1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/*
* i386 CMOS starts out with 14 bytes clock data alpha has something
* similar, but with details depending on the machine type.
*
* byte 0: seconds 0-59
* byte 2: minutes 0-59
* byte 4: hours 0-23 in 24hr mode,
* 1-12 in 12hr mode, with high bit unset/set
* if am/pm.
* byte 6: weekday 1-7, Sunday=1
* byte 7: day of the month 1-31
* byte 8: month 1-12
* byte 9: year 0-99
*
* Numbers are stored in BCD/binary if bit 2 of byte 11 is unset/set The
* clock is in 12hr/24hr mode if bit 1 of byte 11 is unset/set The clock is
* undefined (being updated) if bit 7 of byte 10 is set. The clock is frozen
* (to be updated) by setting bit 7 of byte 11 Bit 7 of byte 14 indicates
* whether the CMOS clock is reliable: it is 1 if RTC power has been good
* since this bit was last read; it is 0 when the battery is dead and system
* power has been off.
*
* Avoid setting the RTC clock within 2 seconds of the day rollover that
* starts a new month or enters daylight saving time.
*
* The century situation is messy:
*
* Usually byte 50 (0x32) gives the century (in BCD, so 19 or 20 hex), but
* IBM PS/2 has (part of) a checksum there and uses byte 55 (0x37).
* Sometimes byte 127 (0x7f) or Bank 1, byte 0x48 gives the century. The
* original RTC will not access any century byte; some modern versions will.
* If a modern RTC or BIOS increments the century byte it may go from 0x19
* to 0x20, but in some buggy cases 0x1a is produced.
*/
/*
* A struct tm has int fields
* tm_sec 0-59, 60 or 61 only for leap seconds
* tm_min 0-59
* tm_hour 0-23
* tm_mday 1-31
* tm_mon 0-11
* tm_year number of years since 1900
* tm_wday 0-6, 0=Sunday
* tm_yday 0-365
* tm_isdst >0: yes, 0: no, <0: unknown
*/
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "c.h"
#include "nls.h"
#include "pathnames.h"
/* for inb, outb */
#if defined(__i386__) || defined(__x86_64__)
# ifdef HAVE_SYS_IO_H
# include <sys/io.h>
# elif defined(HAVE_ASM_IO_H)
# include <asm/io.h>
# else
# undef __i386__
# undef __x86_64__
# warning "disable cmos access - no sys/io.h or asm/io.h"
static void outb(int a __attribute__((__unused__)),
int b __attribute__((__unused__)))
{
}
static int inb(int c __attribute__((__unused__)))
{
return 0;
}
# endif /* __i386__ __x86_64__ */
#else
# warning "disable cmos access - not i386 or x86_64"
static void outb(int a __attribute__((__unused__)),
int b __attribute__((__unused__)))
{
}
static int inb(int c __attribute__((__unused__)))
{
return 0;
}
#endif /* for inb, outb */
#include "hwclock.h"
#define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10)
#define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10)
#define IOPL_NOT_IMPLEMENTED -2
/*
* POSIX uses 1900 as epoch for a struct tm, and 1970 for a time_t.
*/
#define TM_EPOCH 1900
static unsigned short clock_ctl_addr = 0x70;
static unsigned short clock_data_addr = 0x71;
/*
* Hmmh, this isn't very atomic. Maybe we should force an error instead?
*
* TODO: optimize the access to CMOS by mlockall(MCL_CURRENT) and SCHED_FIFO
*/
static unsigned long atomic(unsigned long (*op) (unsigned long),
unsigned long arg)
{
return (*op) (arg);
}
/*
* We only want to read CMOS data, but unfortunately writing to bit 7
* disables (1) or enables (0) NMI; since this bit is read-only we have
* to guess the old status. Various docs suggest that one should disable
* NMI while reading/writing CMOS data, and enable it again afterwards.
* This would yield the sequence
*
* outb (reg | 0x80, 0x70);
* val = inb(0x71);
* outb (0x0d, 0x70); // 0x0d: random read-only location
*
* Other docs state that "any write to 0x70 should be followed by an
* action to 0x71 or the RTC will be left in an unknown state". Most
* docs say that it doesn't matter at all what one does.
*
* bit 0x80: disable NMI while reading - should we? Let us follow the
* kernel and not disable. Called only with 0 <= reg < 128
*/
static inline unsigned long cmos_read(unsigned long reg)
{
outb(reg, clock_ctl_addr);
return inb(clock_data_addr);
}
static inline unsigned long cmos_write(unsigned long reg, unsigned long val)
{
outb(reg, clock_ctl_addr);
outb(val, clock_data_addr);
return 0;
}
static unsigned long cmos_set_time(unsigned long arg)
{
unsigned char save_control, save_freq_select, pmbit = 0;
struct tm tm = *(struct tm *)arg;
/*
* CMOS byte 10 (clock status register A) has 3 bitfields:
* bit 7: 1 if data invalid, update in progress (read-only bit)
* (this is raised 224 us before the actual update starts)
* 6-4 select base frequency
* 010: 32768 Hz time base (default)
* 111: reset
* all other combinations are manufacturer-dependent
* (e.g.: DS1287: 010 = start oscillator, anything else = stop)
* 3-0 rate selection bits for interrupt
* 0000 none (may stop RTC)
* 0001, 0010 give same frequency as 1000, 1001
* 0011 122 microseconds (minimum, 8192 Hz)
* .... each increase by 1 halves the frequency, doubles the period
* 1111 500 milliseconds (maximum, 2 Hz)
* 0110 976.562 microseconds (default 1024 Hz)
*/
save_control = cmos_read(11); /* tell the clock it's being set */
cmos_write(11, (save_control | 0x80));
save_freq_select = cmos_read(10); /* stop and reset prescaler */
cmos_write(10, (save_freq_select | 0x70));
tm.tm_year %= 100;
tm.tm_mon += 1;
tm.tm_wday += 1;
if (!(save_control & 0x02)) { /* 12hr mode; the default is 24hr mode */
if (tm.tm_hour == 0)
tm.tm_hour = 24;
if (tm.tm_hour > 12) {
tm.tm_hour -= 12;
pmbit = 0x80;
}
}
if (!(save_control & 0x04)) { /* BCD mode - the default */
BIN_TO_BCD(tm.tm_sec);
BIN_TO_BCD(tm.tm_min);
BIN_TO_BCD(tm.tm_hour);
BIN_TO_BCD(tm.tm_wday);
BIN_TO_BCD(tm.tm_mday);
BIN_TO_BCD(tm.tm_mon);
BIN_TO_BCD(tm.tm_year);
}
cmos_write(0, tm.tm_sec);
cmos_write(2, tm.tm_min);
cmos_write(4, tm.tm_hour | pmbit);
cmos_write(6, tm.tm_wday);
cmos_write(7, tm.tm_mday);
cmos_write(8, tm.tm_mon);
cmos_write(9, tm.tm_year);
/*
* The kernel sources, linux/arch/i386/kernel/time.c, have the
* following comment:
*
* The following flags have to be released exactly in this order,
* otherwise the DS12887 (popular MC146818A clone with integrated
* battery and quartz) will not reset the oscillator and will not
* update precisely 500 ms later. You won't find this mentioned in
* the Dallas Semiconductor data sheets, but who believes data
* sheets anyway ... -- Markus Kuhn
*/
cmos_write(11, save_control);
cmos_write(10, save_freq_select);
return 0;
}
static int hclock_read(unsigned long reg)
{
return atomic(cmos_read, reg);
}
static void hclock_set_time(const struct tm *tm)
{
atomic(cmos_set_time, (unsigned long)(tm));
}
static inline int cmos_clock_busy(void)
{
return
/* poll bit 7 (UIP) of Control Register A */
(hclock_read(10) & 0x80);
}
static int synchronize_to_clock_tick_cmos(const struct hwclock_control *ctl
__attribute__((__unused__)))
{
int i;
/*
* Wait for rise. Should be within a second, but in case something
* weird happens, we have a limit on this loop to reduce the impact
* of this failure.
*/
for (i = 0; !cmos_clock_busy(); i++)
if (i >= 10000000)
return 1;
/* Wait for fall. Should be within 2.228 ms. */
for (i = 0; cmos_clock_busy(); i++)
if (i >= 1000000)
return 1;
return 0;
}
/*
* Read the hardware clock and return the current time via <tm> argument.
* Assume we have an ISA machine and read the clock directly with CPU I/O
* instructions.
*
* This function is not totally reliable. It takes a finite and
* unpredictable amount of time to execute the code below. During that time,
* the clock may change and we may even read an invalid value in the middle
* of an update. We do a few checks to minimize this possibility, but only
* the kernel can actually read the clock properly, since it can execute
* code in a short and predictable amount of time (by turning of
* interrupts).
*
* In practice, the chance of this function returning the wrong time is
* extremely remote.
*/
static int read_hardware_clock_cmos(const struct hwclock_control *ctl
__attribute__((__unused__)), struct tm *tm)
{
unsigned char status = 0, pmbit = 0;
while (1) {
/*
* Bit 7 of Byte 10 of the Hardware Clock value is the
* Update In Progress (UIP) bit, which is on while and 244
* uS before the Hardware Clock updates itself. It updates
* the counters individually, so reading them during an
* update would produce garbage. The update takes 2mS, so we
* could be spinning here that long waiting for this bit to
* turn off.
*
* Furthermore, it is pathologically possible for us to be
* in this code so long that even if the UIP bit is not on
* at first, the clock has changed while we were running. We
* check for that too, and if it happens, we start over.
*/
if (!cmos_clock_busy()) {
/* No clock update in progress, go ahead and read */
tm->tm_sec = hclock_read(0);
tm->tm_min = hclock_read(2);
tm->tm_hour = hclock_read(4);
tm->tm_wday = hclock_read(6);
tm->tm_mday = hclock_read(7);
tm->tm_mon = hclock_read(8);
tm->tm_year = hclock_read(9);
status = hclock_read(11);
/*
* Unless the clock changed while we were reading,
* consider this a good clock read .
*/
if (tm->tm_sec == hclock_read(0))
break;
}
/*
* Yes, in theory we could have been running for 60 seconds
* and the above test wouldn't work!
*/
}
if (!(status & 0x04)) { /* BCD mode - the default */
BCD_TO_BIN(tm->tm_sec);
BCD_TO_BIN(tm->tm_min);
pmbit = (tm->tm_hour & 0x80);
tm->tm_hour &= 0x7f;
BCD_TO_BIN(tm->tm_hour);
BCD_TO_BIN(tm->tm_wday);
BCD_TO_BIN(tm->tm_mday);
BCD_TO_BIN(tm->tm_mon);
BCD_TO_BIN(tm->tm_year);
}
/*
* We don't use the century byte of the Hardware Clock since we
* don't know its address (usually 50 or 55). Here, we follow the
* advice of the X/Open Base Working Group: "if century is not
* specified, then values in the range [69-99] refer to years in the
* twentieth century (1969 to 1999 inclusive), and values in the
* range [00-68] refer to years in the twenty-first century (2000 to
* 2068 inclusive)."
*/
tm->tm_wday -= 1;
tm->tm_mon -= 1;
if (tm->tm_year < 69)
tm->tm_year += 100;
if (pmbit) {
tm->tm_hour += 12;
if (tm->tm_hour == 24)
tm->tm_hour = 0;
}
tm->tm_isdst = -1; /* don't know whether it's daylight */
return 0;
}
static int set_hardware_clock_cmos(const struct hwclock_control *ctl
__attribute__((__unused__)),
const struct tm *new_broken_time)
{
hclock_set_time(new_broken_time);
return 0;
}
#if defined(__i386__) || defined(__x86_64__)
# if defined(HAVE_IOPL)
static int i386_iopl(const int level)
{
return iopl(level);
}
# else
static int i386_iopl(const int level __attribute__ ((__unused__)))
{
extern int ioperm(unsigned long from, unsigned long num, int turn_on);
return ioperm(clock_ctl_addr, 2, 1);
}
# endif
#else
static int i386_iopl(const int level __attribute__ ((__unused__)))
{
return IOPL_NOT_IMPLEMENTED;
}
#endif
static int get_permissions_cmos(void)
{
int rc;
rc = i386_iopl(3);
if (rc == IOPL_NOT_IMPLEMENTED) {
warnx(_("ISA port access is not implemented"));
} else if (rc != 0) {
warn(_("iopl() port access failed"));
}
return rc;
}
static const char *get_device_path(void)
{
return NULL;
}
static struct clock_ops cmos_interface = {
N_("Using direct ISA access to the clock"),
get_permissions_cmos,
read_hardware_clock_cmos,
set_hardware_clock_cmos,
synchronize_to_clock_tick_cmos,
get_device_path,
};
/*
* return &cmos if cmos clock present, NULL otherwise.
*/
struct clock_ops *probe_for_cmos_clock(void)
{
#if defined(__i386__) || defined(__x86_64__)
return &cmos_interface;
#else
return NULL;
#endif
}
|