 1)
                        else:
                            scale_factor = drag_change
                    else:
                        # uniform scaling; because we use central cube, we use the screen x, y for scaling.
                        # upper right is scale up, lower left is scale down
                        scale_factor_delta = ((self._last_event.y - event.y) - (self._last_event.x - event.x)) * self._scale_speed
                        self._scale_sum += scale_factor_delta
                        if self._snap_scale:
                            scale_factor = round(self._scale_sum, 1)
                            # remember the decimals when snap scaling
                            self._scale_sum -= scale_factor
                        else:
                            scale_factor = self._scale_sum
                            self._scale_sum = 0.0
                    if scale_factor:
                        scale_change = Vector(0.0, 0.0, 0.0)
                        if self._non_uniform_scale:
                            if self.getLockedAxis() == ToolHandle.XAxis:
                                scale_change = scale_change.set(x=scale_factor)
                            elif self.getLockedAxis() == ToolHandle.YAxis:
                                scale_change = scale_change.set(y=scale_factor)
                            elif self.getLockedAxis() == ToolHandle.ZAxis:
                                scale_change = scale_change.set(z=scale_factor)
                            else:
                                # Middle handle
                                scale_change = scale_change.set(x=scale_factor, y=scale_factor, z=scale_factor)
                        else:
                            scale_change = scale_change.set(x=scale_factor, y=scale_factor, z=scale_factor)

                        # Scale around the saved centers of all selected nodes
                        op = GroupedOperation()
                        for node, position in self._saved_node_positions:
                            op.addOperation(ScaleOperation(node, scale_change, relative_scale = True, scale_around_point = position))
                        op.push()
                        self._drag_length = (self._saved_handle_position - drag_position).length()
                else:
                    self.operationStarted.emit(self)
                    self._drag_length = (self._saved_handle_position - drag_position).length() #First move, do nothing but set right length.
                self._last_event = event  # remember for uniform drag
                return True

        if event.type == Event.MouseReleaseEvent:
            # Finish a scale operation
            if self.getDragPlane():
                self.setDragPlane(None)
                self.setLockedAxis(None)
                self._drag_length = 0
                self.operationStopped.emit(self)
                return True

    ##  Reset scale of the selected objects
    def resetScale(self):
        Selection.applyOperation(SetTransformOperation, None, None, Vector(1.0, 1.0, 1.0), Vector(0, 0, 0))

    ##  Initialise and start a ScaleToBoundsOperation on the selected objects
    def scaleToMax(self):
        if hasattr(self.getController().getScene(), "_maximum_bounds"):
            Selection.applyOperation(ScaleToBoundsOperation, self.getController().getScene()._maximum_bounds)

    ##  Get non-uniform scaling flag
    #
    #   \return scale type(boolean)
    def getNonUniformScale(self):
        return self._non_uniform_scale

    ##  Set non-uniform scaling flag
    #
    #   \param scale type(boolean)
    def setNonUniformScale(self, scale):
        if scale != self._non_uniform_scale:
            self._non_uniform_scale = scale
            self.propertyChanged.emit()

    ##  Get snap scaling flag
    #
    #   \return snap type(boolean)
    def getScaleSnap(self):
        return self._snap_scale

    ##  Set snap scaling flag
    #
    #   \param snap type(boolean)
    def setScaleSnap(self, snap):
        if self._snap_scale != snap:
            self._snap_scale = snap
            self.propertyChanged.emit()

    ##  Get the width of the bounding box of the selected object(s)
    #
    #   \return width type(float) Width in mm
    def getObjectWidth(self):
        if Selection.hasSelection():
            return float(Selection.getSelectedObject(0).getBoundingBox().width)

        return 0.0

    ##  Get the height of the bounding box of the selected object(s)
    #
    #   \return height type(float) height in mm
    def getObjectHeight(self):
        if Selection.hasSelection():
            return float(Selection.getSelectedObject(0).getBoundingBox().height)

        return 0.0

    ##  Get the depth of the bounding box of the first selected object
    #
    #   \return depth type(float) depth in mm
    def getObjectDepth(self):
        if Selection.hasSelection():
            return float(Selection.getSelectedObject(0).getBoundingBox().depth)

        return 0.0

    ##  Get the x-axis scale of the first selected object
    #
    #   \return scale type(float) scale factor (1.0 = normal scale)
    def getScaleX(self):
        if Selection.hasSelection():
            ## Ensure that the returned value is positive (mirror causes scale to be negative)
            return abs(round(float(Selection.getSelectedObject(0).getScale().x), 4))

        return 1.0

    ##  Get the y-axis scale of the first selected object
    #
    #   \return scale type(float) scale factor (1.0 = normal scale)
    def getScaleY(self):
        if Selection.hasSelection():
            ## Ensure that the returned value is positive (mirror causes scale to be negative)
            return abs(round(float(Selection.getSelectedObject(0).getScale().y), 4))

        return 1.0

    ##  Get the z-axis scale of the of the first selected object
    #
    #   \return scale type(float) scale factor (1.0 = normal scale)
    def getScaleZ(self):
        if Selection.hasSelection():
            ## Ensure that the returned value is positive (mirror causes scale to be negative)
            return abs(round(float(Selection.getSelectedObject(0).getScale().z), 4))

        return 1.0

    ##  Set the width of the selected object(s) by scaling the first selected object to a certain width
    #
    #   \param width type(float) width in mm
    def setObjectWidth(self, width):
        obj = Selection.getSelectedObject(0)
        if obj:
            width = float(width)
            obj_width = obj.getBoundingBox().width
            if not Float.fuzzyCompare(obj_width, width, DIMENSION_TOLERANCE):
                scale_factor = width / obj_width
                if self._non_uniform_scale:
                    scale_vector = Vector(scale_factor, 1, 1)
                else:
                    scale_vector = Vector(scale_factor, scale_factor, scale_factor)

                op = GroupedOperation()
                for node in Selection.getAllSelectedObjects():
                    op.addOperation(
                        ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
                op.push()

    ##  Set the height of the selected object(s) by scaling the first selected object to a certain height
    #
    #   \param height type(float) height in mm
    def setObjectHeight(self, height):
        obj = Selection.getSelectedObject(0)
        if obj:
            height = float(height)
            obj_height = obj.getBoundingBox().height
            if not Float.fuzzyCompare(obj_height, height, DIMENSION_TOLERANCE):
                scale_factor = height / obj_height
                if self._non_uniform_scale:
                    scale_vector = Vector(1, scale_factor, 1)
                else:
                    scale_vector = Vector(scale_factor, scale_factor, scale_factor)

                op = GroupedOperation()
                for node in Selection.getAllSelectedObjects():
                    op.addOperation(
                        ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
                op.push()

    ##  Set the depth of the selected object(s) by scaling the first selected object to a certain depth
    #
    #   \param depth type(float) depth in mm
    def setObjectDepth(self, depth):
        obj = Selection.getSelectedObject(0)
        if obj:
            depth = float(depth)
            obj_depth = obj.getBoundingBox().depth
            if not Float.fuzzyCompare(obj_depth, depth, DIMENSION_TOLERANCE):
                scale_factor = depth / obj_depth
                if self._non_uniform_scale:
                    scale_vector = Vector(1, 1, scale_factor)
                else:
                    scale_vector = Vector(scale_factor, scale_factor, scale_factor)

                op = GroupedOperation()
                for node in Selection.getAllSelectedObjects():
                    op.addOperation(
                        ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
                op.push()

    ##  Set the x-scale of the selected object(s) by scaling the first selected object to a certain factor
    #
    #   \param scale type(float) scale factor (1.0 = normal scale)
    def setScaleX(self, scale):
        obj = Selection.getSelectedObject(0)
        if obj:
            obj_scale = obj.getScale()
            if round(float(obj_scale.x), 4) != scale:
                scale_factor = abs(scale / obj_scale.x)
                if self._non_uniform_scale:
                    scale_vector = Vector(scale_factor, 1, 1)
                else:
                    scale_vector = Vector(scale_factor, scale_factor, scale_factor)

                op = GroupedOperation()
                for node in Selection.getAllSelectedObjects():
                    op.addOperation(
                        ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
                op.push()

    ##  Set the y-scale of the selected object(s) by scaling the first selected object to a certain factor
    #
    #   \param scale type(float) scale factor (1.0 = normal scale)
    def setScaleY(self, scale):
        obj = Selection.getSelectedObject(0)
        if obj:
            obj_scale = obj.getScale()
            if round(float(obj_scale.y), 4) != scale:
                scale_factor = abs(scale / obj_scale.y)
                if self._non_uniform_scale:
                    scale_vector = Vector(1, scale_factor, 1)
                else:
                    scale_vector = Vector(scale_factor, scale_factor, scale_factor)

                op = GroupedOperation()
                for node in Selection.getAllSelectedObjects():
                    op.addOperation(
                        ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
                op.push()

    ##  Set the z-scale of the selected object(s) by scaling the first selected object to a certain factor
    #
    #   \param scale type(float) scale factor (1.0 = normal scale)
    def setScaleZ(self, scale):
        obj = Selection.getSelectedObject(0)
        if obj:
            obj_scale = obj.getScale()
            if round(float(obj_scale.z), 4) != scale:
                scale_factor = abs(scale / obj_scale.z)
                if self._non_uniform_scale:
                    scale_vector = Vector(1, 1, scale_factor)
                else:
                    scale_vector = Vector(scale_factor, scale_factor, scale_factor)

                op = GroupedOperation()
                for node in Selection.getAllSelectedObjects():
                    op.addOperation(
                        ScaleOperation(node, scale_vector, scale_around_point=node.getWorldPosition()))
                op.push()

    ##  Convenience function that gives the scale of an object in the coordinate space of the world.
    #   The function might return wrong value if the grouped models are rotated
    #
    #   \param node type(SceneNode)
    #   \return scale type(float) scale factor (1.0 = normal scale)
    def _getScaleInWorldCoordinates(self, node):
        aabb = node.getBoundingBox()
        original_aabb = self._getRotatedExtents(node)
        if aabb is not None and original_aabb is not None:
            scale = Vector(aabb.width / original_aabb.width, aabb.height / original_aabb.height,
                           aabb.depth / original_aabb.depth)
            return scale
        else:
            return Vector(1, 1, 1)

    def _getSVDRotationFromMatrix(self, matrix):
        result = Matrix()
        rotation_data = matrix.getData()[:3, :3]
        U, s, Vh = scipy.linalg.svd(rotation_data)
        result._data[:3, :3] = U.dot(Vh)
        return result

    def _getRotatedExtents(self, node, with_translation = False):
        # The rotation matrix that we get back from our own decompose isn't quite correct for some reason.
        # It seems that it does not "draw the line" between scale, rotate & skew quite correctly in all cases.
        # The decomposition is insanely fast and the combination of all of the components does result in the same
        # Transformation matrix (Also note that there are multiple solutions for decomposition and that one just doesn't
        # work here, but fine everywhere else).
        #
        # In order to remedy this, we use singular value decomposition.
        # SVD solves a = U s V.H for us, where A is the matrix. U and V.h are Rotation matrices and s holds the scale.
        extents = None
        if node.getMeshData():
            rotated_matrix = self._getSVDRotationFromMatrix(node.getWorldTransformation())
            if with_translation:
                rotated_matrix._data[:3, 3] = node.getPosition().getData()

            extents = node.getMeshData().getExtents(rotated_matrix)
        for child in node.getChildren():
            # We want the children with their (local) translation, as this influences the size of the AABB.
            if extents is None:
                extents = self._getRotatedExtents(child, with_translation = True)
            else:
                extents = extents + self._getRotatedExtents(child, with_translation = True)
        return extents