File: UnitRootMacKinnon.f

package info (click to toggle)
urca 1.3-0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 2,428 kB
  • sloc: fortran: 501; makefile: 2
file content (784 lines) | stat: -rw-r--r-- 23,280 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784


c Copyright (c) James G. MacKinnon, 1996 (corrected 2001-1-8)
c
c urcrouts.f: This is a set of subroutines to estimate critical values
c and P values for unit root and cointegration tests. It is written in
c Fortran 77. Simply call urcval, specifying the first seven arguments.
c The result comes back in the last argument.
c
c A standalone program called urcdist.f is also available.
c
c These routines and the associated data files may be used freely for
c non-commercial purposes, provided that proper attribution is made.
c Please cite the paper
c
c  James G. MacKinnon, "Numerical distribution functions for unit root
c  and cointegration tests," Journal of Applied Econometrics, 11,
c  1996, 601-618.
c
c The routines and datas may not be incorporated into any book
c or computer program without the express, written consent of the author.
c
c The routines must have access to the files probs.tab and .urc-#.tab
c for # = 1, 2, 3 ..., 12. As currently written, these files must be
c in the current directory or in the directory /usr/local/urcdist. Make
c sure that these files are in the proper format for your computer (i.e.
c that lines are terminated by CR/LF for DOS, Windows, and OS/2 systems
c and by LF alone for Unix systems).
c

c Author authorisation to use under GPL license:

c From - Sat Nov 15 11:56:30 2008
c X-Mozilla-Status: 0001
c X-Mozilla-Status2: 00000000
c Delivered-To: matthieu.stigler@gmail.com
c Received: by 10.100.110.6 with SMTP id i6cs31074anc;
c        Fri, 14 Nov 2008 18:53:21 -0800 (PST)
c Received: by 10.65.23.5 with SMTP id a5mr1662842qbj.30.1226717600830;
c        Fri, 14 Nov 2008 18:53:20 -0800 (PST)
c Return-Path: <jgm@jgm.econ.queensu.ca>
c Received: from jgm.econ.queensu.ca (JGM.econ.QueensU.CA [130.15.74.85])
c        by mx.google.com with ESMTP id p9si2368721qbp.15.2008.11.14.18.53.20;
c        Fri, 14 Nov 2008 18:53:20 -0800 (PST)
c Received-SPF: pass (google.com: best guess record for domain of jgm@jgm.econ.queensu.ca designates 130.15.74.85 as permitted sender) client-ip=130.15.74.85;
c Authentication-Results: mx.google.com; spf=pass (google.com: best guess record for domain of jgm@jgm.econ.queensu.ca designates 130.15.74.85 as permitted sender) smtp.mail=jgm@jgm.econ.queensu.ca
c Received: from jgm by jgm.econ.queensu.ca with local (Exim 4.63)
c	(envelope-from <jgm@jgm.econ.queensu.ca>)
c	id 1L1BHk-00018U-3o
c	for matthieu.stigler@gmail.com; Fri, 14 Nov 2008 21:53:20 -0500
c Date: Fri, 14 Nov 2008 21:53:20 -0500 (EST)
c From: James MacKinnon <jgm@econ.queensu.ca>
c To: Matthieu Stigler <matthieu.stigler@gmail.com>
c Subject: Re: Program for surface response function
c In-Reply-To: <491D8DF3.20907@gmail.com>
c Message-ID: <Pine.LNX.4.62.0811142148490.4293@jgm.econ.queensu.ca>
c References: <491D8DF3.20907@gmail.com>
c MIME-Version: 1.0
c Content-Type: MULTIPART/MIXED; BOUNDARY="260199754-1936399293-1226717600=:4293"
c
c  This message is in MIME format.  The first part should be readable text,
c  while the remaining parts are likely unreadable without MIME-aware tools.
c
c --260199754-1936399293-1226717600=:4293
c Content-Type: TEXT/PLAIN; charset=ISO-8859-1; format=flowed
c Content-Transfer-Encoding: QUOTED-PRINTABLE
c
c On Fri, 14 Nov 2008, Matthieu Stigler wrote:
c
c > mat@cunix:~/Repertoires/urcdist$ f77  -O urcrouts.f -o urcrout
c > /usr/lib/gcc/i486-linux-gnu/3.4.6/../../../../lib/libfrtbegin.a(frtbegin.o):
c > In function `main':
c > (.text+0x35): undefined reference to `MAIN__'
c > collect2: ld a retourn=E9 1 code d'=E9tat d'ex=E9cution
c
c The problem is simply that urcrouts.f contains no main program. Either add
c a main program that calls one or more routines from urcrouts.f (you will
c need this anyway), or compile with the -c switch (instead of -o urcrout).
c This will create urcrouts.o, but it won't be any use without a main
c program.
c
c > Furthermore, I contributed some functions for the R program and would be
c > interested to try to integrate your functions for the package devoted to
c > unit root tests (urca). Do you agree that your code will be used in a R
c > package under the GPL license?
c
c That would be fine with me. But I would want to make sure the R code works
c properly and provides appropriate citations before you make it available.
c
c Cheers,
c
c James G. MacKinnon
c Head, Department of Economics
c Queen's University
c Kingston, Ontario, Canada
c K7L 3N6
c
c Email: jgm@econ.queensu.ca
c Phone: 613 533-2293
c Fax:   613 533-6668
c --260199754-1936399293-1226717600=:4293--

C ******************************************************************************


      subroutine fcrit(probs, cnorm, beta, wght, cval, size,
     &  precrt, nobs, model, nreg, np, nx)

      implicit double precision (a-h,o-z)
c
c Copyright (c) James G. MacKinnon, 1995
c Routine to find a critical value for any specified test size.
c Uses GLS to estimate approximating regression.
c
      double precision probs(221), cnorm(221), beta(4,221), crits(221),
     &  wght(221)
      double precision yvect(20),xmat(20,4),xomx(4,4),resid(20),gamma(4)
      double precision omega(20,20), fits(20)
      diffm = 1000.d0
      imin = 0
      do i=1,221
      diff = abs(size - probs(i))
      if (diff.lt.diffm) then
         diffm = diff
         imin = i
         if (diffm.lt.1.d-6) go to 100
      end if
      end do
  100 continue
c
      nph = np/2
      nptop = 221 - nph
      if (imin.gt.nph.and.imin.lt.nptop) then
c
c imin is not too close to the end. Use np points around stat.
c
        do i=1,np
          ic = imin - nph - 1 + i
          call eval(beta(1,ic),crits(ic),model,nreg,nobs)
          yvect(i) = crits(ic)
          xmat(i,1) = 1.d0
          xmat(i,2) = cnorm(ic)
          xmat(i,3) = xmat(i,2)*cnorm(ic)
          xmat(i,4) = xmat(i,3)*cnorm(ic)
        end do
c
c form omega matrix
c
        do i=1,np
          do j=i,np
            ic = imin - nph - 1 + i
            jc = imin - nph - 1 + j
            top = probs(ic)*(1.d0 - probs(jc))
            bot = probs(jc)*(1.d0 - probs(ic))
            omega(i,j) = wght(ic)*wght(jc)*sqrt(top/bot)
          end do
        end do
        do i=1,np
          do j=i,np
            omega(j,i) = omega(i,j)
          end do
        end do
c
        nx = 4
        call gls(xmat,yvect,omega,gamma,xomx,fits,resid,ssr,ssrt,
     &    np,nx,20,4,0)
c
c check to see if gamma(4) is needed
c
        sd4 = sqrt((ssrt/(np-nx))*xomx(4,4))
        ttest = abs(gamma(4))/sd4
        if (ttest.gt.precrt) then
          call innorz(size,anorm)
          cval = gamma(1) + gamma(2)*anorm + gamma(3)*anorm**2
     &      + gamma(4)*anorm**3
          return
        else
          nx = 3
          call gls(xmat,yvect,omega,gamma,xomx,fits,resid,ssr,ssrt,
     &      np,nx,20,4,1)
          call innorz(size,anorm)
          cval = gamma(1) + gamma(2)*anorm + gamma(3)*anorm**2
          return
        end if
c
c imin is close to one of the ends. Use points from imin +/- nph to end.
c
      else
        if (imin.lt.np) then
          np1 = imin + nph
          if (np1.lt.5) np1 = 5
          do i=1,np1
            call eval(beta(1,i),crits(i),model,nreg,nobs)
            yvect(i) = crits(i)
            xmat(i,1) = 1.d0
            xmat(i,2) = cnorm(i)
            xmat(i,3) = xmat(i,2)*cnorm(i)
            xmat(i,4) = xmat(i,3)*cnorm(i)
          end do
        else
          np1 = 222 - imin + nph
          if (np1.lt.5) np1 = 5
          do i=1,np1
            call eval(beta(1,222-i),crits(222-i),model,nreg,nobs)
            ic = 222 - i
            yvect(i) = crits(ic)
            xmat(i,1) = 1.d0
            xmat(i,2) = cnorm(ic)
            xmat(i,3) = xmat(i,2)*cnorm(ic)
            xmat(i,4) = xmat(i,3)*cnorm(ic)
          end do
        end if
c
c form omega matrix
c
        do i=1,np1
          do j=i,np1
            if (imin.lt.np) then
              top = probs(i)*(1.d0 - probs(j))
              bot = probs(j)*(1.d0 - probs(i))
              omega(i,j) = wght(i)*wght(j)*sqrt(top/bot)
            else
c
c This is to avoid numerical singularities at the upper end
c
              omega(i,j) = 0.d0
              if (i.eq.j) omega(i,i) = 1.d0
            end if
          end do
        end do
        do i=1,np1
          do j=i,np1
            omega(j,i) = omega(i,j)
          end do
        end do
c
        nx = 4
        call gls(xmat,yvect,omega,gamma,xomx,fits,resid,ssr,ssrt,
     &    np1,nx,20,4,0)
c
c check to see if gamma(4) is needed
c
        sd4 = sqrt((ssrt/(np1-nx))*xomx(4,4))
        ttest = abs(gamma(4)/sd4)
        if (ttest.gt.precrt) then
          call innorz(size,anorm)
          cval = gamma(1) + gamma(2)*anorm + gamma(3)*anorm**2
     &      + gamma(4)*anorm**3
          return
        else
          nx = 3
          call gls(xmat,yvect,omega,gamma,xomx,fits,resid,ssr,ssrt,
     &      np1,nx,20,4,1)
          call innorz(size,anorm)
          cval = gamma(1) + gamma(2)*anorm + gamma(3)*anorm**2
          return
        end if
c
      end if
      end


C ******************************************************************************


      subroutine fpval(beta, cnorm, wght, probs, pval, stat,
     &  precrt, nobs, model, nreg, np, nx)
      implicit double precision (a-h,o-z)
c
c Copyright (c) James G. MacKinnon, 1995
c Routine to find P value for any specified test statistic.
c
      double precision beta(4,221), crits(221), cnorm(221), wght(221),
     &  probs(221)
      double precision yvect(20),xmat(20,4),resid(20),gamma(4)
      double precision omega(20,20), fits(20), xomx(4,4)
c
c first, compute all the estimated critical values
c
      do i=1,221
        call eval(beta(1,i),crits(i),model,nreg,nobs)
      end do
c
c find critical value closest to test statistic
c
      diffm = 1000.d0
      imin = 0
      do i=1,221
      diff = abs(stat - crits(i))
      if (diff.lt.diffm) then
         diffm = diff
         imin = i
      end if
      end do
c
      nph = np/2
      nptop = 221 - nph
      if (imin.gt.nph.and.imin.lt.nptop) then
c
c imin is not too close to the end. Use np points around stat.
c
        do i=1,np
          ic = imin - nph - 1 + i
          yvect(i) = cnorm(ic)
          xmat(i,1) = 1.d0
          xmat(i,2) = crits(ic)
          xmat(i,3) = xmat(i,2)*crits(ic)
          xmat(i,4) = xmat(i,3)*crits(ic)
        end do
c
c form omega matrix
c
        do i=1,np
          do j=i,np
            ic = imin - nph - 1 + i
            jc = imin - nph - 1 + j
            top = probs(ic)*(1.d0 - probs(jc))
            bot = probs(jc)*(1.d0 - probs(ic))
            omega(i,j) = wght(ic)*wght(jc)*sqrt(top/bot)
          end do
        end do
        do i=1,np
          do j=i,np
            omega(j,i) = omega(i,j)
          end do
        end do
c
        nx = 4
        call gls(xmat,yvect,omega,gamma,xomx,fits,resid,ssr,ssrt,
     &    np,nx,20,4,0)
c
c check to see if gamma(4) is needed
c
        sd4 = sqrt((ssrt/(np-nx))*xomx(4,4))
        ttest = abs(gamma(4))/sd4
        if (ttest.gt.precrt) then
          crfit = gamma(1) + gamma(2)*stat + gamma(3)*stat**2
     &      + gamma(4)*stat**3
          call ddnor(crfit,pval)
          return
        else
          nx = 3
          call gls(xmat,yvect,omega,gamma,xomx,fits,resid,ssr,ssrt,
     &      np,nx,20,4,1)
          crfit = gamma(1) + gamma(2)*stat + gamma(3)*stat**2
          call ddnor(crfit,pval)
          return
        end if
      else
c
c imin is close to one of the ends. Use points from imin +/- nph to end.
c
        if (imin.lt.np) then
          np1 = imin + nph
          if (np1.lt.5) np1 = 5
          do i=1,np1
            yvect(i) = cnorm(i)
            xmat(i,1) = 1.d0
            xmat(i,2) = crits(i)
            xmat(i,3) = xmat(i,2)*crits(i)
            xmat(i,4) = xmat(i,3)*crits(i)
          end do
        else
          np1 = 222 - imin + nph
          if (np1.lt.5) np1 = 5
          do i=1,np1
            ic = 222 - i
            yvect(i) = cnorm(ic)
            xmat(i,1) = 1.d0
            xmat(i,2) = crits(ic)
            xmat(i,3) = xmat(i,2)*crits(ic)
            xmat(i,4) = xmat(i,3)*crits(ic)
          end do
        end if
c
c form omega matrix
c
        do i=1,np1
          do j=i,np1
            if (imin.lt.np) then
              top = probs(i)*(1.d0 - probs(j))
              bot = probs(j)*(1.d0 - probs(i))
              omega(i,j) = wght(i)*wght(j)*sqrt(top/bot)
            else
c
c This is to avoid numerical singularities at the upper end
c
              omega(i,j) = 0.d0
              if (i.eq.j) omega(i,i) = 1.d0
            end if
          end do
        end do
        do i=1,np1
          do j=i,np1
            omega(j,i) = omega(i,j)
          end do
        end do
c
        nx = 4
        call gls(xmat,yvect,omega,gamma,xomx,fits,resid,ssr,ssrt,
     &    np1,nx,20,4,0)
c
c check to see if gamma(4) is needed
c
        sd4 = sqrt((ssrt/(np1-nx))*xomx(4,4))
        ttest = abs(gamma(4))/sd4
        if (ttest.gt.precrt) then
          crfit = gamma(1) + gamma(2)*stat + gamma(3)*stat**2
     &      + gamma(4)*stat**3
          call ddnor(crfit,pval)
        else
          nx = 3
          call gls(xmat,yvect,omega,gamma,xomx,fits,resid,ssr,ssrt,
     &      np1,nx,20,4,1)
          crfit = gamma(1) + gamma(2)*stat + gamma(3)*stat**2
          call ddnor(crfit,pval)
        end if
c
c check that nothing crazy has happened at the ends
c
        if (imin.eq.1.and.pval.gt.probs(1)) pval = probs(1)
        if (imin.eq.221.and.pval.lt.probs(221)) pval = probs(221)
        return
      end if
      end


C ******************************************************************************


      subroutine eval(beta,cval,model,nreg,nobs)
      implicit double precision (a-h,o-z)
c
c Copyright (c) James G. MacKinnon, 1995
c Routine to evaluate response surface for specified betas and sample size.
c
      double precision beta(4)
      if (nobs.eq.0) then
         cval = beta(1)
         return
      end if
      if (model.eq.2) then
         onobs = 1.d0/nobs
         cval = beta(1) + beta(2)*onobs + beta(3)*onobs**2
         return
      end if
      if (model.eq.3) then
         onobs = 1.d0/nobs
         cval = beta(1) + beta(2)*onobs + beta(3)*onobs**2
     &     + beta(4)*onobs**3
         return
      end if
      if (model.eq.4) then
         onobs = 1.d0/(nobs - nreg)
         cval = beta(1) + beta(2)*onobs + beta(3)*onobs**2
         return
      end if
      if (model.eq.5) then
         onobs = 1.d0/(nobs - nreg)
         cval = beta(1) + beta(2)*onobs + beta(3)*onobs**2
     &     + beta(4)*onobs**3
         return
      end if
C      write(6,*) '*** Warning! Error in input file. ***'
      return
      end


C ******************************************************************************


      subroutine gls(xmat,yvect,omega,beta,xomx,fits,resid,ssr,ssrt,
     &  nobs,nvar,nomax,nvmax,ivrt)
c
c Copyright (c) James G. MacKinnon, 1995
c Subroutine to do GLS estimation the obvious way
c Use only when sample size is small (nobs <= 50)
c 1995-1-3
c
      implicit double precision (a-h,o-z)
      double precision xmat(nomax,nvmax), yvect(nomax),
     &  omega(nomax,nomax)
      double precision beta(nvmax), xomx(nvmax,nvmax), fits(nomax),
     &  resid(nomax)
      double precision xomy(50)
c
c xomx is covariance matrix of parameter estimates if omega is truly known
c First, invert omega matrix if ivrt=0. Original one gets replaced.
c
      if (ivrt.eq.0) call cholx(omega,nomax,nobs,kxx)
c
c form xomx matrix and xomy vector
c
      do j=1,nvar
        xomy(j) = 0.d0
        do l=j,nvar
          xomx(j,l) = 0.d0
        end do
      end do
c
      do 21 i=1,nobs
      do 21 k=1,nobs
      do 24 j=1,nvar
      xomy(j) = xomy(j) + xmat(i,j)*omega(k,i)*yvect(k)
      do 24 l=j,nvar
      xomx(j,l) = xomx(j,l) + xmat(i,j)*omega(k,i)*xmat(k,l)
   24 continue
   21 continue
c
      do j=1,nvar
        do l=j,nvar
          xomx(l,j) = xomx(j,l)
        end do
      end do
c
c invert xomx matrix
c
      call cholx(xomx,nvmax,nvar,kxx)
c
c  now form estimates of beta.
c
      do 5 i=1,nvar
      beta(i) = 0.d0
      do 5 j=1,nvar
      beta(i) = beta(i) + xomx(i,j)*xomy(j)
    5 continue
c
c find ssr, fitted values, and residuals
c
      ssr = 0.d0
      do i=1,nobs
        fits(i) = 0.d0
        do j=1,nvar
          fits(i) = fits(i) + xmat(i,j)*beta(j)
        end do
        resid(i) = yvect(i) - fits(i)
        ssr = ssr + resid(i)**2
      end do
c
c find ssr from transformed regression
c
      ssrt = 0.d0
      do i=1,nobs
        do k=1,nobs
          ssrt = ssrt + resid(i)*omega(k,i)*resid(k)
        end do
      end do
c
      return
      end


C ******************************************************************************


      subroutine cholx(amat,m,n,kxx)
      implicit double precision (a-h,o-z)
c
c Copyright (c) James G. MacKinnon, 1993
c This routine uses the cholesky decomposition to invert a real
c symmetric matrix.
c
      double precision amat(m,m)
      kxx = 0
      do 8 i=1,n
      kl = i - 1
      do 7 j=i,n
      if (i.gt.1) then
        do 3 k=1,kl
    3   amat(i,j) = amat(i,j) - amat(k,i)*amat(k,j)
      else
        if (amat(i,i).le.0.d0) then
        kxx = i
        go to 20
      end if
      end if
      if (i.eq.j) then
        amat(i,i) = dsqrt(amat(i,i))
      else
        if (j.eq.i+1) ooa = 1.d0/amat(i,i)
        amat(i,j) = amat(i,j)*ooa
      end if
    7 continue
    8 continue
      do 13 i=1,n
      do 12 j=i,n
      ooa = 1.d0/amat(j,j)
      if (i.ge.j) then
        t = 1.d0
        go to 12
      end if
      kl = j - 1
      t = 0.d0
      do 11 k=i,kl
   11 t = t - amat(i,k)*amat(k,j)
   12 amat(i,j) = t*ooa
   13 continue
      do 16 i=1,n
      do 15 j=i,n
      t = 0.d0
      do 14 k=j,n
   14 t = t + amat(i,k)*amat(j,k)
      amat(i,j) = t
   19 amat(j,i) = t
   15 continue
   16 continue
   20 return
      end


C ******************************************************************************


      subroutine ddnor(ystar,gauss)
      implicit double precision(a-h,o-z)
c
c Copyright (c) James G. MacKinnon, 1993
c Routine to evaluate cumulative normal distribution
c Written originally in late 1970's
c Modified 1993 to avoid changing the argument
c
c This subroutine uses Cody's method to evaluate the cumulative
c normal distribution. It is probably accurate to 19 or 20
c significant digits. It was written in 1977, based on the Cody
c article referred to in the documentation for IMSL subroutine mdnor.
c
      double precision p(6), q(5), a(9), b(8), c(5), d(4)
      data p(1)/-6.58749161529837803157d-04/,
     1     p(2)/-1.60837851487422766278d-02/,
     2     p(3)/-1.25781726111229246204d-01/,
     3     p(4)/-3.60344899949804439429d-01/,
     4     p(5)/-3.05326634961232344035d-01/,
     5     p(6)/-1.63153871373020978498d-02/
      data q(1)/2.33520497626869185443d-03/,
     1     q(2)/6.05183413124413191178d-02/,
     2     q(3)/5.27905102951428412248d-01/,
     3     q(4)/1.87295284992346047209d00/,
     4     q(5)/2.56852019228982242072d00/
      data a(1)/1.23033935479799725272d03/,
     1     a(2)/2.05107837782607146532d03/,
     2     a(3)/1.71204761263407058314d03/,
     3     a(4)/8.81952221241769090411d02/,
     4     a(5)/2.98635138197400131132d02/,
     5     a(6)/6.61191906371416294775d01/,
     6     a(7)/8.88314979438837594118d00/,
     7     a(8)/5.64188496988670089180d-01/,
     8     a(9)/2.15311535474403846343d-08/
      data b(1)/1.23033935480374942043d03/,
     1     b(2)/3.43936767414372163696d03/,
     2     b(3)/4.36261909014324715820d03/,
     3     b(4)/3.29079923573345962678d03/,
     4     b(5)/1.62138957456669018874d03/,
     5     b(6)/5.37181101862009857509d02/,
     6     b(7)/1.17693950891312499305d02/,
     7     b(8)/1.57449261107098347253d01/
      data c(1)/3.209377589138469472562d03/,
     1     c(2)/3.774852376853020208137d02/,
     2     c(3)/1.138641541510501556495d02/,
     3     c(4)/3.161123743870565596947d00/,
     4     c(5)/1.857777061846031526730d-01/
      data d(1)/2.844236833439170622273d03/,
     1     d(2)/1.282616526077372275645d03/,
     2     d(3)/2.440246379344441733056d02/,
     3     d(4)/2.360129095234412093499d01/
      data orpi/.5641895835477562869483d0/,
     1   root2/.70710678118654752440083d0/
c
      isw = 1
      y = ystar
      if (ystar.lt.-16.d0) y = -16.d0
      if (ystar.gt.16.d0) y = 16.d0
      x = -y*root2
      if(x.gt.0.d0) go to 1
      if(x.lt.0.d0) go to 2
      gauss = .5d0
      return
    2 continue
      x = - x
      isw = -1
    1 continue
      if(x.lt..477d0) go to 10
      if(x.le.4.d0) go to 20
c
c  evaluate erfc for x.gt.4.0
c
      x2 = x*x
      xm2 = 1.d0/x2
      xm4 = xm2*xm2
      xm6 = xm4*xm2
      xm8 = xm4*xm4
      xm10 = xm6*xm4
      top = p(1) + p(2)*xm2 + p(3)*xm4 + p(4)*xm6 + p(5)*xm8 + p(6)*xm10
      bot = q(1) + q(2)*xm2 + q(3)*xm4 + q(4)*xm6 + q(5)*xm8 + xm10
      crap = orpi + top/(bot*x2)
      erfc = dexp(-x2)*crap/x
c
      if(isw.eq.-1) erfc = 2.d0 - erfc
      gauss = erfc*.5d0
      return
   20 continue
c
c  evaluate erfc for .477.lt.x.le.4.0
c
      x2 = x*x
      x3 = x2*x
      x4 = x2*x2
      x5 = x3*x2
      x6 = x3*x3
      x7 = x3*x4
      x8 = x4*x4
      top = a(1) + a(2)*x + a(3)*x2 + a(4)*x3 + a(5)*x4 + a(6)*x5 +
     &  a(7)*x6 + a(8)*x7 + a(9)*x8
      bot = b(1) + b(2)*x + b(3)*x2 + b(4)*x3 + b(5)*x4 + b(6)*x5 +
     &  b(7)*x6 + b(8)*x7 + x8
      erfc = dexp(-x2)*top/bot
c
      if(isw.eq.-1) erfc = 2.d0 - erfc
      gauss = erfc*.5d0
      return
   10 continue
c
c  evaluate erf for x.lt..477
c
      x2 = x*x
      x4 = x2*x2
      x6 = x4*x2
      x8 = x4*x4
      top = c(1) + c(2)*x2 + c(3)*x4 + c(4)*x6 + c(5)*x8
      bot = d(1) + d(2)*x2 + d(3)*x4 + d(4)*x6 + x8
      erf = x*top/bot
c
      erf = erf*isw
      erfc = 1.d0 - erf
      gauss = erfc*.5d0
      return
      end


C ******************************************************************************


      subroutine innorz(prob,anorm)
      implicit double precision (a-h,o-z)
c
c Copyright (c) James G. MacKinnon, 1995
c Inverse normal routine that adjusts crude result twice.
c It seems to be accurate to about 14 digits.
c Crude result is taken from Abramowitz & Stegun (1968)
c It should have abs. error < 4.5 * 10^-4
c
      data c0/2.515517d0/, d1/1.432788d0/, c1/0.802853d0/
      data c2/0.010328d0/, d3/0.001308d0/, d2/0.189269d0/
      data const/.398942280401432678d0/
c      if (prob.lt.0.d0.or.prob.gt.1.d0) then
c         write(6,*) 'Attempt to find inverse normal of ', prob
c         stop
c      end if
      pr = prob
      if (prob.gt.0.5d0) pr = 1.d0 - prob
      arg = 1/pr**2
      t = sqrt(log(arg))
      anorm = t - (c0 + c1*t + c2*t**2)/
     &  (1 + d1*t + d2*t**2 + d3*t**3)
c
c now correct crude result by direct method
c
      call ddnor(anorm,prob2)
      pr2 = 1.d0 - prob2
      arg = 1/pr2**2
      t = sqrt(log(arg))
      anorm2 = t - (c0 + c1*t + c2*t**2)/
     &  (1 + d1*t + d2*t**2 + d3*t**3)
      anorm = anorm + anorm - anorm2
      if (prob.lt.0.5d0) anorm = -anorm
c
c now correct better result, using Taylor series approximation
c
      call ddnor(anorm,prob2)
      error = prob2 - prob
      dens = const*dexp(-.5d0*anorm**2)
      anorm = anorm - error/dens
      return
      end