1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
using OffsetArrays: Origin
parsehex(str) = parse(UInt32, str, base=16)
function parse_hex_range(line)
m = match(r"^([0-9A-F]+)(\.\.([0-9A-F]+))? +; +([^#]+)", line)
if isnothing(m)
return nothing
end
i = parsehex(m[1])
j = !isnothing(m[3]) ? parsehex(m[3]) : i
desc = rstrip(m[4])
return (i:j, desc)
end
function read_hex_ranges(filename)
[r for r in parse_hex_range.(readlines(filename)) if !isnothing(r)]
end
function collect_codepoints(range_desc, description)
list = UInt32[]
for (r,d) in range_desc
if d == description
append!(list, r)
end
end
list
end
function set_all!(d, keys, value)
for k in keys
d[k] = value
end
end
#-------------------------------------------------------------------------------
derived_core_properties = read_hex_ranges("DerivedCoreProperties.txt")
ignorable = Set(collect_codepoints(derived_core_properties, "Default_Ignorable_Code_Point"))
uppercase = Set(collect_codepoints(derived_core_properties, "Uppercase"))
lowercase = Set(collect_codepoints(derived_core_properties, "Lowercase"))
#-------------------------------------------------------------------------------
function derive_indic_conjunct_break(derived_core_properties)
props = Dict{UInt32, String}()
set_all!(props, collect_codepoints(derived_core_properties, "InCB; Linker"), "LINKER")
set_all!(props, collect_codepoints(derived_core_properties, "InCB; Consonant"), "CONSONANT")
set_all!(props, collect_codepoints(derived_core_properties, "InCB; Extend"), "EXTEND")
props
end
let indic_conjunct_break = derive_indic_conjunct_break(derived_core_properties)
global function get_indic_conjunct_break(code)
get(indic_conjunct_break, code, "NONE")
end
end
#-------------------------------------------------------------------------------
function read_grapheme_boundclasses(grapheme_break_filename, emoji_data_filename)
grapheme_boundclass = Dict{UInt32, String}()
for (r,desc) in read_hex_ranges(grapheme_break_filename)
set_all!(grapheme_boundclass, r, Base.uppercase(desc))
end
for (r,desc) in read_hex_ranges(emoji_data_filename)
if desc == "Extended_Pictographic"
set_all!(grapheme_boundclass, r, "EXTENDED_PICTOGRAPHIC")
elseif desc == "Emoji_Modifier"
set_all!(grapheme_boundclass, r, "EXTEND")
end
end
return grapheme_boundclass
end
let grapheme_boundclasses = read_grapheme_boundclasses("GraphemeBreakProperty.txt", "emoji-data.txt")
global function get_grapheme_boundclass(code)
get(grapheme_boundclasses, code, "OTHER")
end
end
#-------------------------------------------------------------------------------
function read_composition_exclusions(pattern)
section = match(pattern, read("CompositionExclusions.txt",String)).match
es = UInt32[]
for line in split(section, '\n')
m = match(r"^([0-9A-F]+) +#"i, line)
if !isnothing(m)
push!(es, parsehex(m[1]))
end
end
es
end
exclusions = Set(read_composition_exclusions(r"# \(1\) Script Specifics.*?# Total code points:"s))
excl_version = Set(read_composition_exclusions(r"# \(2\) Post Composition Version precomposed characters.*?# Total code points:"s))
#-------------------------------------------------------------------------------
function read_case_folding(filename)
case_folding = Dict{UInt32,Vector{UInt32}}()
for line in readlines(filename)
m = match(r"^([0-9A-F]+); [CF]; ([0-9A-F ]+);"i, line)
!isnothing(m) || continue
case_folding[parsehex(m[1])] = parsehex.(split(m[2]))
end
case_folding
end
let case_folding = read_case_folding("CaseFolding.txt")
global function get_case_folding(code)
get(case_folding, code, nothing)
end
end
#-------------------------------------------------------------------------------
# Utilities for reading per-char properties from UnicodeData.txt
function split_unicode_data_line(line)
m = match(r"""
([0-9A-F]+); # code
([^;]+); # name
([A-Z]+); # general category
([0-9]+); # canonical combining class
([A-Z]+); # bidi class
(<([A-Z]*)>)? # decomposition type
((\ ?[0-9A-F]+)*); # decompomposition mapping
([0-9]*); # decimal digit
([0-9]*); # digit
([^;]*); # numeric
([YN]*); # bidi mirrored
([^;]*); # unicode 1.0 name
([^;]*); # iso comment
([0-9A-F]*); # simple uppercase mapping
([0-9A-F]*); # simple lowercase mapping
([0-9A-F]*)$ # simple titlecase mapping
"""ix, line)
@assert !isnothing(m)
code = parse(UInt32, m[1], base=16)
(code = code,
name = m[2],
category = m[3],
combining_class = parse(Int, m[4]),
bidi_class = m[5],
decomp_type = m[7],
decomp_mapping = m[8] == "" ? nothing : parsehex.(split(m[8])),
bidi_mirrored = m[13] == "Y",
# issue #130: use nonstandard uppercase Γ -> αΊ
# issue #195: if character is uppercase but has no lowercase mapping,
# then make lowercase mapping = itself (vice versa for lowercase)
uppercase_mapping = m[16] != "" ? parsehex(m[16]) :
code == 0x000000df ? 0x00001e9e :
m[17] == "" && code in lowercase ? code :
nothing,
lowercase_mapping = m[17] != "" ? parsehex(m[17]) :
m[16] == "" && code in uppercase ? code :
nothing,
titlecase_mapping = m[18] != "" ? parsehex(m[18]) :
code == 0x000000df ? 0x00001e9e :
nothing,
)
end
function read_unicode_data(filename)
raw_char_props = split_unicode_data_line.(readlines(filename))
char_props = Origin(0)(Vector{eltype(raw_char_props)}())
@assert issorted(raw_char_props, by=c->c.code)
raw_char_props = Iterators.Stateful(raw_char_props)
while !isempty(raw_char_props)
c = popfirst!(raw_char_props)
if occursin(", First>", c.name)
nc = popfirst!(raw_char_props)
@assert occursin(", Last>", nc.name)
name = replace(c.name, ", First"=>"")
for i in c.code:nc.code
push!(char_props, (; c..., name=name, code=i))
end
else
push!(char_props, c)
end
end
return char_props
end
char_props = read_unicode_data("UnicodeData.txt")
char_hash = Dict(c.code=>c for c in char_props)
#-------------------------------------------------------------------------------
# Read character widths from UAX #11: East Asian Width
function read_east_asian_widths(filename)
ea_widths = Dict{UInt32,Int}()
for (rng,widthcode) in read_hex_ranges(filename)
w = widthcode == "W" || widthcode == "F" ? 2 : # wide or full
widthcode == "Na"|| widthcode == "H" ? 1 : # narrow or half-width
widthcode == "A" ? -1 : # ambiguous width
nothing
if !isnothing(w)
set_all!(ea_widths, rng, w)
end
end
return ea_widths
end
let ea_widths = read_east_asian_widths("EastAsianWidth.txt")
# Following work by @jiahao, we compute character widths using a combination of
# * character category
# * UAX 11: East Asian Width
# * a few exceptions as needed
# Adapted from http://nbviewer.ipython.org/gist/jiahao/07e8b08bf6d8671e9734
global function derive_char_width(code, category)
# Use a default width of 1 for all character categories that are
# letter/symbol/number-like, as well as for unassigned/private-use chars.
# This provides a useful nonzero fallback for new codepoints when a new
# Unicode version has been released.
width = 1
# Various zero-width categories
#
# "Sk" not included in zero width - see issue #167
if category in ("Mn", "Mc", "Me", "Zl", "Zp", "Cc", "Cf", "Cs")
width = 0
end
# Widths from UAX #11: East Asian Width
eaw = get(ea_widths, code, nothing)
if !isnothing(eaw)
width = eaw < 0 ? 1 : eaw
end
# A few exceptional cases, found by manual comparison to other wcwidth
# functions and similar checks.
if category == "Mn"
width = 0
end
if code == 0x00ad
# Soft hyphen is typically printed as a hyphen (-) in terminals.
width = 1
elseif code == 0x2028 || code == 0x2029
#By definition, should have zero width (on the same line)
#0x002028 '\u2028' category: Zl name: LINE SEPARATOR/
#0x002029 '\u2029' category: Zp name: PARAGRAPH SEPARATOR/
width = 0
end
return width
end
global function is_ambiguous_width(code)
return get(ea_widths, code, 0) < 0
end
end
#-------------------------------------------------------------------------------
# Construct data tables which will drive libutf8proc
#
# These tables are "compressed" with an ad-hoc compression scheme (largely some
# simple deduplication and indexing) which can easily and efficiently be
# decompressed on the C side at runtime.
# Inverse decomposition mapping tables for combining two characters into a single one.
comb_mapping = Dict{UInt32, Dict{UInt32, UInt32}}()
comb_issecond = Set{UInt32}()
for char in char_props
# What happens with decompositions that are longer than 2?
if isnothing(char.decomp_type) && !isnothing(char.decomp_mapping) &&
length(char.decomp_mapping) == 2 && !isnothing(char_hash[char.decomp_mapping[1]]) &&
char_hash[char.decomp_mapping[1]].combining_class == 0 &&
(char.code β exclusions && char.code β excl_version)
dm0 = char.decomp_mapping[1]
dm1 = char.decomp_mapping[2]
if !haskey(comb_mapping, dm0)
comb_mapping[dm0] = Dict{UInt32, UInt32}()
end
comb_mapping[dm0][dm1] = char.code
push!(comb_issecond, dm1)
end
end
comb_index = Dict{UInt32, UInt32}()
comb_length = Dict{UInt32, UInt32}()
let
ind = 0
for dm0 in sort!(collect(keys(comb_mapping)))
comb_index[dm0] = ind
len = length(comb_mapping[dm0])
comb_length[dm0] = len
ind += len
end
end
utf16_encode(utf32_seq) = transcode(UInt16, transcode(String, utf32_seq))
# Utility for packing all UTF-16 encoded sequences into one big array
struct UTF16Sequences
storage::Vector{UInt16}
indices::Dict{Vector{UInt16},Int}
end
UTF16Sequences() = UTF16Sequences(UInt16[], Dict{Vector{UInt16},Int}())
"""
Return "sequence code" (seqindex in the C code) for a sequence: a UInt16 where
* The 14 low bits are the index into the `sequences.storage` array where the
sequence resides
* The two top bits are the length of the sequence, or if equal to 3, the first
entry of the sequence itself contains the length.
"""
function encode_sequence!(sequences::UTF16Sequences, utf32_seq::Vector)
if length(utf32_seq) == 0
return typemax(UInt16)
end
# lencode contains the length of the UTF-32 sequence after decoding
# No sequence has len 0, so we encode len 1 as 0, len 2 as 1.
# We have only 2 bits for the length, though, so longer sequences are
# encoded in the sequence data itself.
seq_lencode = length(utf32_seq) - 1
utf16_seq = utf16_encode(utf32_seq)
idx = get!(sequences.indices, utf16_seq) do
i = length(sequences.storage)
utf16_seq_enc = seq_lencode < 3 ? utf16_seq :
pushfirst!(copy(utf16_seq), seq_lencode)
append!(sequences.storage, utf16_seq_enc)
i
end
@assert idx <= 0x3FFF
seq_code = idx | (min(seq_lencode, 3) << 14)
return seq_code
end
function encode_sequence!(sequences::UTF16Sequences, code::Integer)
encode_sequence!(sequences, [code])
end
function encode_sequence!(sequences::UTF16Sequences, ::Nothing)
return typemax(UInt16)
end
function char_table_properties!(sequences, char)
code = char.code
return (
category = char.category,
combining_class = char.combining_class,
bidi_class = char.bidi_class,
decomp_type = char.decomp_type,
decomp_seqindex = encode_sequence!(sequences, char.decomp_mapping),
casefold_seqindex = encode_sequence!(sequences, get_case_folding(code)),
uppercase_seqindex = encode_sequence!(sequences, char.uppercase_mapping),
lowercase_seqindex = encode_sequence!(sequences, char.lowercase_mapping),
titlecase_seqindex = encode_sequence!(sequences, char.titlecase_mapping),
comb_index = get(comb_index, code, 0x3FF), # see utf8proc_property_struct::comb_index
comb_length = get(comb_length, code, 0),
comb_issecond = code in comb_issecond,
bidi_mirrored = char.bidi_mirrored,
comp_exclusion = code in exclusions || code in excl_version,
ignorable = code in ignorable,
control_boundary = char.category in ("Zl", "Zp", "Cc", "Cf") &&
!(char.code in (0x200C, 0x200D)),
charwidth = derive_char_width(code, char.category),
ambiguous_width = is_ambiguous_width(code),
boundclass = get_grapheme_boundclass(code),
indic_conjunct_break = get_indic_conjunct_break(code),
)
end
# Many character properties are duplicates. Deduplicate them, constructing a
# per-character array of indicies into the properties array
sequences = UTF16Sequences()
char_table_props = [char_table_properties!(sequences, cp) for cp in char_props]
deduplicated_props = Origin(0)(Vector{eltype(char_table_props)}())
char_property_indices = Origin(0)(zeros(Int, 0x00110000))
let index_map = Dict{eltype(char_table_props),Int}()
for (char, table_props) in zip(char_props, char_table_props)
entry_idx = get!(index_map, table_props) do
idx = length(deduplicated_props)
push!(deduplicated_props, table_props)
idx
end
# Add 1 because unassigned codes occupy slot at index 0
char_property_indices[char.code] = entry_idx + 1
end
end
# Now compress char_property_indices by breaking it into pages and
# deduplicating those (this works as compression because there are large
# contiguous ranges of code space with identical properties)
prop_page_indices = Int[]
prop_pages = Int[]
let
page_size = 0x100
page_index_map = Dict{Vector{Int}, Int}()
for page in Iterators.partition(char_property_indices, page_size)
page_idx = get!(page_index_map, page) do
idx = length(prop_pages)
append!(prop_pages, page)
idx
end
push!(prop_page_indices, page_idx)
end
end
#-------------------------------------------------------------------------------
function write_c_index_array(io, array, linelen)
print(io, "{\n ")
i = 0
for x in array
i += 1
if i == linelen
i = 0
print(io, "\n ")
end
print(io, x, ", ")
end
print(io, "};\n\n")
end
function c_enum_name(prefix, str)
if isnothing(str)
return "0"
else
return "UTF8PROC_$(prefix)_$(Base.uppercase(str))"
end
end
function c_uint16(seqindex)
if seqindex == typemax(UInt16)
return "UINT16_MAX"
else
return string(seqindex)
end
end
function print_c_data_tables(io, sequences, prop_page_indices, prop_pages, deduplicated_props,
comb_index, comb_length, comb_issecond)
print(io, "static const utf8proc_uint16_t utf8proc_sequences[] = ")
write_c_index_array(io, sequences.storage, 8)
print(io, "static const utf8proc_uint16_t utf8proc_stage1table[] = ")
write_c_index_array(io, prop_page_indices, 8)
print(io, "static const utf8proc_uint16_t utf8proc_stage2table[] = ")
write_c_index_array(io, prop_pages, 8)
print(io, """
static const utf8proc_property_t utf8proc_properties[] = {
{0, 0, 0, 0, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, 0x3FF,0,false, false,false,false,false, 1, 0, 0, UTF8PROC_BOUNDCLASS_OTHER, UTF8PROC_INDIC_CONJUNCT_BREAK_NONE},
""")
for prop in deduplicated_props
print(io, " {",
c_enum_name("CATEGORY", prop.category), ", ",
prop.combining_class, ", ",
c_enum_name("BIDI_CLASS", prop.bidi_class), ", ",
c_enum_name("DECOMP_TYPE", prop.decomp_type), ", ",
c_uint16(prop.decomp_seqindex), ", ",
c_uint16(prop.casefold_seqindex), ", ",
c_uint16(prop.uppercase_seqindex), ", ",
c_uint16(prop.lowercase_seqindex), ", ",
c_uint16(prop.titlecase_seqindex), ", ",
c_uint16(prop.comb_index), ", ",
c_uint16(prop.comb_length), ", ",
prop.comb_issecond, ", ",
prop.bidi_mirrored, ", ",
prop.comp_exclusion, ", ",
prop.ignorable, ", ",
prop.control_boundary, ", ",
prop.charwidth, ", ",
prop.ambiguous_width, ", ",
"0, ", # bitfield padding
c_enum_name("BOUNDCLASS", prop.boundclass), ", ",
c_enum_name("INDIC_CONJUNCT_BREAK", prop.indic_conjunct_break),
"},\n"
)
end
print(io, "};\n\n")
print(io, "static const utf8proc_int32_t utf8proc_combinations_second[] = {\n")
for dm0 in sort!(collect(keys(comb_mapping)))
print(io, " ");
for dm1 in sort!(collect(keys(comb_mapping[dm0])))
print(io, " ", dm1, ",")
end
print(io, "\n");
end
print(io, "};\n\n")
print(io, "static const utf8proc_int32_t utf8proc_combinations_combined[] = {\n")
for dm0 in sort!(collect(keys(comb_mapping)))
print(io, " ");
for dm1 in sort!(collect(keys(comb_mapping[dm0])))
code = comb_mapping[dm0][dm1]
print(io, " ", code, ",")
end
print(io, "\n");
end
print(io, "};\n\n")
end
if !isinteractive()
print_c_data_tables(stdout, sequences, prop_page_indices, prop_pages, deduplicated_props,
comb_index, comb_length, comb_issecond)
end
|