1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
|
# Copyright (c) 2018 Ultimaker B.V.
# Uranium is released under the terms of the LGPLv3 or higher.
import math
import numpy
from UM.Math.Vector import Vector
from typing import cast, Dict, List, Optional, Tuple, TYPE_CHECKING, Union
numpy.seterr(divide="ignore")
if TYPE_CHECKING:
from UM.Math.Quaternion import Quaternion
class Matrix:
"""This class is a 4x4 homogeneous matrix wrapper around numpy.
Heavily based (in most cases a straight copy with some refactoring) on the excellent
'library' Transformations.py created by Christoph Gohlke.
"""
# epsilon for testing whether a number is close to zero
_EPS = numpy.finfo(float).eps * 4.0
# map axes strings to/from tuples of inner axis, parity, repetition, frame
# A triple of Euler angles can be applied/interpreted in 24 ways, which can
# be specified using a 4 character string or encoded 4-tuple:
# *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
# - first character : rotations are applied to 's'tatic or 'r'otating frame
# - remaining characters : successive rotation axis 'x', 'y', or 'z'
# *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
# - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
# - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
# by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
# - repetition : first and last axis are same (1) or different (0).
# - frame : rotations are applied to static (0) or rotating (1) frame.
_AXES2TUPLE = {
"sxyz": (0, 0, 0, 0), "sxyx": (0, 0, 1, 0), "sxzy": (0, 1, 0, 0),
"sxzx": (0, 1, 1, 0), "syzx": (1, 0, 0, 0), "syzy": (1, 0, 1, 0),
"syxz": (1, 1, 0, 0), "syxy": (1, 1, 1, 0), "szxy": (2, 0, 0, 0),
"szxz": (2, 0, 1, 0), "szyx": (2, 1, 0, 0), "szyz": (2, 1, 1, 0),
"rzyx": (0, 0, 0, 1), "rxyx": (0, 0, 1, 1), "ryzx": (0, 1, 0, 1),
"rxzx": (0, 1, 1, 1), "rxzy": (1, 0, 0, 1), "ryzy": (1, 0, 1, 1),
"rzxy": (1, 1, 0, 1), "ryxy": (1, 1, 1, 1), "ryxz": (2, 0, 0, 1),
"rzxz": (2, 0, 1, 1), "rxyz": (2, 1, 0, 1), "rzyz": (2, 1, 1, 1)
} #type: Dict[str, Tuple[int, int, int, int]]
# axis sequences for Euler angles
_NEXT_AXIS = [1, 2, 0, 1]
def __init__(self, data: Optional[Union[List[List[float]], numpy.ndarray]] = None) -> None:
if data is None:
self._data = numpy.identity(4, dtype = numpy.float64)
else:
self._data = numpy.array(data, copy=True, dtype = numpy.float64)
def __deepcopy__(self, memo):
# So, you must be asking yourself, why not let python handle this simple case on it's own? Well, that's because
# we found out that this is about 3x faster.
# Note that actually using Matrix(self._data) (without the deepcopy) is another factor 3 faster.
return Matrix(self._data)
def copy(self) -> "Matrix":
return Matrix(self._data)
def __eq__(self, other: object) -> bool:
if self is other:
return True
if type(other) is not Matrix:
return False
other = cast(Matrix, other)
if self._data is None and other._data is None:
return True
return numpy.array_equal(self._data, other._data)
def at(self, x: int, y: int) -> float:
if x >= 4 or y >= 4 or x < 0 or y < 0:
raise IndexError
return self._data[x,y]
def setRow(self, index: int, value: List[float]) -> None:
if index < 0 or index > 3:
raise IndexError()
self._data[0, index] = value[0]
self._data[1, index] = value[1]
self._data[2, index] = value[2]
if len(value) > 3:
self._data[3, index] = value[3]
else:
self._data[3, index] = 0
def setColumn(self, index: int, value: List[float]) -> None:
if index < 0 or index > 3:
raise IndexError()
self._data[index, 0] = value[0]
self._data[index, 1] = value[1]
self._data[index, 2] = value[2]
if len(value) > 3:
self._data[index, 3] = value[3]
else:
self._data[index, 3] = 0
def multiply(self, other: Union[Vector, "Matrix"], copy: bool = False) -> "Matrix":
if not copy:
self._data = numpy.dot(self._data, other.getData())
return self
else:
return Matrix(data = numpy.dot(self._data, other.getData()))
def preMultiply(self, other: Union[Vector, "Matrix"], copy: bool = False) -> "Matrix":
if not copy:
self._data = numpy.dot(other.getData(), self._data)
return self
else:
return Matrix(data = numpy.dot(other.getData(), self._data))
def getData(self) -> numpy.ndarray:
"""Get raw data.
:returns: 4x4 numpy array
"""
return self._data.astype(numpy.float32)
def getFlatData(self):
return self._data.flatten()
def setToIdentity(self) -> None:
"""Create a 4x4 identity matrix. This overwrites any existing data."""
self._data = numpy.identity(4, dtype = numpy.float64)
def invert(self) -> None:
"""Invert the matrix"""
self._data = numpy.linalg.inv(self._data)
def pseudoinvert(self) -> None:
"""
Invert the matrix in-place with a pseudoinverse.
The pseudoinverse is guaranteed to succeed, but if the matrix was singular is not a true inverse. Just something
that approaches the inverse.
"""
self._data = numpy.linalg.pinv(self._data)
def getInverse(self) -> "Matrix":
"""Return a inverted copy of the matrix.
:returns: The invertex matrix.
"""
try:
return Matrix(numpy.linalg.inv(self._data))
except:
return Matrix(self._data)
def getTransposed(self) -> "Matrix":
"""Return the transpose of the matrix."""
try:
return Matrix(self._data.transpose())
except:
return Matrix(self._data)
def transpose(self) -> None:
self._data = self._data.transpose()
def translate(self, direction: Vector) -> None:
"""Translate the matrix based on Vector.
:param direction: The vector by which the matrix needs to be translated.
"""
translation_matrix = Matrix()
translation_matrix.setByTranslation(direction)
self.multiply(translation_matrix)
def setByTranslation(self, direction: Vector) -> None:
"""Set the matrix by translation vector. This overwrites any existing data.
:param direction: The vector by which the (unit) matrix needs to be translated.
"""
M = numpy.identity(4, dtype = numpy.float64)
M[:3, 3] = direction.getData()[:3]
self._data = M
def setTranslation(self, translation: Union[Vector, "Matrix"]) -> None:
self._data[:3, 3] = translation.getData()
def getTranslation(self) -> Vector:
return Vector(data = self._data[:3, 3])
def rotateByAxis(self, angle: float, direction: Vector, point: Optional[List[float]] = None) -> None:
"""Rotate the matrix based on rotation axis
:param angle: The angle by which matrix needs to be rotated.
:param direction: Axis by which the matrix needs to be rotated about.
:param point: Point where from where the rotation happens. If None, origin is used.
"""
rotation_matrix = Matrix()
rotation_matrix.setByRotationAxis(angle, direction, point)
self.multiply(rotation_matrix)
def setByRotationAxis(self, angle: float, direction: Vector, point: Optional[List[float]] = None) -> None:
"""Set the matrix based on rotation axis. This overwrites any existing data.
:param angle: The angle by which matrix needs to be rotated in radians.
:param direction: Axis by which the matrix needs to be rotated about.
:param point: Point where from where the rotation happens. If None, origin is used.
"""
sina = math.sin(angle)
cosa = math.cos(angle)
direction_data = cast(numpy.ndarray, self._unitVector(direction.getData()))
# rotation matrix around unit vector
R = numpy.diag([cosa, cosa, cosa])
R += numpy.outer(direction_data, direction_data) * (1.0 - cosa)
direction_data *= sina
R += numpy.array([[ 0.0, -direction_data[2], direction_data[1]],
[ direction_data[2], 0.0, -direction_data[0]],
[-direction_data[1], direction_data[0], 0.0]], dtype = numpy.float64)
M = numpy.identity(4)
M[:3, :3] = R
if point is not None:
# rotation not around origin
point2 = numpy.array(point[:3], dtype = numpy.float64, copy=False)
M[:3, 3] = point2 - numpy.dot(R, point2)
self._data = M
def compose(self, scale: Vector = None, shear: Vector = None, angles: Vector = None, translate: Vector = None, perspective: Vector = None, mirror: Vector = None) -> None:
"""Return transformation matrix from sequence of transformations.
This is the inverse of the decompose_matrix function.
:param scale : vector of 3 scaling factors
:param shear : list of shear factors for x-y, x-z, y-z axes
:param angles : list of Euler angles about static x, y, z axes
:param translate : translation vector along x, y, z axes
:param perspective : perspective partition of matrix
:param mirror: vector with mirror factors (1 if that axis is not mirrored, -1 if it is)
"""
M = numpy.identity(4)
if perspective is not None:
P = numpy.identity(4)
P[3, :] = perspective.getData()[:4]
M = numpy.dot(M, P)
if translate is not None:
T = numpy.identity(4)
T[:3, 3] = translate.getData()[:3]
M = numpy.dot(M, T)
if angles is not None:
R = Matrix()
R.setByEuler(angles.x, angles.y, angles.z, "sxyz")
M = numpy.dot(M, R.getData())
if shear is not None:
Z = numpy.identity(4)
Z[1, 2] = shear.x
Z[0, 2] = shear.y
Z[0, 1] = shear.z
M = numpy.dot(M, Z)
if scale is not None:
S = numpy.identity(4)
S[0, 0] = scale.x
S[1, 1] = scale.y
S[2, 2] = scale.z
M = numpy.dot(M, S)
if mirror is not None:
mir = numpy.identity(4)
mir[0, 0] *= mirror.x
mir[1, 1] *= mirror.y
mir[2, 2] *= mirror.z
M = numpy.dot(M, mir)
M /= M[3, 3]
self._data = M
def getEuler(self, axes: str = "sxyz") -> Vector:
"""Return Euler angles from rotation matrix for specified axis sequence.
:param axes: One of 24 axis sequences as string or encoded tuple
Note that many Euler angle triplets can describe one matrix.
"""
firstaxis, parity, repetition, frame = self._AXES2TUPLE[axes.lower()]
i = firstaxis
j = self._NEXT_AXIS[i + parity]
k = self._NEXT_AXIS[i - parity + 1]
M = numpy.array(self._data, dtype = numpy.float64, copy = False)[:3, :3]
if repetition:
sy = math.sqrt(M[i, j] * M[i, j] + M[i, k] * M[i, k])
if sy > self._EPS:
ax = math.atan2( M[i, j], M[i, k])
ay = math.atan2( sy, M[i, i])
az = math.atan2( M[j, i], -M[k, i])
else:
ax = math.atan2(-M[j, k], M[j, j])
ay = math.atan2( sy, M[i, i])
az = 0.0
else:
cy = math.sqrt(M[i, i] * M[i, i] + M[j, i] * M[j, i])
if cy > self._EPS:
ax = math.atan2( M[k, j], M[k, k])
ay = math.atan2(-M[k, i], cy)
az = math.atan2( M[j, i], M[i, i])
else:
ax = math.atan2(-M[j, k], M[j, j])
ay = math.atan2(-M[k, i], cy)
az = 0.0
if parity:
ax, ay, az = -ax, -ay, -az
if frame:
ax, az = az, ax
return Vector(ax, ay, az)
def setByEuler(self, ai: float, aj: float, ak: float, axes: str = "sxyz") -> None:
"""Return homogeneous rotation matrix from Euler angles and axis sequence.
:param ai: Eulers roll
:param aj: Eulers pitch
:param ak: Eulers yaw
:param axes: One of 24 axis sequences as string or encoded tuple
"""
firstaxis, parity, repetition, frame = self._AXES2TUPLE[axes.lower()]
i = firstaxis
j = self._NEXT_AXIS[i + parity]
k = self._NEXT_AXIS[i - parity + 1]
if frame:
ai, ak = ak, ai
if parity:
ai, aj, ak = -ai, -aj, -ak
si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
cc, cs = ci * ck, ci * sk
sc, ss = si * ck, si * sk
M = numpy.identity(4)
if repetition:
M[i, i] = cj
M[i, j] = sj * si
M[i, k] = sj * ci
M[j, i] = sj * sk
M[j, j] = -cj * ss + cc
M[j, k] = -cj * cs - sc
M[k, i] = -sj * ck
M[k, j] = cj * sc + cs
M[k, k] = cj * cc - ss
else:
M[i, i] = cj * ck
M[i, j] = sj * sc - cs
M[i, k] = sj * cc + ss
M[j, i] = cj * sk
M[j, j] = sj * ss + cc
M[j, k] = sj * cs - sc
M[k, i] = -sj
M[k, j] = cj * si
M[k, k] = cj * ci
self._data = M
def scaleByFactor(self, factor: float, origin: Optional[List[float]] = None, direction: Optional[Vector] = None) -> None:
"""Scale the matrix by factor wrt origin & direction.
:param factor: The factor by which to scale
:param origin: From where does the scaling need to be done
:param direction: In what direction is the scaling (if None, it's uniform)
"""
scale_matrix = Matrix()
scale_matrix.setByScaleFactor(factor, origin, direction)
self.multiply(scale_matrix)
def setByScaleFactor(self, factor: float, origin: Optional[List[float]] = None, direction: Optional[Vector] = None) -> None:
"""Set the matrix by scale by factor wrt origin & direction. This overwrites any existing data
:param factor: The factor by which to scale
:param origin: From where does the scaling need to be done
:param direction: In what direction is the scaling (if None, it's uniform)
"""
if direction is None:
# uniform scaling
M = numpy.diag([factor, factor, factor, 1.0])
if origin is not None:
M[:3, 3] = origin[:3]
M[:3, 3] *= 1.0 - factor
else:
# nonuniform scaling
direction_data = direction.getData()
factor = 1.0 - factor
M = numpy.identity(4, dtype = numpy.float64)
M[:3, :3] -= factor * numpy.outer(direction_data, direction_data)
if origin is not None:
M[:3, 3] = (factor * numpy.dot(origin[:3], direction_data)) * direction_data
self._data = M
def setByScaleVector(self, scale: Vector) -> None:
self._data = numpy.diag([scale.x, scale.y, scale.z, 1.0])
def getScale(self) -> Vector:
x = numpy.linalg.norm(self._data[0,0:3])
y = numpy.linalg.norm(self._data[1,0:3])
z = numpy.linalg.norm(self._data[2,0:3])
return Vector(x, y, z)
def setOrtho(self, left: float, right: float, bottom: float, top: float, near: float, far: float) -> None:
"""Set the matrix to an orthographic projection. This overwrites any existing data.
:param left: The left edge of the projection
:param right: The right edge of the projection
:param top: The top edge of the projection
:param bottom: The bottom edge of the projection
:param near: The near plane of the projection
:param far: The far plane of the projection
"""
self.setToIdentity()
self._data[0, 0] = 2 / (right - left)
self._data[1, 1] = 2 / (top - bottom)
self._data[2, 2] = -2 / (far - near)
self._data[3, 0] = -((right + left) / (right - left))
self._data[3, 1] = -((top + bottom) / (top - bottom))
self._data[3, 2] = -((far + near) / (far - near))
def setPerspective(self, fovy: float, aspect: float, near: float, far: float) -> None:
"""Set the matrix to a perspective projection. This overwrites any existing data.
:param fovy: Field of view in the Y direction
:param aspect: The aspect ratio
:param near: Distance to the near plane
:param far: Distance to the far plane
"""
self.setToIdentity()
f = 2. / math.tan(math.radians(fovy) / 2.)
self._data[0, 0] = f / aspect
self._data[1, 1] = f
self._data[2, 2] = (far + near) / (near - far)
self._data[2, 3] = -1.
self._data[3, 2] = (2. * far * near) / (near - far)
def decompose(self) -> Tuple[Vector, "Matrix", Vector, Vector]:
"""
SOURCE: https://github.com/matthew-brett/transforms3d/blob/e402e56686648d9a88aa048068333b41daa69d1a/transforms3d/affines.py
Decompose 4x4 homogenous affine matrix into parts.
The parts are translations, rotations, zooms, shears.
This is the same as :func:`decompose` but specialized for 4x4 affines.
Decomposes `A44` into ``T, R, Z, S``, such that::
Smat = np.array([[1, S[0], S[1]],
[0, 1, S[2]],
[0, 0, 1]])
RZS = np.dot(R, np.dot(np.diag(Z), Smat))
A44 = np.eye(4)
A44[:3,:3] = RZS
A44[:-1,-1] = T
The order of transformations is therefore shears, followed by
zooms, followed by rotations, followed by translations.
This routine only works for shape (4,4) matrices
Parameters
----------
A44 : array shape (4,4)
Returns
-------
T : array, shape (3,)
Translation vector
R : array shape (3,3)
rotation matrix
Z : array, shape (3,)
Zoom vector. May have one negative zoom to prevent need for negative
determinant R matrix above
S : array, shape (3,)
Shear vector, such that shears fill upper triangle above
diagonal to form shear matrix (type ``striu``).
"""
A44 = numpy.asarray(self._data, dtype = numpy.float64)
T = A44[:-1, -1]
RZS = A44[:-1, :-1]
# compute scales and shears
M0, M1, M2 = numpy.array(RZS).T
# extract x scale and normalize
sx = math.sqrt(numpy.sum(M0 ** 2))
M0 /= sx
# orthogonalize M1 with respect to M0
sx_sxy = numpy.dot(M0, M1)
M1 -= sx_sxy * M0
# extract y scale and normalize
sy = math.sqrt(numpy.sum(M1 ** 2))
M1 /= sy
sxy = sx_sxy / sx
# orthogonalize M2 with respect to M0 and M1
sx_sxz = numpy.dot(M0, M2)
sy_syz = numpy.dot(M1, M2)
M2 -= (sx_sxz * M0 + sy_syz * M1)
# extract z scale and normalize
sz = math.sqrt(numpy.sum(M2 ** 2))
M2 /= sz
sxz = sx_sxz / sx
syz = sy_syz / sy
# Reconstruct rotation matrix, ensure positive determinant
Rmat = numpy.array([M0, M1, M2]).T
# The original code ensures that the determinant is positive, but I can't find a single situation where this
# is actualy used / needed by us. It is, however, one of the more expensive parts of this function.
#if numpy.linalg.det(Rmat) < 0:
# sx *= -1
# Rmat[:, 0] *= -1
return Vector(data = T), Matrix(data=Rmat), Vector(data = numpy.array([sx, sy, sz])), Vector(data=numpy.array([sxy, sxz, syz]))
def _unitVector(self, data: numpy.ndarray, axis: Optional[int] = None, out: Optional[numpy.ndarray] = None) -> Optional[numpy.ndarray]:
"""Return ndarray normalized by length, i.e. Euclidean norm, along axis.
>>> matrix = Matrix()
>>> v0 = numpy.random.random(3)
>>> v1 = matrix._unitVector(v0)
>>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
True
>>> v0 = numpy.random.rand(5, 4, 3)
>>> v1 = matrix._unitVector(v0, axis=-1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0 * v0, axis=2)), 2)
>>> numpy.allclose(v1, v2)
True
>>> v1 = matrix._unitVector(v0, axis=1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0 * v0, axis=1)), 1)
>>> numpy.allclose(v1, v2)
True
>>> v1 = numpy.empty((5, 4, 3))
>>> matrix._unitVector(v0, axis=1, out=v1)
>>> numpy.allclose(v1, v2)
True
>>> list(matrix._unitVector([]))
[]
>>> list(matrix._unitVector([1]))
[1.0]
"""
if out is None:
data = numpy.array(data, dtype = numpy.float64, copy = True)
if data.ndim == 1:
data /= math.sqrt(numpy.dot(data, data))
return data
else:
if out is not data:
out[:] = numpy.array(data, copy = False)
data = out
length = numpy.atleast_1d(numpy.sum(data * data, axis)) # type: ignore
numpy.sqrt(length, length)
if axis is not None:
length = numpy.expand_dims(length, axis)
data /= length
if out is None:
return data
return None
def __repr__(self) -> str:
return "Matrix( {0} )".format(self._data)
@staticmethod
def fromPositionOrientationScale(position: Vector, orientation: "Quaternion", scale: Vector) -> "Matrix":
s = numpy.identity(4, dtype = numpy.float64)
s[0, 0] = scale.x
s[1, 1] = scale.y
s[2, 2] = scale.z
r = orientation.toMatrix().getData()
t = numpy.identity(4, dtype = numpy.float64)
t[0, 3] = position.x
t[1, 3] = position.y
t[2, 3] = position.z
return Matrix(data = numpy.dot(numpy.dot(t, r), s))
|