1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
# Copyright (c) 2021 Ultimaker B.V.
# Uranium is released under the terms of the LGPLv3 or higher.
import numpy
import numpy.linalg
import math
from UM.Math.Float import Float
from typing import Optional, Any, TYPE_CHECKING, cast
if TYPE_CHECKING:
from UM.Math.Matrix import Matrix
# Disable divide-by-zero warnings so that 1.0 / (1.0, 0.0, 0.0) returns (1.0, Inf, Inf) without complaining
numpy.seterr(divide="ignore")
class Vector:
"""Simple 3D-vector class based on numpy arrays.
This class represents an immutable 3-dimensional vector.
"""
# These fields are filled in below. This is needed to help static analysis tools (read: PyCharm)
Null = None # type: Vector
Unit_X = None # type: Vector
Unit_Y = None # type: Vector
Unit_Z = None # type: Vector
def __init__(self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, data: Optional[numpy.ndarray] = None, round_digits: Optional[int] = None) -> None:
"""Initialize a new vector
:param x: X coordinate of vector.
:param y: Y coordinate of vector.
:param z: Z coordinate of vector.
"""
if x is not None and y is not None and z is not None:
self._data = numpy.array([x, y, z], dtype = numpy.float64)
elif data is not None:
self._data = data.copy()
else:
self._data = numpy.zeros(3, dtype = numpy.float64)
self.round_digits = round_digits # for comparisons
def getData(self) -> numpy.ndarray:
"""Get numpy array with the data
:returns: numpy array of length 3 holding xyz data.
"""
return self._data.astype(numpy.float64)
def setRoundDigits(self, digits: int) -> None:
self.round_digits = digits
@property
def x(self):
"""Return the x component of this vector"""
return numpy.float64(self._data[0])
@property
def y(self):
"""Return the y component of this vector"""
return numpy.float64(self._data[1])
@property
def z(self):
"""Return the z component of this vector"""
return numpy.float64(self._data[2])
def set(self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None) -> "Vector":
new_x = self._data[0] if x is None else x
new_y = self._data[1] if y is None else y
new_z = self._data[2] if z is None else z
return Vector(new_x, new_y, new_z)
def angleToVector(self, vector: "Vector") -> float:
"""Get the angle from this vector to another"""
v0 = numpy.array(self._data, dtype = numpy.float64, copy = False)
v1 = numpy.array(vector.getData(), dtype = numpy.float64, copy = False)
dot = numpy.sum(v0 * v1)
dot /= self._normalizeVector(v0) * self._normalizeVector(v1)
return numpy.arccos(numpy.fabs(dot))
def normalized(self) -> "Vector":
l = self.length()
if l != 0:
new_data = self._data / l
return Vector(data=new_data)
else:
return self
def _normalizeVector(self, data: numpy.ndarray) -> numpy.ndarray:
"""Return length, i.e. Euclidean norm, of ndarray along axis."""
data = numpy.array(data, dtype = numpy.float64, copy = True)
if data.ndim == 1:
return numpy.array([math.sqrt(numpy.dot(data, data))])
data *= data
out = numpy.atleast_1d(numpy.sum(data))
numpy.sqrt(out, out)
return out
def length(self) -> float:
return numpy.linalg.norm(self._data)
def dot(self, other) -> numpy.ndarray:
return numpy.dot(self._data, other._data)
def cross(self, other) -> "Vector":
result = numpy.cross(self._data, other._data)
return Vector(result[0], result[1], result[2])
def multiply(self, matrix: "Matrix") -> "Vector":
d = numpy.empty(4, dtype = numpy.float64)
d[0] = self._data[0]
d[1] = self._data[1]
d[2] = self._data[2]
d[3] = 1.0
d = cast(numpy.ndarray, d.dot(matrix.getData()))
return Vector(d[0], d[1], d[2])
def preMultiply(self, matrix: "Matrix") -> "Vector":
d = numpy.empty(4, dtype = numpy.float64)
d[0] = self._data[0]
d[1] = self._data[1]
d[2] = self._data[2]
d[3] = 1.0
d = cast(numpy.ndarray, matrix.getData().dot(d))
return Vector(d[0], d[1], d[2])
def scale(self, other: "Vector") -> "Vector":
"""Scale a vector by another vector.
This will do a component-wise multiply of the two vectors.
"""
return Vector(self.x * other.x, self.y * other.y, self.z * other.z)
def __eq__(self, other):
if self is other:
return True
if other is None:
return False
return self.equals(other)
def equals(self, other: "Vector", epsilon: float = 1e-6) -> bool:
"""Compares this vector to another vector.
:param epsilon: optional tolerance value for the comparision.
:returns: True if the two vectors are the same.
"""
return Float.fuzzyCompare(self.x, other.x, epsilon) and \
Float.fuzzyCompare(self.y, other.y, epsilon) and \
Float.fuzzyCompare(self.z, other.z, epsilon)
def __add__(self, other):
if type(other) is Vector:
return Vector(data = self._data + other._data)
else:
return Vector(data = self._data + other)
def __iadd__(self, other):
return self + other
def __sub__(self, other):
if type(other) is Vector:
return Vector(data = self._data - other._data)
else:
return Vector(data = self._data - other)
def __isub__(self, other):
return self - other
def __mul__(self, other):
if isNumber(other):
new_data = self._data * other
elif type(other) is Vector:
new_data = self._data * other._data
else:
raise NotImplementedError()
return Vector(data=new_data)
def __imul__(self, other):
return self * other
def __rmul__(self, other):
return self * other
def __truediv__(self, other):
if isNumber(other):
new_data = self._data / other
elif type(other) is Vector:
new_data = self._data / other._data
else:
raise NotImplementedError()
return Vector(data = new_data)
def __itruediv__(self, other):
return self / other
def __rtruediv__(self, other):
if isNumber(other):
new_data = other / self._data
elif type(other) is Vector:
new_data = other._data / self._data
else:
raise NotImplementedError()
return Vector(data=new_data)
def __neg__(self):
return Vector(data = -1 * self._data)
def __repr__(self):
return "Vector({0:.3f}, {1:.3f}, {2:.3f})".format(self._data[0], self._data[1], self._data[2])
def __str__(self):
return "<{0:.3f},{1:.3f},{2:.3f}>".format(self._data[0], self._data[1], self._data[2])
def __lt__(self, other):
return self._data[0] < other._data[0] and self._data[1] < other._data[1] and self._data[2] < other._data[2]
def __gt__(self, other):
return self._data[0] > other._data[0] and self._data[1] > other._data[1] and self._data[2] > other._data[2]
def __le__(self, other):
if self.round_digits is None:
return self._data[0] <= other._data[0] and self._data[1] <= other._data[1] and self._data[2] <= other._data[2]
else:
return (
round(self._data[0], self.round_digits) <= round(other._data[0], self.round_digits) and
round(self._data[1], self.round_digits) <= round(other._data[1], self.round_digits) and
round(self._data[2], self.round_digits) <= round(other._data[2], self.round_digits))
def __ge__(self, other):
if self.round_digits is None:
return self._data[0] >= other._data[0] and self._data[1] >= other._data[1] and self._data[2] >= other._data[2]
else:
return (
round(self._data[0], self.round_digits) >= round(other._data[0], self.round_digits) and
round(self._data[1], self.round_digits) >= round(other._data[1], self.round_digits) and
round(self._data[2], self.round_digits) >= round(other._data[2], self.round_digits))
def isNumber(value: Any) -> bool:
return type(value) in [float, int, numpy.float32, numpy.float64]
Vector.Null = Vector()
Vector.Unit_X = Vector(1, 0, 0)
Vector.Unit_Y = Vector(0, 1, 0)
Vector.Unit_Z = Vector(0, 0, 1)
|