File: hwclock.c

package info (click to toggle)
util-linux 2.25.2-6
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 60,764 kB
  • ctags: 11,189
  • sloc: ansic: 103,273; sh: 18,345; makefile: 322; python: 316; xml: 232; csh: 37; sed: 16
file content (2094 lines) | stat: -rw-r--r-- 64,223 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
/*
 * hwclock.c
 *
 * clock.c was written by Charles Hedrick, hedrick@cs.rutgers.edu, Apr 1992
 * Modified for clock adjustments - Rob Hooft <hooft@chem.ruu.nl>, Nov 1992
 * Improvements by Harald Koenig <koenig@nova.tat.physik.uni-tuebingen.de>
 * and Alan Modra <alan@spri.levels.unisa.edu.au>.
 *
 * Major rewrite by Bryan Henderson <bryanh@giraffe-data.com>, 96.09.19.
 * The new program is called hwclock. New features:
 *
 *	- You can set the hardware clock without also modifying the system
 *	  clock.
 *	- You can read and set the clock with finer than 1 second precision.
 *	- When you set the clock, hwclock automatically refigures the drift
 *	  rate, based on how far off the clock was before you set it.
 *
 * Reshuffled things, added sparc code, and re-added alpha stuff
 * by David Mosberger <davidm@azstarnet.com>
 * and Jay Estabrook <jestabro@amt.tay1.dec.com>
 * and Martin Ostermann <ost@coments.rwth-aachen.de>, aeb@cwi.nl, 990212.
 *
 * Fix for Award 2094 bug, Dave Coffin (dcoffin@shore.net) 11/12/98
 * Change of local time handling, Stefan Ring <e9725446@stud3.tuwien.ac.at>
 * Change of adjtime handling, James P. Rutledge <ao112@rgfn.epcc.edu>.
 *
 * Distributed under GPL
 */
/*
 * Explanation of `adjusting' (Rob Hooft):
 *
 * The problem with my machine is that its CMOS clock is 10 seconds
 * per day slow. With this version of clock.c, and my '/etc/rc.local'
 * reading '/etc/clock -au' instead of '/etc/clock -u -s', this error
 * is automatically corrected at every boot.
 *
 * To do this job, the program reads and writes the file '/etc/adjtime'
 * to determine the correction, and to save its data. In this file are
 * three numbers:
 *
 *	1) the correction in seconds per day. (So if your clock runs 5
 *	   seconds per day fast, the first number should read -5.0)
 *	2) the number of seconds since 1/1/1970 the last time the program
 *	   was used
 *	3) the remaining part of a second which was leftover after the last
 *	   adjustment
 *
 * Installation and use of this program:
 *
 *	a) create a file '/etc/adjtime' containing as the first and only
 *	   line: '0.0 0 0.0'
 *	b) run 'clock -au' or 'clock -a', depending on whether your cmos is
 *	   in universal or local time. This updates the second number.
 *	c) set your system time using the 'date' command.
 *	d) update your cmos time using 'clock -wu' or 'clock -w'
 *	e) replace the first number in /etc/adjtime by your correction.
 *	f) put the command 'clock -au' or 'clock -a' in your '/etc/rc.local'
 */

#include <errno.h>
#include <getopt.h>
#include <limits.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sysexits.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#define OPTUTILS_EXIT_CODE EX_USAGE

#include "c.h"
#include "closestream.h"
#include "nls.h"
#include "optutils.h"
#include "pathnames.h"
#include "strutils.h"
#include "hwclock.h"

#ifdef HAVE_LIBAUDIT
#include <libaudit.h>
static int hwaudit_fd = -1;
static int hwaudit_on;
#endif

/* The struct that holds our hardware access routines */
struct clock_ops *ur;

#define FLOOR(arg) ((arg >= 0 ? (int) arg : ((int) arg) - 1));

/* Maximal clock adjustment in seconds per day.
   (adjtime() glibc call has 2145 seconds limit on i386, so it is good enough for us as well,
   43219 is a maximal safe value preventing exact_adjustment overflow.) */
#define MAX_DRIFT 2145.0

const char *adj_file_name = NULL;

struct adjtime {
	/*
	 * This is information we keep in the adjtime file that tells us how
	 * to do drift corrections. Elements are all straight from the
	 * adjtime file, so see documentation of that file for details.
	 * Exception is <dirty>, which is an indication that what's in this
	 * structure is not what's in the disk file (because it has been
	 * updated since read from the disk file).
	 */
	bool dirty;
	/* line 1 */
	double drift_factor;
	time_t last_adj_time;
	double not_adjusted;
	/* line 2 */
	time_t last_calib_time;
	/*
	 * The most recent time that we set the clock from an external
	 * authority (as opposed to just doing a drift adjustment)
	 */
	/* line 3 */
	enum a_local_utc { LOCAL, UTC, UNKNOWN } local_utc;
	/*
	 * To which time zone, local or UTC, we most recently set the
	 * hardware clock.
	 */
};

/*
 * We are running in debug mode, wherein we put a lot of information about
 * what we're doing to standard output.
 */
int debug;

/* Workaround for Award 4.50g BIOS bug: keep the year in a file. */
bool badyear;

/* User-specified epoch, used when rtc fails to return epoch. */
unsigned long epoch_option = -1;

/*
 * Almost all Award BIOS's made between 04/26/94 and 05/31/95 have a nasty
 * bug limiting the RTC year byte to the range 94-99. Any year between 2000
 * and 2093 gets changed to 2094, every time you start the system.
 *
 * With the --badyear option, we write the date to file and hope that the
 * file is updated at least once a year. I recommend putting this command
 * "hwclock --badyear" in the monthly crontab, just to be safe.
 *
 * -- Dave Coffin 11/12/98
 */
static void write_date_to_file(struct tm *tm)
{
	FILE *fp;

	if ((fp = fopen(_PATH_LASTDATE, "w"))) {
		fprintf(fp, "%02d.%02d.%04d\n", tm->tm_mday, tm->tm_mon + 1,
			tm->tm_year + 1900);
		if (close_stream(fp) != 0)
			warn(_("cannot write %s"), _PATH_LASTDATE);
	} else
		warn(_("cannot write %s"), _PATH_LASTDATE);
}

static void read_date_from_file(struct tm *tm)
{
	int last_mday, last_mon, last_year;
	FILE *fp;

	if ((fp = fopen(_PATH_LASTDATE, "r"))) {
		if (fscanf(fp, "%d.%d.%d\n", &last_mday, &last_mon, &last_year)
		    == 3) {
			tm->tm_year = last_year - 1900;
			if ((tm->tm_mon << 5) + tm->tm_mday <
			    ((last_mon - 1) << 5) + last_mday)
				tm->tm_year++;
		}
		fclose(fp);
	}
	write_date_to_file(tm);
}

/*
 * The difference in seconds between two times in "timeval" format.
 */
double time_diff(struct timeval subtrahend, struct timeval subtractor)
{
	return (subtrahend.tv_sec - subtractor.tv_sec)
	    + (subtrahend.tv_usec - subtractor.tv_usec) / 1E6;
}

/*
 * The time, in "timeval" format, which is <increment> seconds after the
 * time <addend>. Of course, <increment> may be negative.
 */
static struct timeval time_inc(struct timeval addend, double increment)
{
	struct timeval newtime;

	newtime.tv_sec = addend.tv_sec + (int)increment;
	newtime.tv_usec = addend.tv_usec + (increment - (int)increment) * 1E6;

	/*
	 * Now adjust it so that the microsecond value is between 0 and 1
	 * million.
	 */
	if (newtime.tv_usec < 0) {
		newtime.tv_usec += 1E6;
		newtime.tv_sec -= 1;
	} else if (newtime.tv_usec >= 1E6) {
		newtime.tv_usec -= 1E6;
		newtime.tv_sec += 1;
	}
	return newtime;
}

static bool
hw_clock_is_utc(const bool utc, const bool local_opt,
		const struct adjtime adjtime)
{
	bool ret;

	if (utc)
		ret = TRUE;	/* --utc explicitly given on command line */
	else if (local_opt)
		ret = FALSE;	/* --localtime explicitly given */
	else
		/* get info from adjtime file - default is UTC */
		ret = (adjtime.local_utc != LOCAL);
	if (debug)
		printf(_("Assuming hardware clock is kept in %s time.\n"),
		       ret ? _("UTC") : _("local"));
	return ret;
}

/*
 * Read the adjustment parameters out of the /etc/adjtime file.
 *
 * Return them as the adjtime structure <*adjtime_p>. If there is no
 * /etc/adjtime file, return defaults. If values are missing from the file,
 * return defaults for them.
 *
 * return value 0 if all OK, !=0 otherwise.
 */
static int read_adjtime(struct adjtime *adjtime_p)
{
	FILE *adjfile;
	int rc;			/* local return code */
	struct stat statbuf;	/* We don't even use the contents of this. */
	char line1[81];		/* String: first line of adjtime file */
	char line2[81];		/* String: second line of adjtime file */
	char line3[81];		/* String: third line of adjtime file */
	long timeval;

	rc = stat(adj_file_name, &statbuf);
	if (rc < 0 && errno == ENOENT) {
		/* He doesn't have a adjtime file, so we'll use defaults. */
		adjtime_p->drift_factor = 0;
		adjtime_p->last_adj_time = 0;
		adjtime_p->not_adjusted = 0;
		adjtime_p->last_calib_time = 0;
		adjtime_p->local_utc = UNKNOWN;
		adjtime_p->dirty = FALSE;	/* don't create a zero adjfile */

		return 0;
	}

	adjfile = fopen(adj_file_name, "r");	/* open file for reading */
	if (adjfile == NULL) {
		warn(_("cannot open %s"), adj_file_name);
		return EX_OSFILE;
	}


	if (!fgets(line1, sizeof(line1), adjfile))
		line1[0] = '\0';	/* In case fgets fails */
	if (!fgets(line2, sizeof(line2), adjfile))
		line2[0] = '\0';	/* In case fgets fails */
	if (!fgets(line3, sizeof(line3), adjfile))
		line3[0] = '\0';	/* In case fgets fails */

	fclose(adjfile);

	/* Set defaults in case values are missing from file */
	adjtime_p->drift_factor = 0;
	adjtime_p->last_adj_time = 0;
	adjtime_p->not_adjusted = 0;
	adjtime_p->last_calib_time = 0;
	timeval = 0;

	sscanf(line1, "%lf %ld %lf",
	       &adjtime_p->drift_factor,
	       &timeval, &adjtime_p->not_adjusted);
	adjtime_p->last_adj_time = timeval;

	sscanf(line2, "%ld", &timeval);
	adjtime_p->last_calib_time = timeval;

	if (!strcmp(line3, "UTC\n")) {
		adjtime_p->local_utc = UTC;
	} else if (!strcmp(line3, "LOCAL\n")) {
		adjtime_p->local_utc = LOCAL;
	} else {
		adjtime_p->local_utc = UNKNOWN;
		if (line3[0]) {
			warnx(_("Warning: unrecognized third line in adjtime file\n"
				"(Expected: `UTC' or `LOCAL' or nothing.)"));
		}
	}

	adjtime_p->dirty = FALSE;

	if (debug) {
		printf(_
		       ("Last drift adjustment done at %ld seconds after 1969\n"),
		       (long)adjtime_p->last_adj_time);
		printf(_("Last calibration done at %ld seconds after 1969\n"),
		       (long)adjtime_p->last_calib_time);
		printf(_("Hardware clock is on %s time\n"),
		       (adjtime_p->local_utc ==
			LOCAL) ? _("local") : (adjtime_p->local_utc ==
					       UTC) ? _("UTC") : _("unknown"));
	}

	return 0;
}

/*
 * Wait until the falling edge of the Hardware Clock's update flag so that
 * any time that is read from the clock immediately after we return will be
 * exact.
 *
 * The clock only has 1 second precision, so it gives the exact time only
 * once per second, right on the falling edge of the update flag.
 *
 * We wait (up to one second) either blocked waiting for an rtc device or in
 * a CPU spin loop. The former is probably not very accurate.
 *
 * Return 0 if it worked, nonzero if it didn't.
 */
static int synchronize_to_clock_tick(void)
{
	int rc;

	if (debug)
		printf(_("Waiting for clock tick...\n"));

	rc = ur->synchronize_to_clock_tick();

	if (debug) {
		if (rc)
			printf(_("...synchronization failed\n"));
		else
			printf(_("...got clock tick\n"));
	}

	return rc;
}

/*
 * Convert a time in broken down format (hours, minutes, etc.) into standard
 * unix time (seconds into epoch). Return it as *systime_p.
 *
 * The broken down time is argument <tm>. This broken down time is either
 * in local time zone or UTC, depending on value of logical argument
 * "universal". True means it is in UTC.
 *
 * If the argument contains values that do not constitute a valid time, and
 * mktime() recognizes this, return *valid_p == false and *systime_p
 * undefined. However, mktime() sometimes goes ahead and computes a
 * fictional time "as if" the input values were valid, e.g. if they indicate
 * the 31st day of April, mktime() may compute the time of May 1. In such a
 * case, we return the same fictional value mktime() does as *systime_p and
 * return *valid_p == true.
 */
static void
mktime_tz(struct tm tm, const bool universal,
	  bool * valid_p, time_t * systime_p)
{
	time_t mktime_result;	/* The value returned by our mktime() call */
	char *zone;		/* Local time zone name */

	/*
	 * We use the C library function mktime(), but since it only works
	 * on local time zone input, we may have to fake it out by
	 * temporarily changing the local time zone to UTC.
	 */
	zone = getenv("TZ");	/* remember original time zone */
	if (universal) {
		/* Set timezone to UTC as defined by the environment
		 * variable TZUTC.  TZUTC undefined gives the default UTC
		 * zonefile which usually does not take into account leap
		 * seconds.  Define TZUTC to select your UTC zonefile which
		 * does include leap seconds.  For example, with recent GNU
		 * libc's:
		 *    TZUTC=:/usr/share/zoneinfo/right/UTC
		 */
		setenv("TZ", getenv("TZUTC"), TRUE);
		/*
		 * Note: tzset() gets called implicitly by the time code,
		 * but only the first time. When changing the environment
		 * variable, better call tzset() explicitly.
		 */
		tzset();
	}
	mktime_result = mktime(&tm);
	if (mktime_result == -1) {
		/*
		 * This apparently (not specified in mktime() documentation)
		 * means the 'tm' structure does not contain valid values
		 * (however, not containing valid values does _not_ imply
		 * mktime() returns -1).
		 */
		*valid_p = FALSE;
		*systime_p = 0;
		if (debug)
			printf(_("Invalid values in hardware clock: "
				 "%4d/%.2d/%.2d %.2d:%.2d:%.2d\n"),
			       tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
			       tm.tm_hour, tm.tm_min, tm.tm_sec);
	} else {
		*valid_p = TRUE;
		*systime_p = mktime_result;
		if (debug)
			printf(_
			       ("Hw clock time : %4d/%.2d/%.2d %.2d:%.2d:%.2d = "
				"%ld seconds since 1969\n"), tm.tm_year + 1900,
			       tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min,
			       tm.tm_sec, (long)*systime_p);
	}
	/* now put back the original zone. */
	if (zone)
		setenv("TZ", zone, TRUE);
	else
		unsetenv("TZ");
	tzset();
}

/*
 * Read the hardware clock and return the current time via <tm> argument.
 *
 * Use the method indicated by <method> argument to access the hardware
 * clock.
 */
static int
read_hardware_clock(const bool universal, bool * valid_p, time_t * systime_p)
{
	struct tm tm;
	int err;

	err = ur->read_hardware_clock(&tm);
	if (err)
		return err;

	if (badyear)
		read_date_from_file(&tm);

	if (debug)
		printf(_
		       ("Time read from Hardware Clock: %4d/%.2d/%.2d %02d:%02d:%02d\n"),
		       tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour,
		       tm.tm_min, tm.tm_sec);
	mktime_tz(tm, universal, valid_p, systime_p);

	return 0;
}

/*
 * Set the Hardware Clock to the time <newtime>, in local time zone or UTC,
 * according to <universal>.
 */
static void
set_hardware_clock(const time_t newtime,
		   const bool universal, const bool testing)
{
	struct tm new_broken_time;
	/*
	 * Time to which we will set Hardware Clock, in broken down format,
	 * in the time zone of caller's choice
	 */

	if (universal)
		new_broken_time = *gmtime(&newtime);
	else
		new_broken_time = *localtime(&newtime);

	if (debug)
		printf(_("Setting Hardware Clock to %.2d:%.2d:%.2d "
			 "= %ld seconds since 1969\n"),
		       new_broken_time.tm_hour, new_broken_time.tm_min,
		       new_broken_time.tm_sec, (long)newtime);

	if (testing)
		printf(_("Clock not changed - testing only.\n"));
	else {
		if (badyear) {
			/*
			 * Write the real year to a file, then write a fake
			 * year between 1995 and 1998 to the RTC. This way,
			 * Award BIOS boots on 29 Feb 2000 thinking that
			 * it's 29 Feb 1996.
			 */
			write_date_to_file(&new_broken_time);
			new_broken_time.tm_year =
			    95 + ((new_broken_time.tm_year + 1) & 3);
		}
		ur->set_hardware_clock(&new_broken_time);
	}
}

/*
 * Set the Hardware Clock to the time "sethwtime", in local time zone or
 * UTC, according to "universal".
 *
 * Wait for a fraction of a second so that "sethwtime" is the value of the
 * Hardware Clock as of system time "refsystime", which is in the past. For
 * example, if "sethwtime" is 14:03:05 and "refsystime" is 12:10:04.5 and
 * the current system time is 12:10:06.0: Wait .5 seconds (to make exactly 2
 * seconds since "refsystime") and then set the Hardware Clock to 14:03:07,
 * thus getting a precise and retroactive setting of the clock.
 *
 * (Don't be confused by the fact that the system clock and the Hardware
 * Clock differ by two hours in the above example. That's just to remind you
 * that there are two independent time scales here).
 *
 * This function ought to be able to accept set times as fractional times.
 * Idea for future enhancement.
 */
static void
set_hardware_clock_exact(const time_t sethwtime,
			 const struct timeval refsystime,
			 const bool universal, const bool testing)
{
	/*
	 * The Hardware Clock can only be set to any integer time plus one
	 * half second.	 The integer time is required because there is no
	 * interface to set or get a fractional second.	 The additional half
	 * second is because the Hardware Clock updates to the following
	 * second precisely 500 ms (not 1 second!) after you release the
	 * divider reset (after setting the new time) - see description of
	 * DV2, DV1, DV0 in Register A in the MC146818A data sheet (and note
	 * that although that document doesn't say so, real-world code seems
	 * to expect that the SET bit in Register B functions the same way).
	 * That means that, e.g., when you set the clock to 1:02:03, it
	 * effectively really sets it to 1:02:03.5, because it will update to
	 * 1:02:04 only half a second later.  Our caller passes the desired
	 * integer Hardware Clock time in sethwtime, and the corresponding
	 * system time (which may have a fractional part, and which may or may
	 * not be the same!) in refsystime.  In an ideal situation, we would
	 * then apply sethwtime to the Hardware Clock at refsystime+500ms, so
	 * that when the Hardware Clock ticks forward to sethwtime+1s half a
	 * second later at refsystime+1000ms, everything is in sync.  So we
	 * spin, waiting for gettimeofday() to return a time at or after that
	 * time (refsystime+500ms) up to a tolerance value, initially 1ms.  If
	 * we miss that time due to being preempted for some other process,
	 * then we increase the margin a little bit (initially 1ms, doubling
	 * each time), add 1 second (or more, if needed to get a time that is
	 * in the future) to both the time for which we are waiting and the
	 * time that we will apply to the Hardware Clock, and start waiting
	 * again.
	 * 
	 * For example, the caller requests that we set the Hardware Clock to
	 * 1:02:03, with reference time (current system time) = 6:07:08.250.
	 * We want the Hardware Clock to update to 1:02:04 at 6:07:09.250 on
	 * the system clock, and the first such update will occur 0.500
	 * seconds after we write to the Hardware Clock, so we spin until the
	 * system clock reads 6:07:08.750.  If we get there, great, but let's
	 * imagine the system is so heavily loaded that our process is
	 * preempted and by the time we get to run again, the system clock
	 * reads 6:07:11.990.  We now want to wait until the next xx:xx:xx.750
	 * time, which is 6:07:12.750 (4.5 seconds after the reference time),
	 * at which point we will set the Hardware Clock to 1:02:07 (4 seconds
	 * after the originally requested time).  If we do that successfully,
	 * then at 6:07:13.250 (5 seconds after the reference time), the
	 * Hardware Clock will update to 1:02:08 (5 seconds after the
	 * originally requested time), and all is well thereafter.
	 */

	time_t newhwtime = sethwtime;
	double target_time_tolerance_secs = 0.001;  /* initial value */
	double tolerance_incr_secs = 0.001;	    /* initial value */
	const double RTC_SET_DELAY_SECS = 0.5;	    /* 500 ms */
	const struct timeval RTC_SET_DELAY_TV = { 0, RTC_SET_DELAY_SECS * 1E6 };

	struct timeval targetsystime;
	struct timeval nowsystime;
	struct timeval prevsystime = refsystime;
	double deltavstarget;

	timeradd(&refsystime, &RTC_SET_DELAY_TV, &targetsystime);

	while (1) {
		double ticksize;

		/* FOR TESTING ONLY: inject random delays of up to 1000ms */
		if (debug >= 10) {
			int usec = random() % 1000000;
			printf(_("sleeping ~%d usec\n"), usec);
			usleep(usec);
		}

		gettimeofday(&nowsystime, NULL);
		deltavstarget = time_diff(nowsystime, targetsystime);
		ticksize = time_diff(nowsystime, prevsystime);
		prevsystime = nowsystime;

		if (ticksize < 0) {
			if (debug)
				printf(_("time jumped backward %.6f seconds "
					 "to %ld.%06d - retargeting\n"),
				       ticksize, (long)nowsystime.tv_sec,
				       (int)nowsystime.tv_usec);
			/* The retarget is handled at the end of the loop. */
		} else if (deltavstarget < 0) {
			/* deltavstarget < 0 if current time < target time */
			if (debug >= 2)
				printf(_("%ld.%06d < %ld.%06d (%.6f)\n"),
				       (long)nowsystime.tv_sec,
				       (int)nowsystime.tv_usec,
				       (long)targetsystime.tv_sec,
				       (int)targetsystime.tv_usec,
				       deltavstarget);
			continue;  /* not there yet - keep spinning */
		} else if (deltavstarget <= target_time_tolerance_secs) {
			/* Close enough to the target time; done waiting. */
			break;
		} else /* (deltavstarget > target_time_tolerance_secs) */ {
			/*
			 * We missed our window.  Increase the tolerance and
			 * aim for the next opportunity.
			 */
			if (debug)
				printf(_("missed it - %ld.%06d is too far "
					 "past %ld.%06d (%.6f > %.6f)\n"),
				       (long)nowsystime.tv_sec,
				       (int)nowsystime.tv_usec,
				       (long)targetsystime.tv_sec,
				       (int)targetsystime.tv_usec,
				       deltavstarget,
				       target_time_tolerance_secs);
			target_time_tolerance_secs += tolerance_incr_secs;
			tolerance_incr_secs *= 2;
		}

		/*
		 * Aim for the same offset (tv_usec) within the second in
		 * either the current second (if that offset hasn't arrived
		 * yet), or the next second.
		 */
		if (nowsystime.tv_usec < targetsystime.tv_usec)
			targetsystime.tv_sec = nowsystime.tv_sec;
		else
			targetsystime.tv_sec = nowsystime.tv_sec + 1;
	}

	newhwtime = sethwtime
		    + (int)(time_diff(nowsystime, refsystime)
			    - RTC_SET_DELAY_SECS /* don't count this */
			    + 0.5 /* for rounding */);
	if (debug)
		printf(_("%ld.%06d is close enough to %ld.%06d (%.6f < %.6f)\n"
			 "Set RTC to %ld (%ld + %d; refsystime = %ld.%06d)\n"),
		       (long)nowsystime.tv_sec, (int)nowsystime.tv_usec,
		       (long)targetsystime.tv_sec, (int)targetsystime.tv_usec,
		       deltavstarget, target_time_tolerance_secs,
		       (long)newhwtime, (long)sethwtime,
		       (int)(newhwtime - sethwtime),
		       (long)refsystime.tv_sec, (int)refsystime.tv_usec);

	set_hardware_clock(newhwtime, universal, testing);
}

/*
 * Put the time "systime" on standard output in display format. Except if
 * hclock_valid == false, just tell standard output that we don't know what
 * time it is.
 *
 * Include in the output the adjustment "sync_duration".
 */
static void
display_time(const bool hclock_valid, const time_t systime,
	     const double sync_duration)
{
	if (!hclock_valid)
		warnx(_
		      ("The Hardware Clock registers contain values that are "
		       "either invalid (e.g. 50th day of month) or beyond the range "
		       "we can handle (e.g. Year 2095)."));
	else {
		struct tm *lt;
		char *format = "%c";
		char ctime_now[200];

		lt = localtime(&systime);
		strftime(ctime_now, sizeof(ctime_now), format, lt);
		printf(_("%s  %.6f seconds\n"), ctime_now, -(sync_duration));
	}
}

/*
 * Interpret the value of the --date option, which is something like
 * "13:05:01". In fact, it can be any of the myriad ASCII strings that
 * specify a time which the "date" program can understand. The date option
 * value in question is our "dateopt" argument.
 *
 * The specified time is in the local time zone.
 *
 * Our output, "*time_p", is a seconds-into-epoch time.
 *
 * We use the "date" program to interpret the date string. "date" must be
 * runnable by issuing the command "date" to the /bin/sh shell. That means
 * in must be in the current PATH.
 *
 * If anything goes wrong (and many things can), we return return code 10
 * and arbitrary *time_p. Otherwise, return code is 0 and *time_p is valid.
 */
static int interpret_date_string(const char *date_opt, time_t * const time_p)
{
	FILE *date_child_fp;
	char date_resp[100];
	const char magic[] = "seconds-into-epoch=";
	char date_command[100];
	int retcode;		/* our eventual return code */
	int rc;			/* local return code */

	if (date_opt == NULL) {
		warnx(_("No --date option specified."));
		return 14;
	}

	/* prevent overflow - a security risk */
	if (strlen(date_opt) > sizeof(date_command) - 50) {
		warnx(_("--date argument too long"));
		return 13;
	}

	/* Quotes in date_opt would ruin the date command we construct. */
	if (strchr(date_opt, '"') != NULL) {
		warnx(_
		      ("The value of the --date option is not a valid date.\n"
		       "In particular, it contains quotation marks."));
		return 12;
	}

	sprintf(date_command, "date --date=\"%s\" +seconds-into-epoch=%%s",
		date_opt);
	if (debug)
		printf(_("Issuing date command: %s\n"), date_command);

	date_child_fp = popen(date_command, "r");
	if (date_child_fp == NULL) {
		warn(_("Unable to run 'date' program in /bin/sh shell. "
			    "popen() failed"));
		return 10;
	}

	if (!fgets(date_resp, sizeof(date_resp), date_child_fp))
		date_resp[0] = '\0';	/* in case fgets fails */
	if (debug)
		printf(_("response from date command = %s\n"), date_resp);
	if (strncmp(date_resp, magic, sizeof(magic) - 1) != 0) {
		warnx(_("The date command issued by %s returned "
				  "unexpected results.\n"
				  "The command was:\n  %s\n"
				  "The response was:\n  %s"),
			program_invocation_short_name, date_command, date_resp);
		retcode = 8;
	} else {
		long seconds_since_epoch;
		rc = sscanf(date_resp + sizeof(magic) - 1, "%ld",
			    &seconds_since_epoch);
		if (rc < 1) {
			warnx(_("The date command issued by %s returned "
				"something other than an integer where the "
				"converted time value was expected.\n"
				"The command was:\n  %s\n"
				"The response was:\n %s\n"),
			      program_invocation_short_name, date_command,
			      date_resp);
			retcode = 6;
		} else {
			retcode = 0;
			*time_p = seconds_since_epoch;
			if (debug)
				printf(_("date string %s equates to "
					 "%ld seconds since 1969.\n"),
				       date_opt, (long)*time_p);
		}
	}
	pclose(date_child_fp);

	return retcode;
}

/*
 * Set the System Clock to time 'newtime'.
 *
 * Also set the kernel time zone value to the value indicated by the TZ
 * environment variable and/or /usr/lib/zoneinfo/, interpreted as tzset()
 * would interpret them.
 *
 * EXCEPT: if hclock_valid is false, just issue an error message saying
 * there is no valid time in the Hardware Clock to which to set the system
 * time.
 *
 * If 'testing' is true, don't actually update anything -- just say we would
 * have.
 */
static int
set_system_clock(const bool hclock_valid, const time_t newtime,
		 const bool testing)
{
	int retcode;

	if (!hclock_valid) {
		warnx(_
		      ("The Hardware Clock does not contain a valid time, so "
		       "we cannot set the System Time from it."));
		retcode = 1;
	} else {
		struct timeval tv;
		struct tm *broken;
		int minuteswest;
		int rc;

		tv.tv_sec = newtime;
		tv.tv_usec = 0;

		broken = localtime(&newtime);
#ifdef HAVE_TM_GMTOFF
		minuteswest = -broken->tm_gmtoff / 60;	/* GNU extension */
#else
		minuteswest = timezone / 60;
		if (broken->tm_isdst)
			minuteswest -= 60;
#endif

		if (debug) {
			printf(_("Calling settimeofday:\n"));
			printf(_("\ttv.tv_sec = %ld, tv.tv_usec = %ld\n"),
			       (long)tv.tv_sec, (long)tv.tv_usec);
			printf(_("\ttz.tz_minuteswest = %d\n"), minuteswest);
		}
		if (testing) {
			printf(_
			       ("Not setting system clock because running in test mode.\n"));
			retcode = 0;
		} else {
			const struct timezone tz = { minuteswest, 0 };

			rc = settimeofday(&tv, &tz);
			if (rc) {
				if (errno == EPERM) {
					warnx(_
					      ("Must be superuser to set system clock."));
					retcode = EX_NOPERM;
				} else {
					warn(_("settimeofday() failed"));
					retcode = 1;
				}
			} else
				retcode = 0;
		}
	}
	return retcode;
}

/*
 * Reset the System Clock from local time to UTC, based on its current value
 * and the timezone unless universal is TRUE.
 *
 * Also set the kernel time zone value to the value indicated by the TZ
 * environment variable and/or /usr/lib/zoneinfo/, interpreted as tzset()
 * would interpret them.
 *
 * If 'testing' is true, don't actually update anything -- just say we would
 * have.
 */
static int set_system_clock_timezone(const bool universal, const bool testing)
{
	int retcode;
	struct timeval tv;
	struct tm *broken;
	int minuteswest;

	gettimeofday(&tv, NULL);
	if (debug) {
		struct tm broken_time;
		char ctime_now[200];

		broken_time = *gmtime(&tv.tv_sec);
		strftime(ctime_now, sizeof(ctime_now), "%Y/%m/%d %H:%M:%S",
			 &broken_time);
		printf(_("Current system time: %ld = %s\n"), (long)tv.tv_sec,
		       ctime_now);
	}

	broken = localtime(&tv.tv_sec);
#ifdef HAVE_TM_GMTOFF
	minuteswest = -broken->tm_gmtoff / 60;	/* GNU extension */
#else
	minuteswest = timezone / 60;
	if (broken->tm_isdst)
		minuteswest -= 60;
#endif

	if (debug) {
		struct tm broken_time;
		char ctime_now[200];

		gettimeofday(&tv, NULL);
		if (!universal)
			tv.tv_sec += minuteswest * 60;

		broken_time = *gmtime(&tv.tv_sec);
		strftime(ctime_now, sizeof(ctime_now), "%Y/%m/%d %H:%M:%S",
			 &broken_time);

		printf(_("Calling settimeofday:\n"));
		printf(_("\tUTC: %s\n"), ctime_now);
		printf(_("\ttv.tv_sec = %ld, tv.tv_usec = %ld\n"),
		       (long)tv.tv_sec, (long)tv.tv_usec);
		printf(_("\ttz.tz_minuteswest = %d\n"), minuteswest);
	}
	if (testing) {
		printf(_
		       ("Not setting system clock because running in test mode.\n"));
		retcode = 0;
	} else {
		const struct timezone tz_utc = { 0, 0 };
		const struct timezone tz = { minuteswest, 0 };
		const struct timeval *tv_null = NULL;
		int rc = 0;

		/* The first call to settimeofday after boot will assume the systemtime
		 * is in localtime, and adjust it according to the given timezone to
		 * compensate. If the systemtime is in fact in UTC, then this is wrong
		 * so we first do a dummy call to make sure the time is not shifted.
		 */
		if (universal)
			rc = settimeofday(tv_null, &tz_utc);

		/* Now we set the real timezone. Due to the above dummy call, this will
		 * only warp the systemtime if the RTC is not in UTC. */
		if (!rc)
			rc = settimeofday(tv_null, &tz);

		if (rc) {
			if (errno == EPERM) {
				warnx(_
				      ("Must be superuser to set system clock."));
				retcode = EX_NOPERM;
			} else {
				warn(_("settimeofday() failed"));
				retcode = 1;
			}
		} else
			retcode = 0;
	}
	return retcode;
}

/*
 * Update the drift factor in <*adjtime_p> to reflect the fact that the
 * Hardware Clock was calibrated to <nowtime> and before that was set to
 * <hclocktime>.
 *
 * We record in the adjtime file the time at which we last calibrated the
 * clock so we can compute the drift rate each time we calibrate.
 *
 * EXCEPT: if <hclock_valid> is false, assume Hardware Clock was not set
 * before to anything meaningful and regular adjustments have not been done,
 * so don't adjust the drift factor.
 */
static void
adjust_drift_factor(struct adjtime *adjtime_p,
		    const time_t nowtime,
		    const bool hclock_valid,
		    const time_t hclocktime, const double sync_delay)
{
	if (!hclock_valid) {
		if (debug)
			printf(_("Not adjusting drift factor because the "
				 "Hardware Clock previously contained "
				 "garbage.\n"));
	} else if (adjtime_p->last_calib_time == 0) {
		if (debug)
			printf(_("Not adjusting drift factor because last "
				 "calibration time is zero,\n"
				 "so history is bad and calibration startover "
				 "is necessary.\n"));
	} else if ((hclocktime - adjtime_p->last_calib_time) < 24 * 60 * 60) {
		if (debug)
			printf(_("Not adjusting drift factor because it has "
				 "been less than a day since the last "
				 "calibration.\n"));
	} else if (adjtime_p->last_calib_time != 0) {
		/*
		 * At adjustment time we adjust the hardware clock according
		 * to the contents of /etc/adjtime.
		 *
		 * At calibration time we set the hardware clock and update
		 * /etc/adjtime, that is, for each calibration (except the
		 * first) we also do an adjustment.
		 *
		 * We are now at calibration time.
		 *
		 * Let us do computation in doubles. (Floats almost suffice,
		 * but 195 days + 1 second equals 195 days in floats.)
		 */
		const double sec_per_day = 24.0 * 60.0 * 60.0;
		double atime_per_htime;
		double adj_days, cal_days;
		double exp_drift, unc_drift;
		double factor_adjust;
		double drift_factor;

		/* Adjusted time units per hardware time unit */
		atime_per_htime = 1.0 + adjtime_p->drift_factor / sec_per_day;

		/* Days since last adjustment (in hardware clock time) */
		adj_days = (double)(hclocktime - adjtime_p->last_adj_time)
		    / sec_per_day;

		/* Expected drift (sec) since last adjustment */
		exp_drift = adj_days * adjtime_p->drift_factor
		    + adjtime_p->not_adjusted;

		/* Uncorrected drift (sec) since last calibration */
		unc_drift = (double)(nowtime - hclocktime)
		    + sync_delay - exp_drift;

		/* Days since last calibration (in hardware clock time) */
		cal_days = ((double)(adjtime_p->last_adj_time
				     - adjtime_p->last_calib_time)
			    + adjtime_p->not_adjusted)
		    / (sec_per_day * atime_per_htime) + adj_days;

		/* Amount to add to previous drift factor */
		factor_adjust = unc_drift / cal_days;

		/* New drift factor */
		drift_factor = adjtime_p->drift_factor + factor_adjust;

		if (fabs(drift_factor) > MAX_DRIFT) {
			if (debug)
				printf(_("Clock drift factor was calculated as "
					 "%f seconds/day.\n"
					 "It is far too much. Resetting to zero.\n"),
				       drift_factor);
			drift_factor = 0;
		} else {
			if (debug)
				printf(_("Clock drifted %.1f seconds in the past "
					 "%d seconds in spite of a drift factor of "
					 "%f seconds/day.\n"
					 "Adjusting drift factor by %f seconds/day\n"),
				       unc_drift,
				       (int)(nowtime - adjtime_p->last_calib_time),
				       adjtime_p->drift_factor, factor_adjust);
		}

		adjtime_p->drift_factor = drift_factor;
	}
	adjtime_p->last_calib_time = nowtime;

	adjtime_p->last_adj_time = nowtime;

	adjtime_p->not_adjusted = 0;

	adjtime_p->dirty = TRUE;
}

/*
 * Do the drift adjustment calculation.
 *
 * The way we have to set the clock, we need the adjustment in two parts:
 *
 *	1) an integer number of seconds (return as *adjustment_p)
 *	2) a positive fraction of a second (less than 1) (return as *retro_p)
 *
 * The sum of these two values is the adjustment needed. Positive means to
 * advance the clock or insert seconds. Negative means to retard the clock
 * or remove seconds.
 */
static void
calculate_adjustment(const double factor,
		     const time_t last_time,
		     const double not_adjusted,
		     const time_t systime, int *adjustment_p, double *retro_p)
{
	double exact_adjustment;

	exact_adjustment =
	    ((double)(systime - last_time)) * factor / (24 * 60 * 60)
	    + not_adjusted;
	*adjustment_p = FLOOR(exact_adjustment);

	*retro_p = exact_adjustment - (double)*adjustment_p;
	if (debug) {
		printf(P_("Time since last adjustment is %d second\n",
			"Time since last adjustment is %d seconds\n",
		       (int)(systime - last_time)),
		       (int)(systime - last_time));
		printf(P_("Need to insert %d second and refer time back "
			 "%.6f seconds ago\n",
			 "Need to insert %d seconds and refer time back "
			 "%.6f seconds ago\n", *adjustment_p),
			 *adjustment_p, *retro_p);
	}
}

/*
 * Write the contents of the <adjtime> structure to its disk file.
 *
 * But if the contents are clean (unchanged since read from disk), don't
 * bother.
 */
static void save_adjtime(const struct adjtime adjtime, const bool testing)
{
	char newfile[412];	/* Stuff to write to disk file */

	if (adjtime.dirty) {
		/*
		 * snprintf is not always available, but this is safe as
		 * long as libc does not use more than 100 positions for %ld
		 * or %f
		 */
		sprintf(newfile, "%f %ld %f\n%ld\n%s\n",
			adjtime.drift_factor,
			(long)adjtime.last_adj_time,
			adjtime.not_adjusted,
			(long)adjtime.last_calib_time,
			(adjtime.local_utc == UTC) ? "UTC" : "LOCAL");

		if (testing) {
			printf(_
			       ("Not updating adjtime file because of testing mode.\n"));
			printf(_("Would have written the following to %s:\n%s"),
			       adj_file_name, newfile);
		} else {
			FILE *adjfile;
			int err = 0;

			adjfile = fopen(adj_file_name, "w");
			if (adjfile == NULL) {
				warn(_
				     ("Could not open file with the clock adjustment parameters "
				      "in it (%s) for writing"), adj_file_name);
				err = 1;
			} else {
				if (fputs(newfile, adjfile) < 0) {
					warn(_
					     ("Could not update file with the clock adjustment "
					      "parameters (%s) in it"),
					     adj_file_name);
					err = 1;
				}
				if (close_stream(adjfile) != 0) {
					warn(_
					     ("Could not update file with the clock adjustment "
					      "parameters (%s) in it"),
					     adj_file_name);
					err = 1;
				}
			}
			if (err)
				warnx(_
				      ("Drift adjustment parameters not updated."));
		}
	}
}

/*
 * Do the adjustment requested, by 1) setting the Hardware Clock (if
 * necessary), and 2) updating the last-adjusted time in the adjtime
 * structure.
 *
 * Do not update anything if the Hardware Clock does not currently present a
 * valid time.
 *
 * Arguments <factor> and <last_time> are current values from the adjtime
 * file.
 *
 * <hclock_valid> means the Hardware Clock contains a valid time, and that
 * time is <hclocktime>.
 *
 * <read_time> is the current system time (to be precise, it is the system
 * time at the time <hclocktime> was read, which due to computational delay
 * could be a short time ago).
 *
 * <universal>: the Hardware Clock is kept in UTC.
 *
 * <testing>:  We are running in test mode (no updating of clock).
 *
 * We do not bother to update the clock if the adjustment would be less than
 * one second. This is to avoid cumulative error and needless CPU hogging
 * (remember we use an infinite loop for some timing) if the user runs us
 * frequently.
 */
static void
do_adjustment(struct adjtime *adjtime_p,
	      const bool hclock_valid, const time_t hclocktime,
	      const struct timeval read_time,
	      const bool universal, const bool testing)
{
	if (!hclock_valid) {
		warnx(_("The Hardware Clock does not contain a valid time, "
			"so we cannot adjust it."));
		adjtime_p->last_calib_time = 0;	/* calibration startover is required */
		adjtime_p->last_adj_time = 0;
		adjtime_p->not_adjusted = 0;
		adjtime_p->dirty = TRUE;
	} else if (adjtime_p->last_adj_time == 0) {
		if (debug)
			printf(_("Not setting clock because last adjustment time is zero, "
				 "so history is bad.\n"));
	} else if (fabs(adjtime_p->drift_factor) > MAX_DRIFT) {
		if (debug)
			printf(_("Not setting clock because drift factor %f is far too high.\n"),
				adjtime_p->drift_factor);
	} else {
		int adjustment;
		/* Number of seconds we must insert in the Hardware Clock */
		double retro;
		/*
		 * Fraction of second we have to remove from clock after
		 * inserting <adjustment> whole seconds.
		 */
		calculate_adjustment(adjtime_p->drift_factor,
				     adjtime_p->last_adj_time,
				     adjtime_p->not_adjusted,
				     hclocktime, &adjustment, &retro);
		if (adjustment > 0 || adjustment < -1) {
			set_hardware_clock_exact(hclocktime + adjustment,
						 time_inc(read_time, -retro),
						 universal, testing);
			adjtime_p->last_adj_time = hclocktime + adjustment;
			adjtime_p->not_adjusted = 0;
			adjtime_p->dirty = TRUE;
		} else if (debug)
			printf(_("Needed adjustment is less than one second, "
				 "so not setting clock.\n"));
	}
}

static void determine_clock_access_method(const bool user_requests_ISA)
{
	ur = NULL;

	if (user_requests_ISA)
		ur = probe_for_cmos_clock();

#ifdef __linux__
	if (!ur)
		ur = probe_for_rtc_clock();
#endif

	if (!ur)
		ur = probe_for_kd_clock();

  /*
   * This final clause is a really bad idea on x86/AT PCs. You run the
   * risk of a race condition with another copy of hwclock
   * that already has /dev/rtc open. The fallback case on
   * x86 is to then raise I/O priviledge level and access
   * the RTC CMOS directly using I/O instructions. Simultaneous
   * access like that can really hose the RTC.
   */
#if !defined(__i386__)
	if (!ur && !user_requests_ISA)
		ur = probe_for_cmos_clock();
#endif

	if (debug) {
		if (ur)
			puts(_(ur->interface_name));
		else
			printf(_("No usable clock interface found.\n"));
	}
}

/*
 * Do all the normal work of hwclock - read, set clock, etc.
 *
 * Issue output to stdout and error message to stderr where appropriate.
 *
 * Return rc == 0 if everything went OK, rc != 0 if not.
 */
static int
manipulate_clock(const bool show, const bool adjust, const bool noadjfile,
		 const bool set, const time_t set_time,
		 const bool hctosys, const bool systohc, const bool systz,
		 const struct timeval startup_time,
		 const bool utc, const bool local_opt,
		 const bool testing, const bool predict)
{
	/* Contents of the adjtime file, or what they should be. */
	struct adjtime adjtime;
	bool universal;
	/* Set if user lacks necessary authorization to access the clock */
	bool no_auth;
	/* The time at which we read the Hardware Clock */
	struct timeval read_time;
	/*
	 * The Hardware Clock gives us a valid time, or at
	 * least something close enough to fool mktime().
	 */
	bool hclock_valid = FALSE;
	/*
	 * The time the hardware clock had just after we
	 * synchronized to its next clock tick when we
	 * started up. Defined only if hclock_valid is true.
	 */
	time_t hclocktime = 0;
	/* local return code */
	int rc = 0;

	if (!systz && !predict) {
		no_auth = ur->get_permissions();
		if (no_auth)
			return EX_NOPERM;
	}

	if (!noadjfile
	    && (adjust || set || systohc || (!utc && !local_opt) || predict)) {
		rc = read_adjtime(&adjtime);
		if (rc)
			return rc;
	} else {
		/* A little trick to avoid reading the file if we don't have to */
		adjtime.dirty = FALSE;
	}

	universal = hw_clock_is_utc(utc, local_opt, adjtime);

	if ((set || systohc || adjust) &&
	    (adjtime.local_utc == UTC) != universal) {
		adjtime.local_utc = universal ? UTC : LOCAL;
		adjtime.dirty = TRUE;
	}

	if (show || adjust || hctosys || (!noadjfile && !systz && !predict)) {
		/* data from HW-clock are required */
		rc = synchronize_to_clock_tick();

		/*
		 * 2 = synchronization timeout. We don't
		 * error out if the user is attempting to
		 * set the RTC - the RTC could be
		 * functioning but contain invalid time data
		 * so we still want to allow a user to set
		 * the RTC time.
		 */
		if (rc && rc != 2 && !set && !systohc)
			return EX_IOERR;
		gettimeofday(&read_time, NULL);

		/*
		 * If we can't synchronize to a clock tick,
		 * we likely can't read from the RTC so
		 * don't bother reading it again.
		 */
		if (!rc) {
			rc = read_hardware_clock(universal,
						 &hclock_valid, &hclocktime);
			if (rc && !set && !systohc)
				return EX_IOERR;
		}
	}

	if (show) {
		display_time(hclock_valid, hclocktime,
			     time_diff(read_time, startup_time));
	} else if (set) {
		set_hardware_clock_exact(set_time, startup_time,
					 universal, testing);
		if (!noadjfile)
			adjust_drift_factor(&adjtime, set_time,
					    hclock_valid,
					    hclocktime,
					    time_diff(read_time, startup_time));
	} else if (adjust) {
		do_adjustment(&adjtime, hclock_valid,
			      hclocktime, read_time, universal, testing);
	} else if (systohc) {
		struct timeval nowtime, reftime;
		/*
		 * We can only set_hardware_clock_exact to a
		 * whole seconds time, so we set it with
		 * reference to the most recent whole
		 * seconds time.
		 */
		gettimeofday(&nowtime, NULL);
		reftime.tv_sec = nowtime.tv_sec;
		reftime.tv_usec = 0;
		set_hardware_clock_exact((time_t)
					 reftime.tv_sec,
					 reftime, universal, testing);
		if (!noadjfile)
			adjust_drift_factor(&adjtime, (time_t)
					    reftime.tv_sec,
					    hclock_valid, hclocktime, (double)
					    read_time.tv_usec / 1E6);
	} else if (hctosys) {
		rc = set_system_clock(hclock_valid, hclocktime, testing);
		if (rc) {
			printf(_("Unable to set system clock.\n"));
			return rc;
		}
	} else if (systz) {
		rc = set_system_clock_timezone(universal, testing);
		if (rc) {
			printf(_("Unable to set system clock.\n"));
			return rc;
		}
	} else if (predict) {
		int adjustment;
		double retro;

		calculate_adjustment(adjtime.drift_factor,
				     adjtime.last_adj_time,
				     adjtime.not_adjusted,
				     set_time, &adjustment, &retro);
		if (debug) {
			printf(_
			       ("At %ld seconds after 1969, RTC is predicted to read %ld seconds after 1969.\n"),
			       set_time, set_time + adjustment);
		}
		display_time(TRUE, set_time + adjustment, -retro);
	}
	if (!noadjfile)
		save_adjtime(adjtime, testing);
	return 0;
}

/*
 * Get or set the Hardware Clock epoch value in the kernel, as appropriate.
 * <getepoch>, <setepoch>, and <epoch> are hwclock invocation options.
 *
 * <epoch> == -1 if the user did not specify an "epoch" option.
 */
#ifdef __linux__
/*
 * Maintenance note: This should work on non-Alpha machines, but the
 * evidence today (98.03.04) indicates that the kernel only keeps the epoch
 * value on Alphas. If that is ever fixed, this function should be changed.
 */
# ifndef __alpha__
static void
manipulate_epoch(const bool getepoch __attribute__ ((__unused__)),
		 const bool setepoch __attribute__ ((__unused__)),
		 const unsigned long epoch_opt __attribute__ ((__unused__)),
		 const bool testing __attribute__ ((__unused__)))
{
	warnx(_("The kernel keeps an epoch value for the Hardware Clock "
		"only on an Alpha machine.\nThis copy of hwclock was built for "
		"a machine other than Alpha\n(and thus is presumably not running "
		"on an Alpha now).  No action taken."));
}
# else
static void
manipulate_epoch(const bool getepoch,
		 const bool setepoch,
		 const unsigned long epoch_opt,
		 const bool testing)
{
	if (getepoch) {
		unsigned long epoch;

		if (get_epoch_rtc(&epoch, 0))
			warnx(_
			      ("Unable to get the epoch value from the kernel."));
		else
			printf(_("Kernel is assuming an epoch value of %lu\n"),
			       epoch);
	} else if (setepoch) {
		if (epoch_opt == -1)
			warnx(_
			      ("To set the epoch value, you must use the 'epoch' "
			       "option to tell to what value to set it."));
		else if (testing)
			printf(_
			       ("Not setting the epoch to %d - testing only.\n"),
			       epoch_opt);
		else if (set_epoch_rtc(epoch_opt))
			printf(_
			       ("Unable to set the epoch value in the kernel.\n"));
	}
}
# endif		/* __alpha__ */
#endif		/* __linux__ */

/*
 * Compare the system and CMOS time and output the drift
 * in 10 second intervals.
 */
static int compare_clock (const bool utc, const bool local_opt)
{
	struct tm tm;
	struct timeval tv;
	struct adjtime adjtime;
	double time1_sys, time2_sys;
	time_t time1_hw, time2_hw;
	bool hclock_valid = FALSE, universal, first_pass = TRUE;
	int rc;

	if (ur->get_permissions())
		return EX_NOPERM;

	/* dummy call for increased precision */
	gettimeofday(&tv, NULL);

	rc = read_adjtime(&adjtime);
	if (rc)
		return rc;

	universal = hw_clock_is_utc(utc, local_opt, adjtime);

	synchronize_to_clock_tick();
	ur->read_hardware_clock(&tm);

	gettimeofday(&tv, NULL);
	time1_sys = tv.tv_sec + tv.tv_usec / 1000000.0;

	mktime_tz(tm, universal, &hclock_valid, &time1_hw);

	while (1) {
		double res;

		synchronize_to_clock_tick();
		ur->read_hardware_clock(&tm);

		gettimeofday(&tv, NULL);
		time2_sys = tv.tv_sec + tv.tv_usec / 1000000.0;

		mktime_tz(tm, universal, &hclock_valid, &time2_hw);

		res = (((double) time1_hw - time1_sys) -
		       ((double) time2_hw - time2_sys))
		      / (double) (time2_hw - time1_hw);

		if (!first_pass)
			printf("%10.0f   %10.6f   %15.0f   %4.0f\n",
				(double) time2_hw, time2_sys, res * 1e6, res *1e4);
		else {
			first_pass = FALSE;
			printf("hw-time      system-time         freq-offset-ppm   tick\n");
			printf("%10.0f   %10.6f\n", (double) time1_hw, time1_sys);
		}
		sleep(10);
	}

	return 0;
}

static void out_version(void)
{
	printf(_("%s from %s\n"), program_invocation_short_name, PACKAGE_STRING);
}

/*
 * usage - Output (error and) usage information
 *
 * This function is called both directly from main to show usage information
 * and as fatal function from shhopt if some argument is not understood. In
 * case of normal usage info FMT should be NULL. In that case the info is
 * printed to stdout. If FMT is given usage will act like fprintf( stderr,
 * fmt, ... ), show a usage information and terminate the program
 * afterwards.
 */
static void usage(const char *fmt, ...)
{
	FILE *usageto;
	va_list ap;

	usageto = fmt ? stderr : stdout;

	fputs(_("\nUsage:\n"), usageto);
	fputs(_(" hwclock [function] [option...]\n"), usageto);

	fputs(_("\nFunctions:\n"), usageto);
	fputs(_(" -h, --help           show this help text and exit\n"
		" -r, --show           read hardware clock and print result\n"
		"     --set            set the RTC to the time given with --date\n"), usageto);
	fputs(_(" -s, --hctosys        set the system time from the hardware clock\n"
		" -w, --systohc        set the hardware clock from the current system time\n"
		"     --systz          set the system time based on the current timezone\n"
		"     --adjust         adjust the RTC to account for systematic drift since\n"
		"                        the clock was last set or adjusted\n"), usageto);
	fputs(_(" -c, --compare        periodically compare the system clock with the CMOS clock\n"), usageto);
#ifdef __linux__
	fputs(_("     --getepoch       print out the kernel's hardware clock epoch value\n"
		"     --setepoch       set the kernel's hardware clock epoch value to the \n"
		"                        value given with --epoch\n"), usageto);
#endif
	fputs(_("     --predict        predict RTC reading at time given with --date\n"
		" -V, --version        display version information and exit\n"), usageto);

	fputs(_("\nOptions:\n"), usageto);
	fputs(_(" -u, --utc            the hardware clock is kept in UTC\n"
		"     --localtime      the hardware clock is kept in local time\n"), usageto);
#ifdef __linux__
	fputs(_(" -f, --rtc <file>     special /dev/... file to use instead of default\n"), usageto);
#endif
	fprintf(usageto, _(
		"     --directisa      access the ISA bus directly instead of %s\n"
		"     --badyear        ignore RTC's year because the BIOS is broken\n"
		"     --date <time>    specifies the time to which to set the hardware clock\n"
		"     --epoch <year>   specifies the year which is the beginning of the\n"
		"                        hardware clock's epoch value\n"), _PATH_RTC_DEV);
	fprintf(usageto, _(
		"     --noadjfile      do not access %s; this requires the use of\n"
		"                        either --utc or --localtime\n"
		"     --adjfile <file> specifies the path to the adjust file;\n"
		"                        the default is %s\n"), _PATH_ADJTIME, _PATH_ADJTIME);
	fputs(_("     --test           do not update anything, just show what would happen\n"
		" -D, --debug          debugging mode\n" "\n"), usageto);
#ifdef __alpha__
	fputs(_(" -J|--jensen, -A|--arc, -S|--srm, -F|--funky-toy\n"
		"      tell hwclock the type of Alpha you have (see hwclock(8))\n"
		 "\n"), usageto);
#endif

	if (fmt) {
		va_start(ap, fmt);
		vfprintf(usageto, fmt, ap);
		va_end(ap);
	}

	fflush(usageto);
	hwclock_exit(fmt ? EX_USAGE : EX_OK);
}

/*
 * Returns:
 *  EX_USAGE: bad invocation
 *  EX_NOPERM: no permission
 *  EX_OSFILE: cannot open /dev/rtc or /etc/adjtime
 *  EX_IOERR: ioctl error getting or setting the time
 *  0: OK (or not)
 *  1: failure
 */
int main(int argc, char **argv)
{
	struct timeval startup_time;
	/*
	 * The time we started up, in seconds into the epoch, including
	 * fractions.
	 */
	time_t set_time = 0;	/* Time to which user said to set Hardware Clock */

	bool permitted;		/* User is permitted to do the function */
	int rc, c;

	/* Variables set by various options; show may also be set later */
	/* The options debug, badyear and epoch_option are global */
	bool show, set, systohc, hctosys, systz, adjust, getepoch, setepoch,
	    predict, compare;
	bool utc, testing, local_opt, noadjfile, directisa;
	char *date_opt;
#ifdef __alpha__
	bool ARCconsole, Jensen, SRM, funky_toy;
#endif
	/* Long only options. */
	enum {
		OPT_ADJFILE = CHAR_MAX + 1,
		OPT_BADYEAR,
		OPT_DATE,
		OPT_DIRECTISA,
		OPT_EPOCH,
		OPT_GETEPOCH,
		OPT_LOCALTIME,
		OPT_NOADJFILE,
		OPT_PREDICT_HC,
		OPT_SET,
		OPT_SETEPOCH,
		OPT_SYSTZ,
		OPT_TEST
	};

	static const struct option longopts[] = {
		{"adjust",	0, 0, 'a'},
		{"compare",	0, 0, 'c'},
		{"help",	0, 0, 'h'},
		{"show",	0, 0, 'r'},
		{"hctosys",	0, 0, 's'},
		{"utc",		0, 0, 'u'},
		{"version",	0, 0, 'v'},
		{"systohc",	0, 0, 'w'},
		{"debug",	0, 0, 'D'},
#ifdef __alpha__
		{"ARC",		0, 0, 'A'},
		{"arc",		0, 0, 'A'},
		{"Jensen",	0, 0, 'J'},
		{"jensen",	0, 0, 'J'},
		{"SRM",		0, 0, 'S'},
		{"srm",		0, 0, 'S'},
		{"funky-toy",	0, 0, 'F'},
#endif
		{"set",		0, 0, OPT_SET},
#ifdef __linux__
		{"getepoch",	0, 0, OPT_GETEPOCH},
		{"setepoch",	0, 0, OPT_SETEPOCH},
#endif
		{"noadjfile",	0, 0, OPT_NOADJFILE},
		{"localtime",	0, 0, OPT_LOCALTIME},
		{"badyear",	0, 0, OPT_BADYEAR},
		{"directisa",	0, 0, OPT_DIRECTISA},
		{"test",	0, 0, OPT_TEST},
		{"date",	1, 0, OPT_DATE},
		{"epoch",	1, 0, OPT_EPOCH},
#ifdef __linux__
		{"rtc",		1, 0, 'f'},
#endif
		{"adjfile",	1, 0, OPT_ADJFILE},
		{"systz",	0, 0, OPT_SYSTZ},
		{"predict-hc",	0, 0, OPT_PREDICT_HC},
		{NULL,		0, NULL, 0}
	};

	static const ul_excl_t excl[] = {	/* rows and cols in in ASCII order */
		{ 'a','r','s','w',
		  OPT_GETEPOCH,	OPT_PREDICT_HC, OPT_SET,
		  OPT_SETEPOCH, OPT_SYSTZ },
		{ 'u', OPT_LOCALTIME},
		{ OPT_ADJFILE, OPT_NOADJFILE },
		{ 0 }
	};
	int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;

	/* Remember what time we were invoked */
	gettimeofday(&startup_time, NULL);

#ifdef HAVE_LIBAUDIT
	hwaudit_fd = audit_open();
	if (hwaudit_fd < 0 && !(errno == EINVAL || errno == EPROTONOSUPPORT ||
				errno == EAFNOSUPPORT)) {
		/*
		 * You get these error codes only when the kernel doesn't
		 * have audit compiled in.
		 */
		warnx(_("Unable to connect to audit system"));
		return EX_NOPERM;
	}
#endif
	setlocale(LC_ALL, "");
#ifdef LC_NUMERIC
	/*
	 * We need LC_CTYPE and LC_TIME and LC_MESSAGES, but must avoid
	 * LC_NUMERIC since it gives problems when we write to /etc/adjtime.
	 *  - gqueri@mail.dotcom.fr
	 */
	setlocale(LC_NUMERIC, "C");
#endif
	bindtextdomain(PACKAGE, LOCALEDIR);
	textdomain(PACKAGE);
	atexit(close_stdout);

	/* Set option defaults */
	show = set = systohc = hctosys = systz = adjust = noadjfile = predict =
	    compare = FALSE;
	getepoch = setepoch = utc = local_opt = directisa = testing = debug = FALSE;
#ifdef __alpha__
	ARCconsole = Jensen = SRM = funky_toy = badyear = FALSE;
#endif
	date_opt = NULL;

	while ((c = getopt_long(argc, argv,
				"?hvVDacrsuwAJSFf:", longopts, NULL)) != -1) {

		err_exclusive_options(c, longopts, excl, excl_st);

		switch (c) {
		case 'D':
			++debug;
			break;
		case 'a':
			adjust = TRUE;
			break;
		case 'c':
			compare = TRUE;
			break;
		case 'r':
			show = TRUE;
			break;
		case 's':
			hctosys = TRUE;
			break;
		case 'u':
			utc = TRUE;
			break;
		case 'w':
			systohc = TRUE;
			break;
#ifdef __alpha__
		case 'A':
			ARCconsole = TRUE;
			break;
		case 'J':
			Jensen = TRUE;
			break;
		case 'S':
			SRM = TRUE;
			break;
		case 'F':
			funky_toy = TRUE;
			break;
#endif
		case OPT_SET:
			set = TRUE;
			break;
#ifdef __linux__
		case OPT_GETEPOCH:
			getepoch = TRUE;
			break;
		case OPT_SETEPOCH:
			setepoch = TRUE;
			break;
#endif
		case OPT_NOADJFILE:
			noadjfile = TRUE;
			break;
		case OPT_LOCALTIME:
			local_opt = TRUE;	/* --localtime */
			break;
		case OPT_BADYEAR:
			badyear = TRUE;
			break;
		case OPT_DIRECTISA:
			directisa = TRUE;
			break;
		case OPT_TEST:
			testing = TRUE;		/* --test */
			break;
		case OPT_DATE:
			date_opt = optarg;	/* --date */
			break;
		case OPT_EPOCH:
			epoch_option =		/* --epoch */
			    strtoul_or_err(optarg, _("invalid epoch argument"));
			break;
		case OPT_ADJFILE:
			adj_file_name = optarg;	/* --adjfile */
			break;
		case OPT_SYSTZ:
			systz = TRUE;		/* --systz */
			break;
		case OPT_PREDICT_HC:
			predict = TRUE;		/* --predict-hc */
			break;
#ifdef __linux__
		case 'f':
			rtc_dev_name = optarg;	/* --rtc */
			break;
#endif
		case 'v':			/* --version */
		case 'V':
			out_version();
			return 0;
		case 'h':			/* --help */
		case '?':
		default:
			usage(NULL);
		}
	}

	argc -= optind;
	argv += optind;

#ifdef HAVE_LIBAUDIT
	if (testing != TRUE) {
		if (adjust == TRUE || hctosys == TRUE || systohc == TRUE ||
		    set == TRUE || setepoch == TRUE) {
			hwaudit_on = TRUE;
		}
	}
#endif
	if (argc > 0) {
		usage(_("%s takes no non-option arguments.  "
			"You supplied %d.\n"), program_invocation_short_name,
		      argc);
	}

	if (!adj_file_name)
		adj_file_name = _PATH_ADJTIME;

	if (noadjfile && !utc && !local_opt) {
		warnx(_("With --noadjfile, you must specify "
			"either --utc or --localtime"));
		hwclock_exit(EX_USAGE);
	}
#ifdef __alpha__
	set_cmos_epoch(ARCconsole, SRM);
	set_cmos_access(Jensen, funky_toy);
#endif

	if (set || predict) {
		rc = interpret_date_string(date_opt, &set_time);
		/* (time-consuming) */
		if (rc != 0) {
			warnx(_("No usable set-to time.  "
				"Cannot set clock."));
			hwclock_exit(EX_USAGE);
		}
	}

	if (!(show | set | systohc | hctosys | systz | adjust | getepoch
	      | setepoch | predict | compare))
		show = 1;	/* default to show */

	if (getuid() == 0)
		permitted = TRUE;
	else {
		/* program is designed to run setuid (in some situations) */
		if (set || systohc || adjust) {
			warnx(_("Sorry, only the superuser can change "
				"the Hardware Clock."));
			permitted = FALSE;
		} else if (systz || hctosys) {
			warnx(_("Sorry, only the superuser can change "
				"the System Clock."));
			permitted = FALSE;
		} else if (setepoch) {
			warnx(_("Sorry, only the superuser can change the "
				"Hardware Clock epoch in the kernel."));
			permitted = FALSE;
		} else
			permitted = TRUE;
	}

	if (!permitted)
		hwclock_exit(EX_NOPERM);

#ifdef __linux__
	if (getepoch || setepoch) {
		manipulate_epoch(getepoch, setepoch, epoch_option, testing);
		hwclock_exit(EX_OK);
	}
#endif

	if (debug)
		out_version();

	if (!systz && !predict) {
		determine_clock_access_method(directisa);
		if (!ur) {
			warnx(_("Cannot access the Hardware Clock via "
				"any known method."));
			if (!debug)
				warnx(_("Use the --debug option to see the "
					"details of our search for an access "
					"method."));
			hwclock_exit(EX_SOFTWARE);
		}
	}

	if (compare) {
		if (compare_clock(utc, local_opt))
			hwclock_exit(EX_NOPERM);

		rc = EX_OK;
	} else
		rc = manipulate_clock(show, adjust, noadjfile, set, set_time,
			      hctosys, systohc, systz, startup_time, utc,
			      local_opt, testing, predict);

	hwclock_exit(rc);
	return rc;		/* Not reached */
}

#ifdef HAVE_LIBAUDIT
/*
 * hwclock_exit calls either this function or plain exit depending
 * HAVE_LIBAUDIT see also clock.h
 */
void __attribute__((__noreturn__)) hwaudit_exit(int status)
{
	if (hwaudit_on) {
		audit_log_user_message(hwaudit_fd, AUDIT_USYS_CONFIG,
				       "changing system time", NULL, NULL, NULL,
				       status ? 0 : 1);
		close(hwaudit_fd);
	}
	exit(status);
}
#endif

/*
 * History of this program:
 *
 * 98.08.12 BJH Version 2.4
 *
 * Don't use century byte from Hardware Clock. Add comments telling why.
 *
 * 98.06.20 BJH Version 2.3.
 *
 * Make --hctosys set the kernel timezone from TZ environment variable
 * and/or /usr/lib/zoneinfo. From Klaus Ripke (klaus@ripke.com).
 *
 * 98.03.05 BJH. Version 2.2.
 *
 * Add --getepoch and --setepoch.
 *
 * Fix some word length things so it works on Alpha.
 *
 * Make it work when /dev/rtc doesn't have the interrupt functions. In this
 * case, busywait for the top of a second instead of blocking and waiting
 * for the update complete interrupt.
 *
 * Fix a bunch of bugs too numerous to mention.
 *
 * 97.06.01: BJH. Version 2.1. Read and write the century byte (Byte 50) of
 * the ISA Hardware Clock when using direct ISA I/O. Problem discovered by
 * job (jei@iclnl.icl.nl).
 *
 * Use the rtc clock access method in preference to the KDGHWCLK method.
 * Problem discovered by Andreas Schwab <schwab@LS5.informatik.uni-dortmund.de>.
 *
 * November 1996: Version 2.0.1. Modifications by Nicolai Langfeldt
 * (janl@math.uio.no) to make it compile on linux 1.2 machines as well as
 * more recent versions of the kernel. Introduced the NO_CLOCK access method
 * and wrote feature test code to detect absence of rtc headers.
 *
 ***************************************************************************
 * Maintenance notes
 *
 * To compile this, you must use GNU compiler optimization (-O option) in
 * order to make the "extern inline" functions from asm/io.h (inb(), etc.)
 * compile. If you don't optimize, which means the compiler will generate no
 * inline functions, the references to these functions in this program will
 * be compiled as external references. Since you probably won't be linking
 * with any functions by these names, you will have unresolved external
 * references when you link.
 *
 * The program is designed to run setuid superuser, since we need to be able
 * to do direct I/O. (More to the point: we need permission to execute the
 * iopl() system call). (However, if you use one of the methods other than
 * direct ISA I/O to access the clock, no setuid is required).
 *
 * Here's some info on how we must deal with the time that elapses while
 * this program runs: There are two major delays as we run:
 *
 *	1) Waiting up to 1 second for a transition of the Hardware Clock so
 *	   we are synchronized to the Hardware Clock.
 *	2) Running the "date" program to interpret the value of our --date
 *	   option.
 *
 * Reading the /etc/adjtime file is the next biggest source of delay and
 * uncertainty.
 *
 * The user wants to know what time it was at the moment he invoked us, not
 * some arbitrary time later. And in setting the clock, he is giving us the
 * time at the moment we are invoked, so if we set the clock some time
 * later, we have to add some time to that.
 *
 * So we check the system time as soon as we start up, then run "date" and
 * do file I/O if necessary, then wait to synchronize with a Hardware Clock
 * edge, then check the system time again to see how much time we spent. We
 * immediately read the clock then and (if appropriate) report that time,
 * and additionally, the delay we measured.
 *
 * If we're setting the clock to a time given by the user, we wait some more
 * so that the total delay is an integral number of seconds, then set the
 * Hardware Clock to the time the user requested plus that integral number
 * of seconds. N.B. The Hardware Clock can only be set in integral seconds.
 *
 * If we're setting the clock to the system clock value, we wait for the
 * system clock to reach the top of a second, and then set the Hardware
 * Clock to the system clock's value.
 *
 * Here's an interesting point about setting the Hardware Clock:  On my
 * machine, when you set it, it sets to that precise time. But one can
 * imagine another clock whose update oscillator marches on a steady one
 * second period, so updating the clock between any two oscillator ticks is
 * the same as updating it right at the earlier tick. To avoid any
 * complications that might cause, we set the clock as soon as possible
 * after an oscillator tick.
 *
 * About synchronizing to the Hardware Clock when reading the time: The
 * precision of the Hardware Clock counters themselves is one second. You
 * can't read the counters and find out that is 12:01:02.5. But if you
 * consider the location in time of the counter's ticks as part of its
 * value, then its precision is as infinite as time is continuous! What I'm
 * saying is this: To find out the _exact_ time in the hardware clock, we
 * wait until the next clock tick (the next time the second counter changes)
 * and measure how long we had to wait. We then read the value of the clock
 * counters and subtract the wait time and we know precisely what time it
 * was when we set out to query the time.
 *
 * hwclock uses this method, and considers the Hardware Clock to have
 * infinite precision.
 */